
Nektar++: Spectral/hp
Element Framework

Tutorials
December 2, 2016

Department of Aeronautics, Imperial College London, UK
Scientific Computing and Imaging Institute, University of Utah, USA

ii

Contents

Introduction iv

1 Advection Diffusion Reaction (ADR) Solver 1
1.1 Background . 2
1.2 Problem description . 3
1.3 Pre-processing . 3
1.4 Configuring the expansion bases and the conditions 6
1.5 Running the solver . 9
1.6 Post-processing . 10
1.7 Summary . 11
1.8 Exercises left to the user . 11

iii

Introduction

The tutorials presented in the following aim to show the users of Nektar++ [?] how to
utilise the various solvers available within the library, from the pre-processing steps to
the post-processing, passing through the setup and run of the simulation.

iv

Chapter 1
Advection Diffusion Reaction (ADR)

Solver

Introduction

Welcome to the Advection Diffusion Reaction (ADR) Solver tutorial for the Nektar++
library. This tutorial is intended to show the main features of the ADR solver in a simple
and user-friendly format. If you have not already downloaded and installed Nektar++,
please do so by visiting nektar.info, where you can also find the User-Guide with the
instructions to install the library. This tutorial requires:

• Nektar++ ADRSolver and pre- and post-processing tools,

• the open-source mesh generator Gmsh,

• the visualisation tool Paraview.

Goals

After the completion of this tutorial, the user will be familiar with:

• the generation of a simple mesh in Gmsh and its conversion into a Nektar++-
compatible format;

• the visualisation of the Jacobian distribution across the mesh in Paraview;

• the setup of the initial and boundary conditions, the parameters and the solver
settings;

• running a simulation with the ADR solver; and

• the post-processing of the data and the visualisation of the results in Paraview.

1

http://www.nektar.info
http://www.nektar.info/downloads/8
http://geuz.org/gmsh/
http://www.paraview.org

2 Chapter 1 Advection Diffusion Reaction (ADR) Solver

Resources

The files necessary to run this tutorial are included in ??. Specifically, two files with
extension .xml are needed as input for Nektar++:

• a file containing the mesh: ADR_mesh.xml ; and

• a configuration file with the simulation settings ADR_conditions_aligned.xml .

In the same folder it is possible to find also the following additional material:

• a Gmsh file to generate the mesh, ADR_mesh.geo ;

• a .msh file containing the mesh in Gmsh format, ADR_mesh.msh ;

• a .xml file containing the mesh in Nektar++ format without the edges aligned for
the periodic boundary conditions (see section 1.3), ADR_mesh.xml ;

• the 11 output .chk binary files generated by running the simulation, ADR_mesh_aligned_i.chk ;

• the 11 output files converted in a Paraview readable format (.vtu), ADR_mesh_aligned_i.vtu ;

• the output .fld binary file generated at the last time-step of the simulation,
ADR_mesh_aligned.fld ; and

• a bash script to automatically convert the 11 .chk files into .vtu files, convert.sh .

Now that you are ready, let’s start!

1.1 Background

The ADR solver can solve various problems, including the unsteady advection, unsteady
diffusion, unsteady advection diffusion equation, etc. For a more detailed description of
this solver, please refer to the User-Guide.

In this tutorial we focus on the unsteady advection equation

∂u

∂t
+ V · ∇u = 0, (1.1)

where u is the independent variable and V = [Vx Vy Vz] is the advection velocity. The
unsteady advection equation can be solved in one, two and three spatial dimensions. We
will here consider a two-dimensional problem, so that V = [Vx Vy].

http://www.nektar.info/downloads/8

1.2 Problem description 3

1.2 Problem description

The problem we want to run consists of a given initial condition (which depends on x and
y) travelling in the x-direction at a constant advection velocity. To model this problem
we create a computational domain also referred to as mesh or grid (see section 1.3) on
which we apply the following two-dimensional function as initial condition and periodic
as well as time-dependent Dirichlet boundary conditions at the mesh boundaries

∂u

∂t
+ Vx

∂u

∂x
+ Vy

∂u

∂y
= 0,

u(x, y; t = 0) = sin(κx) cos(κy),

u(xb = [−1, 1], yb; t) = periodic,

u(xb, yb = [−1, 1]; t) = sin(κ(x−Vx t)) cos(κ(y −Vy t)),

(1.2)

where xb and yb represent the boundaries of the computational domain (see section 1.4),
Vx = 2,Vy = 0 and κ = 2π.

