
Global Instability Computations with Nektar++

Crete

24th September 2015

The aim of this tutorial is to introduce the user to the spectral/hp element framework Nektar++ and
its use for global stability computations. Information on how to install the libraries, solvers, and
utilities on your own computer is available on the webpage www.nektar.info.

Task 0.1
Prepare for the tutorial. Make sure that you have:

• Compiled, installed and tested Nektar++ .
By default it will install all executables in the sub-directory dist/bin of the build

directory you created:
e.g. MyHomeDirectory/nektar++/build/dist/bin .

We will refer to this directory as $NEK for the remainder of the tutorial.

• Downloaded the tutorial files from
http://www.nektar.info/docs/tutorial/stability-tutorial.tar.gz

Unpack it using tar -xvf stability-tutorial.tar.gz to produce directories called
TutorialFiles and TutorialFilesComplete each containing the subdirectories

– BackwardStep

– Channel

– Channel-3D

– Cylinder

We will refer to the TutorialFiles directory as $NEKTUTORIAL .

Additionally, you should also install

• a visualization package capable of reading VTK files, such as ParaView (which can be
downloaded from here) or VisIt (downloaded from here). Alternatively, you can generate
Tecplot formatted .dat files for use with Tecplot.

• a plotting program capable of reading data from ASCII text files, such as GNUPlot or
MATLAB.

Optionally, you can install the open-source mesh generator Gmsh (which can be downloaded
from here) to generate the meshes for the tutorial examples yourself. However, pre-generated
meshes are provided.

1

http://www.nektar.info
http://www.nektar.info/docs/tutorial/stability-tutorial.tar.gz
http://www.paraview.org/download/
https://wci.llnl.gov/simulation/computer-codes/visit/downloads
http://geuz.org/gmsh/

Figure 1: 48 quadrilaterals mesh

In the first section we will cover the stability analysis of a two-dimensional channel flow, through
both a splitting scheme (the Velocity Correction Scheme) and the direct inversion algorithm (also
referred to as the Coupled Linearised Navier-Stokes solver). We will then study the transient growth
of the flow past a backward-facing step in section 2 and the direct/adjoint stability analysis of a flow
past a cylinder in section 3. Finally, in section 4, we will briefly show the application of the stability
tools presented to a three-dimensional channel flow test case.

1 Two-dimensional Channel flow (optional)

Note: For speed you may wish to go to the next section since all mesh input files have been
provided and return to this section when time permits.

Linear stability analysis is a technique that allows us to determine the asymptotic stability of a flow.
By decomposing the velocity and pressure in the Navier-Stokes equations as a summation of a base
flow (U, P) and perturbation (u′, p′), such that u = U + εu′, p = P + εp′, with ε� 1, we derive the
linearised Navier-Stokes equations,

∂u′

∂t
+ U · ∇u′ + u′ · ∇U = −∇p′ + 1

Re
∇2u′ + f ′, (1)

∇ · u′ = 0. (2)

We will consider a parallel base flow through a 2-D channel (known as Poiseuille flow) at Reynolds
number Re = 7500. The velocity has the following analytic form:

U = (y + 1)(1− y)ex (3)

The domain is Ω = [−π, π] × [−1, 1] and it is composed by 48 quadrilateral elements as shown in
figure 1. The problem has been made non-dimensional using the centreline velocity and the channel
half-height.

This mesh was created using the software Gmsh and the first step is to convert it into a suitable
input format so that it can be processed by the Nektar++ libraries.

The files for this section can be found in the $NEKTUTORIAL/Channel directory.

2

• Folder Geometry

– Channel.geo - Gmsh file that contains the geometry of the problem

– Channel.msh - Gmsh generated mesh data listing mesh vertices and elements.

• Folder Base

– Channel-Base.xml - Nektar++ session file, generated with the $NEK/MeshConvert utility,
for computing the base flow.

• Folder Stability/VCS

– Channel-VCS.xml - Nektar++ session file, generated with $NEK/MeshConvert, for per-
forming the stability analysis.

– Channel-VCS.rst - Nektar++ field file that contains a set of initial conditions closer to
the solution in order to achieve faster convergence.