We successively setup the other parameters of the problem, such as the time-step, the
time-integration scheme, the I/O configuration, etc. (see section 1.4). We finally run the
solver (see section 1.5) and post-process the data in order to visualise the results (see
section 1.6).

1.3 Pre-processing

The pre-processing step consists in generating the mesh in a Nektar++ compatible
format. For doing so we can first use the open-source mesh-generator Gmsh to first
create the geometry, that in our case is a square and successively the mesh. The mesh
format provided by Gmsh shown in Fig. (1.1) - i.e. .msh extension - is not compatible
with the Nektar++ solvers and, therefore, it needs to be converted. To do so, we need

Z

Y

XZ X

Y

Figure 1.1 Mesh generated by Gmsh.

4 Chapter 1 Advection Diffusion Reaction (ADR) Solver

to run the pre-processing routine called MeshConvert within Nektar++. This routine
requires two line arguments, the mesh file generated by Gmsh, ADR_mesh.msh , and the
name of the Nektar++-compatible mesh file that MeshConvert will generate, for instance
ADR_mesh.xml . The command line for this step is

nektar++/builds/utilities/MeshConvert/MeshConvert \
ADR_mesh.msh ADR_mesh.xml

The generated .xml mesh file is reported below. It contains 5 tags encapsulated within
the GEOMETRY tag, which describes the mesh. The first tag, VERTEX , contains the
spatial coordinates of the vertices of the various elements of the mesh. The second tag,
EDGE contains the lines connecting the vertices. The third tag, ELEMENT , defines the
elements (note that in this case we have both triangular - e.g. <T ID="0"> - as well as
quadrilateral - e.g. <Q ID="85"> - elements). The fourth tag, COMPOSITE , is constituted
by the physical regions of the mesh called composite, where the composites formed
by elements represent the solution sub-domains - i.e. the mesh sub-domains where we
want to solve the linear advection problem (note that we will use these composites to
define expansion bases on each sub-domain in section 1.4) - while the composites formed
by edges are the boundaries of the domain where we need to apply suitable boundary
conditions (note that we will use these composites to specify the boundary conditions in
section 1.4). Finally, the fifth tag, DOMAIN , formally specifies the overall solution domain
as the union of the three composites forming the three solution subdomains (note that
the specification of three subdomain - i.e. composites - in this case is necessary since they
are constituted by different element shapes). For additional details on the GEOMETRY tag
refer to the User-Guide.

1 <?xml version="1.0" encoding="utf−8" ?>
2 <NEKTAR>
3 <GEOMETRY DIM="2" SPACE="2">
4 <VERTEX>
5 <V ID="0">2.00000000e−01 −1.00000000e+00 0.00000000e+00</V>
6 <V ID="1">5.09667784e−01 −6.15240515e−01 0.00000000e+00</V>
7 ...
8 <V ID="68">−1.00000000e+00 1.25000000e−01 0.00000000e+00</V>
9 </VERTEX>

10 <EDGE>
11 <E ID="0"> 0 1 </E>
12 <E ID="1"> 1 2 </E>
13 ...
14 <E ID="153"> 40 68 </E>
15 </EDGE>
16 <ELEMENT>
17 <T ID="0"> 0 1 2 </T>
18 <T ID="1"> 3 4 5 </T>
19 ...
20 <Q ID="85"> 146 93 153 151 </Q>
21 </ELEMENT>
22 <COMPOSITE>
23 <C ID="1"> T[0−30] </C>
24 <C ID="2"> Q[62−85] </C>

http://www.nektar.info/downloads/8

1.3 Pre-processing 5

25 <C ID="3"> T[31−61] </C>
26 <C ID="100"> E[46,12,20,10,45] </C>
27 <C ID="200"> E[50,32,108,111,114,117,87,103] </C>
28 <C ID="300"> E[100,64,74,66,99] </C>
29 <C ID="400"> E[49,33,148,150,152−153,86,104] </C>
30 </COMPOSITE>
31 <DOMAIN> C[1,2,3] </DOMAIN>
32 </GEOMETRY>
33 </NEKTAR>

After having generated the mesh file in a Nektar++-compatible format, ADR_mesh.xml ,
we can visualise the Jacobian distribution across the mesh in order to evaluate its quality.
This step can be done by using the following Nektar++ built-in post-processing routine:

nektar++/builds/utilities/XmlToVtk -j ADR_mesh.xml

where the optional command -j calculate the Jacobian distribution for each element
of the mesh. This will produce a ADR_mesh.vtu file which can be directly read by
the open-source visualisation tool called Paraview. In Fig. 1.2 we show the Jacobian
distribution for the mesh considered in this tutorial, ADR_mesh.xml . Before configuring

Figure 1.2 Jacobian distribution.

the input files, if we want to use periodic boundary conditions, we need to make sure that
the edges of the two periodic boundaries (i.e. xb = [−1, 1], yb) are properly aligned. Gmsh
and the MeshConvert routine within Nektar++ does not guarantee proper alignment.
However, MeshConvert provides a module, called peralign , that enforces the reordering
of pair of edges (for more details refer to the User-Guide. We can apply this by using
the following command:

nektar++/builds/utilities/MeshConvert/MeshConvert \
-m peralign:surf1=200:surf2=400:dir=x ADR_mesh.xml ADR_mesh_aligned.xml

http://www.nektar.info/downloads/8

6 Chapter 1 Advection Diffusion Reaction (ADR) Solver

where -m peralign is selecting the module for aligning the edges which are specified by
surf1 and surf2 (their IDs in this case are 200 and 400) and dir is the direction to
which the two periodic edges are perpendicular (in this case x).

After having typed the last command, we have a mesh, ADR_mesh_aligned.xml , which
is fully compatible with Nektar++ and which allows us applying periodic boundary
conditions without encountering errors.

We can therefore now configure the conditions: initial conditions, boundary conditions,
parameters and solver settings.

1.4 Configuring the expansion bases and the conditions

To set the various parameters, the solver settings and the initial and boundary conditions
needed, we create a new file called ADR_conditions.xml , which can be found within the
resources provided for this tutorial. This new file contains the CONDITIONS tag where we
can specify the parameters of the simulations, the solver settings, the initial conditions,
the boundary conditions and the exact solution and contains the EXPANSIONS tag where
we can specify the polynomial order to be used inside each element of the mesh, the type
of expansion bases and the type of points.

We begin to describe the ADR_conditions.xml file from the CONDITIONS tag, and in
particular from the boundary conditions, initial conditions and exact solution sections:

1 <CONDITIONS>
2 ...
3 ...
4 ...
5 <VARIABLES>
6 <V ID="0"> u </V>
7 </VARIABLES>
8
9 <BOUNDARYREGIONS>

10 <B ID="0"> C[100]
11 <B ID="1"> C[200]
12 <B ID="2"> C[300]
13 <B ID="3"> C[400]
14 </BOUNDARYREGIONS>
15
16 <BOUNDARYCONDITIONS>
17 <REGION REF="0">
18 <D VAR="u" USERDEFINEDTYPE="TimeDependent"
19 VALUE="sin(k∗(x−advx∗t))∗cos(k∗(y−advy∗t))" />
20 </REGION>
21 <REGION REF="1">
22 <P VAR="u" VALUE="[3]" />
23 </REGION>
24 <REGION REF="2">
25 <D VAR="u" USERDEFINEDTYPE="TimeDependent"
26 VALUE="sin(k∗(x−advx∗t))∗cos(k∗(y−advy∗t))" />
27 </REGION>