• Folder Stability/Coupled

– Channel-Coupled.xml - Nektar++ session file, generated with $NEK/MeshConvert, for
performing the stability analysis.

1.1 Mesh generation

The first step is to generate a mesh that is readable by Nektar++ . The files necessary in this
section can be found in $/NEKTUTORIAL/Channel/Geometry/. To achieve this task we use Gmsh in
conjunction with the Nektar++ pre-processing utility called $NEK/MeshConvert. Specifically, we
first generate the mesh in figure 1 using Gmsh and successively we convert it into a suitable Nek-
tar++ format using $NEK/MeshConvert.

3

Task 1.1
Convert the Gmsh geometry provided into the XML Nektar++ format and with two periodic
boundaries

• Channel.msh can be generated using Gmsh by running the following command:

gmsh -2 Channel.geo

• Channel.xml can be generated using the $NEK/MeshConvert pre-processing tool:

$NEK/MeshConvert Channel.msh Channel.xml

• Channel-al.xml can be generated using the module peralign available with the pre-
processing tool $NEK/MeshConvert:

$NEK/MeshConvert -m peralign:surf1=2:surf2=3:dir=x Channel.xml

Channel-al.xml

where surf1 and surf2 correspond to the periodic physical surface IDs specified in Gmsh
(in our case the inflow has a physical ID=2 while the outflow has a physical ID=3) and dir

is the periodicity direction (i.e. the direction normal to the inflow and outflow boundaries
- in our case x).

Examine the Channel.xml and Channel-al.xml files you have just created. Only the mesh
and default expansions are defined at present and the only difference between the two files is
the ordering of the edges in the section composite ID=3 which has been re-ordered in order to
apply periodic boundary conditions correctly.

Warning

There is currently an issue when using the coupled solver and periodic edges which is
being investigated. For achieving the correct channel flow stability results when using
the Coupled Linearised Navier-Stokes algorithm (see section 1.3.2), please use the files
provided in the folder $NEKTUTORIAL/Channel/Stability/Coupled.

1.2 Computation of the base flow

We must first create an appropriate base flow. Since, in hydrodynamic stability theory, it is assumed
that the base flow is incompressible, this can be computed using the incompressible Navier-Stokes
solver ($NEK/IncNavierStokesSolver).

4

Tip

Note that the incompressible Navier-Stokes solver ($NEK/IncNavierStokesSolver) ex-
ecutable encapsulates the nonlinear equations as well as the stability tools. Therefore,
when you setup either a nonlinear incompressible problem or an incompressible stability
problem you should use the same executable - i.e.:

$NEK/IncNavierStokesSolver file.xml.

The instructions for running one or the other are specified on the XML file.

For the problem considered here, the specified boundary conditions will be no-slip on the walls and
periodic for the inflow/outflow. In this case, since it is not a constant pressure gradient that drives
the flow, it is necessary to use a constant body-force in the streamwise direction. It can be shown
that this should be equal to 2ν.

In the folder $NEKTUTORIAL/Channel/Base you will find the file Channel-Base.xml which contains
the geometry along with the necessary parameters to solve the problem. The GEOMETRY section defines
the mesh of the problem and it is generated automatically as you have seen in the previous task.
The expansion type and order is specified in the EXPANSIONS section. An expansion basis is applied
to a geometry composite, where by composite we mean a collection of mesh entities (specifically here,
a collection of mesh elements), specified in the GEOMETRY section. A default entry is always included
by the $NEK/MeshConvert utility. In this case the composite C[0] refers to the set of all elements.
The FIELDS attribute specifies the fields for which this expansion should be used. The TYPE attribute
specifies the kind of the polynomial basis functions to be used in the expansion. For example,

1 <EXPANSIONS>
2 <E COMPOSITE=”C[0]” NUMMODES=”11” FIELDS=”u,v,p” TYPE=”GLL LAGRANGE”/>
3 </EXPANSIONS>.

Note that all the results obtained in this tutorial refers to the expansion parameters just defined (i.e.
NUMMODES="11" FIELDS="u,v,p" TYPE="GLL LAGRANGE").

In order to complete the problem definition and generate the base flow we need to specify a section
called CONDITIONS in the session file. If we examine Channel-Base.xml, we can see how to define
the conditions of the particular problem to solve.

In particular, the CONDITIONS section contains the following entries:

1. Solver information (SOLVERINFO) such as the equation, the projection type (Continuous
or Discontinuous Galerkin), the evolution operator (Nonlinear for non-linear Navier-Stokes,
Direct1, Adjoint or TransientGrowth for linearised forms) and the analysis driver to use
(Standard, Arpack or ModifiedArnoldi), along with other properties. The solver properties
are specified as quoted attributes and have the form

1 <SOLVERINFO>
2 <I PROPERTY=”[STRING]” VALUE=”[STRING]” />
3 ...
4 </SOLVERINFO>

1in this case the term Direct refers to the direct stability analysis (opposed to the adjoint analysis) and it has no
relation with the Coupled Linearised Navier-Stokes algorithm that will be explained in the next section

5

Task 1.2
In the SOLVERINFO section of Channel-Base.xml:
Note: The bits to be completed are identified by . . . in this file.

• set EQTYPE to UnsteadyNavierStokes to select the unsteady incompressible Navier-
Stokes equations,

• set the EvolutionOperator to Nonlinear in order to select the non-linear Navier-
Stokes,

• set the Projection property to Continuous in order to select the continuous Galerkin
approach,

• set the Driver to Standard in order to perform standard time-integration.

2. The parameters (PARAMETERS) are specified as name-value pairs:

1 <PARAMETERS>
2 <P> [KEY] = [VALUE] </P>
3 ...
4 </PARAMETERS>

Parameters may be used within other expressions, such as function definitions, boundary con-
ditions or the definition of other subsequently defined parameters.

Task 1.3
Declare the two parameters Re, that represents the Reynolds number, and Kinvis, which
represents the kinematic viscosity. Now set the Reynolds number to 7500 and the kinematic
viscosity to 1/Re - i.e.

<P> Re = 7500 </P>

<P> Kinvis = 1/Re </P>

Note that you can put previously defined parameters in the VALUE entry which can be an
expression.

3. The declaration of the variable(s) (VARIABLES).

1 <VARIABLES>
2 <V ID=”0”> u </V>
3 <V ID=”1”> v </V>
4 <V ID=”2”> p </V>
5 </VARIABLES>

4. The specification of boundary regions (BOUNDARYREGIONS) in terms of composites defined in
the GEOMETRY section and the conditions applied on those boundaries (BOUNDARYCONDITIONS).
Boundary regions have the form

1 <BOUNDARYREGIONS>
2 <B ID=”[INDEX]”> [COMPOSITE−ID]
3 ...
4 </BOUNDARYREGIONS>

6

The boundary conditions enforced on a region take the following format and must define
the condition for each variable specified in the VARIABLES section to ensure the problem is
well-posed.

1 <BOUNDARYCONDITIONS>
2 <REGION REF=”[B−REGION−INDEX]”>
3 <[TYPE] VAR=”[VARIABLE 1]” VALUE=”[EXPRESSION 1]”/>
4 <[TYPE] VAR=”[VARIABLE 2]” VALUE=”[EXPRESSION 2]”/>
5 ...
6 </REGION>
7 ...
8 </BOUNDARYCONDITIONS>

The REF attribute for a boundary condition region should correspond to the ID="[INDEX]" of
the desired boundary region specified in the BOUNDARYREGIONS section.

5. The definition of the (time- and) space-dependent functions (FUNCTION), in terms of x, y, z and
t, such as initial conditions, forcing functions, and exact solutions. The VARIABLES represent
the components of the specific function in a specified direction and they must be the same for
every function.

1 <FUNCTION NAME=”[NAME]”>
2 <E VAR=”[VARIABLE 1]” VALUE=”[EXPRESSION]”/>
3 <E VAR=”[VARIABLE 2]” VALUE=”[EXPRESSION]”/>
4 ...
5 </FUNCTION>

Alternatively, one can specify the function using an external Nektar++ field file. For example,
this will be used to specify the InitialConditions or ExactConditions.