1.4 Configuring the expansion bases and the conditions 7

28 <REGION REF="3">
29 <P VAR="u" VALUE="[1]" />
30 </REGION>
31 </BOUNDARYCONDITIONS>
32
33 <FUNCTION NAME="InitialConditions">
34 <E VAR="u" VALUE="sin(k∗x)∗cos(k∗y)" />
35 </FUNCTION>
36
37 <FUNCTION NAME="AdvectionVelocity">
38 <E VAR="Vx" VALUE="advx" />
39 <E VAR="Vy" VALUE="advy" />
40 </FUNCTION>
41
42 <FUNCTION NAME="ExactSolution">
43 <E VAR="u" VALUE="sin(k∗(x−advx∗t))∗cos(k∗(y−advy∗t))" />
44 </FUNCTION>
45 </CONDITIONS>

In the above piece of .xml , we first need to specify the non-optional tag called VARIABLES
that sets the solution variable (in this case u).

The second tag that needs to be specified is BOUNDARYREGIONS through which the
user can specify the regions where to apply the boundary conditions. For instance,
<B ID="0"> C[100] indicates that composite 100 (which has been introduced in
section 1.3) has a boundary ID equal to 0. This boundary ID is successively used to
prescribe the boundary conditions.

The third tag is BOUNDARYCONDITIONS by which the boundary conditions are actually
specified for each boundary ID specified in the BOUNDARYREGIONS tag. The syntax
<D VAR="u" corresponds to a D irichlet boundary condition for the variable u (note
that in this case we used the additional tag USERDEFINEDTYPE="TimeDependent" which is
a special option when using time-dependent boundary conditions), while <P VAR="u"
corresponds to P eriodic boundary conditions. For additional details on the various
options possible in terms of boundary conditions refer to the User-Guide.

Finally, <FUNCTION NAME="InitialConditions"> allows the specification of the initial con-
ditions, <FUNCTION NAME="AdvectionVelocity"> specifies the advection velocities in both
the x- and y-direction (for this two-dimensional case) and is a non-optional parameters
for the unsteady advection equation and <FUNCTION NAME="ExactSolution"> permits us
to provide the exact solution, against which the L2 and L∞ errors are computed.

After having configured the VARIABLES tag, the initial and boundary conditions, the
advection velocity and the exact solution we can complete the tag CONDITIONS prescribing
the parameters necessary (PARAMETERS)and the solver settings (SOLVERINFO):

1 <CONDITIONS>
2 <PARAMETERS>
3 <P> FinTime = 1.0 </P>
4 <P> TimeStep = 0.001 </P>

http://www.nektar.info/downloads/8

8 Chapter 1 Advection Diffusion Reaction (ADR) Solver

5 <P> NumSteps = FinTime/TimeStep </P>
6 <P> IO_CheckSteps = 100 </P>
7 <P> IO_InfoSteps = 100 </P>
8 <P> advx = 2.0 </P>
9 <P> advy = 0.0 </P>

10 <P> k = 2∗PI </P>
11 </PARAMETERS>
12
13 <SOLVERINFO>
14 <I PROPERTY="EQTYPE" VALUE="UnsteadyAdvection" />
15 <I PROPERTY="Projection" VALUE="DisContinuous" />
16 <I PROPERTY="AdvectionType" VALUE="WeakDG" />
17 <I PROPERTY="UpwindType" VALUE="Upwind" />
18 <I PROPERTY="TimeIntegrationMethod" VALUE="ClassicalRungeKutta4" />
19 </SOLVERINFO>
20 ...
21 ...
22 ...

In the PARAMETERS tag, FinTime is the final physical time of the simulation, TimeStep is
the time-step, NumSteps is the number of steps, IO_CheckSteps is the step-interval when
a output file is written, IO_InfoSteps is the step-interval when some information about
the simulation are printed to the screen, advx and advy are the advection velocities
Vx and Vy, respectively and k is the κ parameter. Note that advx , advy and k are
used in the boundary and initial conditions tags as well as in the specification of the
advection velocities.