1 <FUNCTION NAME=”[NAME]”>
2 <F FILE=”[FILENAME]”/>
3 </FUNCTION>

Task 1.4
Define a function called ExactSolution. For the Poiseuille flow with a streamwise forcing
term the exact solution is:

U = (y + 1)(1− y) (4)

V = 0 (5)

P = 0 (6)

Note: You need to use the first definition of FUNCTION where you can set an EXPRESSION.

Tip

If you are interested in the meaning of the other parameters and options present in the
XML file, they should be available in the User-Guide. If not - just ask and we should be
able to answer!

7

http://www.nektar.info/downloads/8

Task 1.5
Define a body forcing function in the streamwise direction (called BodyForce): fx = 2ν =
2 * Kinvis.

Note that for using the body force you need the following additional tag outside the section CONDITIONS:

1 <FORCING>
2 <FORCE TYPE=”Body”>
3 <BODYFORCE> BodyForce </BODYFORCE>
4 </FORCE>
5 </FORCING>

It is possible to specify an arbitrary initial condition. In this case, it was decided to start from the
exact solution of the problem in order to have a steady state in just few iterations. If the initial
condition is not specified, it will be set to zero by default.

This completes the specification of the problem.

Task 1.6
Compute the base flow using the Channel-Base.xml session file by typing:

$NEK/IncNavierStokesSolver Channel-Base.xml

At the end of the simulation, the fields will be written to a binary file Channel-Base.fld and the
L2 error (using the given exact solution) and the L∞ error will be printed on the terminal for each
of the variables.

In particular, the terminal screen should look like this:

===

EquationType: UnsteadyNavierStokes

Session Name: Channel-Base

Spatial Dim.: 2

Max SEM Exp. Order: 11

Expansion Dim.: 2

Projection Type: Continuous Galerkin

Advection: explicit

Diffusion: explicit

Time Step: 0.001

No. of Steps: 1000

Checkpoints (steps): 500

Integration Type: IMEXOrder3

===

Initial Conditions:

- Field u: (y+1)*(1-y)

- Field v: 0

- Field p: 0

Writing: "Channel-Base_0.chk"

Steps: 100 Time: 0.1 CPU Time: 1.296s

8

Steps: 200 Time: 0.2 CPU Time: 0.440151s

Steps: 300 Time: 0.3 CPU Time: 0.440857s

Steps: 400 Time: 0.4 CPU Time: 0.438776s

Steps: 500 Time: 0.5 CPU Time: 0.441416s

Writing: "Channel-Base_1.chk"

Steps: 600 Time: 0.6 CPU Time: 0.439318s

Steps: 700 Time: 0.7 CPU Time: 0.438448s

Steps: 800 Time: 0.8 CPU Time: 0.443955s

Steps: 900 Time: 0.9 CPU Time: 0.443197s

Steps: 1000 Time: 1 CPU Time: 0.440219s

Writing: "Channel-Base_2.chk"

Time-integration : 5.26234s

Writing: "Channel-Base.fld"

Total Computation Time = 6s

L 2 error (variable u) : 1.7664e-12

L inf error (variable u) : 3.59475e-12

L 2 error (variable v) : 4.79197e-13

L inf error (variable v) : 1.12599e-11

L 2 error (variable p) : 1.68712e-11

L inf error (variable p) : 5.2737e-12

The final step regarding the base flow is to visualise the flow fields. Specifically, we need to convert
convert the .fld file into a format readable by a visualisation post-processing tool. In this tutorial
we decided to convert the .fld file into a VTK format and to use the open-source visualisation
package called Paraview .

Task 1.7
Convert the file:

$NEK/FieldConvert Channel-Base.xml Channel-Base.fld Channel-Base.vtu

Now open Paraview and use File ->Open, to select the VTK file, click the ’Apply’ button to
render the geometry, and select each field in turn from the left-most drop-down menu on the
toolbar to visualise the output.
Note: You can also open this type of file in VisIt.

In figure 2 we show how the base flow just computed should look like.

9

Figure 2: u-component of the velocity

Tip

Note that Nektar++ supports also Tecplot. To obtain a Tecplot-readable file you can run
the following command:

$NEK/FieldConvert Channel-Base.xml Channel-Base.fld Channel-Base.dat

1.3 Stability analysis

After having computed the base flow it is now possible to calculate the eigenvalues and the eigenmodes
of the linearised Navier-Stokes equations. Two different algorithms can be used to solve the equations:

• the Velocity Correction Scheme (VelocityCorrectionScheme) and

• the Coupled Linearised Navier-Stokes algorithm (CoupledLinearisedNS).

We will consider both cases, highlighting the similarities and differences of these two methods. In
this tutorial we will use the Implicitly Restarted Arnoldi Method (IRAM), which is implemented
in the open-source library ARPACK and the modified Arnoldi algorithm2 that is also available in
Nektar++ .

1.3.1 Velocity Correction Scheme

First, we will compute the leading eigenvalues and eigenvectors using the velocity correction scheme
method. In the $NEKTUTORIAL/Channel/Stability folder there is a file called Channel-VCS.xml.
This file is similar to Channel-Base.xml, but contains additional instructions to perform the direct
stability analysis.

Note: The entire GEOMETRY section, and EXPANSIONS section must be identical to that used to
compute the base flow.

2International Journal for Numerical Methods in Fluids, 2008; 57:1435-1458

10

Task 1.8
Configure the following additional SOLVERINFO options which are related to the stability analysis.

1. set the EvolutionOperator to Direct in order to activate the forward linearised Navier-
Stokes system.

2. set the Driver to Arpack in order to use the ARPACK eigenvalue analysis.

3. Instruct ARPACK to converge onto specific eigenvalues through the solver property
ArpackProblemType. In particular, set ArpackProblemType to LargestMag to get the
eigenvalues with the largest magnitude (that determines the stability of the flow).

Note: It is also possible to select the eigenvalue with the largest real part by setting
ArpackProblemType to (LargestReal) or with the largest imaginary part by setting
ArpackProblemType to (LargestImag).

Task 1.9
Set the parameters for the IRAM algorithm.

• kdim=16: dimension of Krylov-space,

• nvec=2: number of requested eigenvalues,

• nits=500: number of maximum allowed iterations,

• evtol=1e-6: accepted tolerance on the eigenvalues and it determines the stopping crite-
rion of the method.

Task 1.10
Configure the two FUNCTION called InitialConditions and BaseFlow.

1. A restart file is provided to accelerate communications. Set the InitialConditions

function to be read from Channel-VCS.rst. The solution will then converge after 16
iterations after it has populated the Krylov subspace.

Note: The restart file is a field file (same format as .fld files) that contains the eigenmode
of the system.

Note: Since the simulations often take hundreds of iterations to converge, we will not
initialise the IRAM method with a random vector during this tutorial. Normally, a random
vector would be used by setting the SolverInfo option InitialVector to Random.

2. The base flow file (Channel-Base.fld), computed in the previous section, should be
copied into the Channel/Stability folder and renamed Channel-VCS.bse. Now specify
a function called BaseFlow which reads this file.

11

Task 1.11
Run the solver to perform the analysis

$NEK/IncNavierStokesSolver Channel-VCS.xml

At the end of the simulation, the terminal screen should look like this:

Iteration 16, output: 0, ido=99

Converged in 16 iterations

Converged Eigenvalues: 2

Magnitude Angle Growth Frequency

EV: 0 1.00112 0.124946 0.0022353 0.249892

Writing: "Channel-al_eig_0.fld"

EV: 1 1.00112 -0.124946 0.0022353 -0.249892

Writing: "Channel-al_eig_1.fld"

L 2 error (variable u) : 0.0367941

L inf error (variable u) : 0.0678149

L 2 error (variable v) : 0.0276887

L inf error (variable v) : 0.0649249

L 2 error (variable p) : 0.00512347

L inf error (variable p) : 0.00135455

The eigenvalues are computed in the exponential form Meiθ where M = |λ| is the magnitude, while
θ = arctan(λi/λr) is the phase:

λ1,2 = 1.00112e±0.249892i. (7)

It is interesting to consider more general quantities that do not depend on the time length chosen
for each iteration T . For this purpose we consider the growth rate σ = ln(M)/T and the frequency
ω = θ/T .