In the SOLVERINFO tag, EQTYPE is the type of equation to be solved, Projection is the
spatial projection operator to be used (which in this case is specified to be ‘DisContinuous’),
AdvectionType is the advection operator to be adopted (where the VALUE ‘WeakDG’
implies the use of a weak Discontinuous Galerkin technique), UpwindType is the numerical
flux to be used at the element interfaces when a discontinuous projection is used,
TimeIntegrationMethod allows selecting the time-integration scheme. For additional
solver-setting options refer to the User-Guide.

Finally, we need to specify the expansion bases we want to use in each of the three
composites or sub-domains (COMPOSITE="..") introduced in section 1.3:

1 <EXPANSIONS>
2 <E COMPOSITE="C[1]" NUMMODES="5" TYPE="MODIFIED" FIELDS="u" />
3 <E COMPOSITE="C[2]" NUMMODES="5" TYPE="MODIFIED" FIELDS="u" />
4 <E COMPOSITE="C[3]" NUMMODES="5" TYPE="MODIFIED" FIELDS="u" />
5 </EXPANSIONS>

In particular, for all the composites, COMPOSITE="C[i]" with i=1,2,3 we select identical
basis functions and polynomial order, where NUMMODES is the number of coefficients
we want to use for the basis functions (that is commonly equal to P+1 where P is
the polynomial order of the basis functions), TYPE allows selecting the basis functions

http://www.nektar.info/downloads/8

1.5 Running the solver 9

FIELDS is the solution variable of our problem and COMPOSITE are the mesh regions
created by Gmsh. For additional details on the EXPANSIONS tag refer to the User-Guide.

1.5 Running the solver

Now that we have the mesh file compatible with Nektar++ and periodic bound-
ary conditions, ADR_mesh_aligned.xml , and we have completed the condition file,
ADR_conditions.xml , we can run the solver by using the following command:

nektar++/builds/solvers/ADRSolver/ADRSolver \
ADR_mesh_aligned.xml ADR_conditions.xml

Note that we have written the mesh in a separate file from the conditions. This is
generally more efficient because it allows reopening just the condition file which is much
smaller in size than the mesh file (especially for large problems). However, we could
also have written both the mesh and the conditions in unique file and used the same
command as above for running the solver (in this case with just one file instead of two as
line argument).

As soon as the file finishes running, we should see the following screen output:

===
EquationType: UnsteadyAdvection
Session Name: ADR_mesh_aligned
Spatial Dim.: 2

Max SEM Exp. Order: 5
Expansion Dim.: 2
Riemann Solver: Upwind
Advection Type:

Projection Type: Discontinuous Galerkin
Advection: explicit
Diffusion: explicit
Time Step: 0.001

No. of Steps: 1000
Checkpoints (steps): 100

Integration Type: ClassicalRungeKutta4
==
Initial Conditions:

- Field u: sin(k*x)*cos(k*y)
Writing: "ADR_mesh_aligned_0.chk"
Steps: 100 Time: 0.1 CPU Time: 0.435392s
Writing: "ADR_mesh_aligned_1.chk"
Steps: 200 Time: 0.2 CPU Time: 0.430588s
Writing: "ADR_mesh_aligned_2.chk"
Steps: 300 Time: 0.3 CPU Time: 0.428503s
Writing: "ADR_mesh_aligned_3.chk"
Steps: 400 Time: 0.4 CPU Time: 0.428529s
Writing: "ADR_mesh_aligned_4.chk"

http://www.nektar.info/downloads/8

10 Chapter 1 Advection Diffusion Reaction (ADR) Solver

Steps: 500 Time: 0.5 CPU Time: 0.430142s
Writing: "ADR_mesh_aligned_5.chk"
Steps: 600 Time: 0.6 CPU Time: 0.429481s
Writing: "ADR_mesh_aligned_6.chk"
Steps: 700 Time: 0.7 CPU Time: 0.433232s
Writing: "ADR_mesh_aligned_7.chk"
Steps: 800 Time: 0.8 CPU Time: 0.431088s
Writing: "ADR_mesh_aligned_8.chk"
Steps: 900 Time: 0.9 CPU Time: 0.427919s
Writing: "ADR_mesh_aligned_9.chk"
Steps: 1000 Time: 1 CPU Time: 0.436098s
Writing: "ADR_mesh_aligned_10.chk"
Time-integration : 4.31097s
Writing: "ADR_mesh_aligned.fld"

Total Computation Time = 4s

L 2 error (variable u) : 0.00863475
L inf error (variable u) : 0.0390366

where the L2 and L inf errors are evaluated against the <FUNCTION NAME="ExactSolution">
provided in the ADR_conditions.xml file. To have a more detailed view on the solver
settings and parameters used, it is possible to use the -v option (which stands for
verbose) as follows:

nektar++/builds/solvers/ADRSolver/ADRSolver -v \
ADR_mesh_aligned.xml ADR_conditions.xml

The simulation has now produced 11 .chk binary files and a final .fld binary file
(which in this case is identical to the tenth .chk file). These binary files contain the
result of the simulation every 100 time-steps. This output interval has been chosen
through the parameter IO_CheckSteps in ADR_conditions.xml , which was set equal to
100. Also, it is possible to note that every 100 time-steps the solver outputs the physical
time of the simulation and the CPU time required for doing 100 time-steps. The interval
of 100 time-steps is decided through the parameter IO_InfoSteps , which was also equal
to 100.

1.6 Post-processing

Now that the simulation has been completed, we need to post-process the file in order to
visualise the results. In order to do so, we can use the built-in post-processing routines
within Nektar++. In particular, we can use the following command

nektar++/builds/utilities/FieldConvert/FieldConvert \
ADR_mesh_aligned.xml ADR_conditions.xml \
ADR_mesh_aligned_0.chk ADR_mesh_aligned_0.vtu

1.7 Summary 11

which generates a .vtu file that is a readable format for the open-source package
Paraview. Note that we typically have to specify both the mesh .xml file and the
condition .xml file. We can now open the .vtu file just generated (which corresponds
to the initial condition, being the number ‘0’ .chk file) and visualise it with Paraview.
This produces the image in Fig. (1.3). It is possible to use the same post-processing

Figure 1.3 Initial solution

command for visualising the other .chk , thus monitoring the evolution of the simulation
in time.

1.7 Summary

The user should be now familiar with the following topics:

• Generate a simple mesh in Gmsh and convert it in a Nektar++-compatible format;

• Visualise the Jacobian distribution across the mesh in Paraview;

• Setup the initial and boundary conditions, the parameters and the solver settings;

• Run the ADR solver; and

• Post-process the data in order to visualise results in Paraview.

1.8 Exercises left to the user

1. Increase the polynomial order and plot the L2 error vs. the polynomial order in a
semilogarithmic scale.

2. Change the projection operator for a fixed polynomial order and look at the error.

3. Increase the time-step for a fixed polynomial order and look at the error.

4. If the solver is compiled with the MPI option, then try running the case in parallel
with mpirun -np 2 .

12 Chapter 1 Advection Diffusion Reaction (ADR) Solver

5. Change the Projection Operator to Continuous to see the same problem running
with a CG solver.

6. Change the solver type to AdvectionDiffusion and CG to change the problem type.
You also need to update the AdvectionType to NonConservative. Noting that
solution would need to be updated to . . . ?

Tip
To check the additional settings and parameters that can be used for this solver,
check the folder: nektar++/solvers/ADRSolver/Tests/ where you can find several
tests associated to the ADR solver.

Bibliography

[1] CD Cantwell, D Moxey, A Comerford, A Bolis, G Rocco, G Mengaldo, D De Grazia,
S Yakovlev, J-E Lombard, D Ekelschot, et al. Nektar++: An open-source spectral/hp
element framework. Computer Physics Communications, 192:205–219, 2015.

13

	Introduction
	Advection Diffusion Reaction (ADR) Solver
	Background
	Problem description
	Pre-processing
	Configuring the expansion bases and the conditions
	Running the solver
	Post-processing
	Summary
	Exercises left to the user