Figures 3(a) and 3(b) show the profile of the computed eigenmode. The eigenmodes associated with
the computed eigenvalues are stored in the files Channel VCS eig 0.fld and Channel VCS eig 1.fld.
It is possible to convert this file into VTK format in the same way as previously done for the base
flow.

(a) u′ (b) v′

Figure 3: u′- and v′-component of the eigenmode.

12

Task 1.12
Verify that for the channel flow case :

σ = 2.2353× 10−3

ω = ±2.49892× 10−1

and that the eigenmodes match those given in figures 3.

This values are in accordance with the literature, in fact in Canuto et al., 1988 suggests 2.23497×10−3

and 2.4989154× 10−1 for growth and frequency, respectively.

Tip

Note that Nektar++ implements also the modified Arnoldi algorithm. You can try to use
it for this test case by setting Driver to ModifiedArnoldi. You can now try to re-run
the simulation and verify that the modified Arnoldi algorithm provides a results that is
consistent with the previous computation obtained with Arpack.

1.3.2 Coupled Linearised Navier-Stokes algorithm

Note: Remember to use the files provided in the folder Stability/Coupled for this case.

It is possible to perform the same stability analysis using a different method based on the Coupled
Linearised Navier-Stokes algorithm. This method requires the solution of the full velocity-pressure
system, meaning that the velocity matrix system and the pressure system are coupled, in contrast
to the velocity correction scheme/splitting schemes.

Inside the folder $/NEKTUTORIAL/Channel/Stability there is a file called Channel-Coupled.xml

that contains all the necessary parameters that should be defined. In this case we will specify the
base flow through an analytical expression. Even in this case, the geometry, the type and number of
modes are the the same of the previous simulations.

Task 1.13
Edit the file Channel-Coupled.xml:
Note: As before the bits to be completed are identified by . . . in this file.

• Set the SolverType property to CoupledLinearisedNS in order to solve the linearised
Navier-Stokes equations using Nektar + +’s coupled solver.

• the EQTYPE must be set to SteadyLinearisedNS and the Driver to Arpack.

• Set the InitialVector property to Random to initialise the IRAM with a random initial
vector. In this case the function InitialConditions will be ignored.

• To compute the eigenvalues with the largest magnitude, specify LargestMag in the prop-
erty ArpackProblemType.

13

It is important to note that the use of the coupled solver requires that only the velocity component
variables are specified, while the pressure is implicitly evaluated.

Task 1.14
Continue modifying Channel-Coupled.xml:

• It is necessary to set up the base flow. For the SteadyLinearisedNS coupled solver, this
is defined through a function called AdvectionVelocity. The u component must be set
up to 1− y2, while the v-component to zero.

For the coupled solver, it is also necessary to define the following additional tag outside of the
CONDITIONS tag:

1 <FORCING>
2 <FORCE TYPE=”StabilityCoupledLNS”>
3 </FORCE>
4 </FORCING>

This has already been set up in the XML file. This is necessary to tell Nektar++ to use the previous
solution as the right hand side vector for each Arnoldi iteration.

Task 1.15
Now run the solver to compute the eigenvalues

$NEK/IncNavierStokesSolver Channel-Coupled.xml

The terminal screen should look like this:

===

Solver Type: Coupled Linearised NS

===

Arnoldi solver type : Arpack

Arpack problem type : LM

Single Fourier mode : false

Beta set to Zero : false

Shift (Real,Imag) : 0,0

Krylov-space dimension : 64

Number of vectors : 4

Max iterations : 500

Eigenvalue tolerance : 1e-06

==

Initial Conditions:

- Field u: 0 (default)

- Field v: 0 (default)

Matrix Setup Costs: 0.565916

Multilevel condensation: 0.098134

Inital vector : random

14

Iteration 0, output: 0, ido=-1

Writing: "Channel-Coupled.fld"

Iteration 20, output: 0, ido=1

Writing: "Channel-Coupled.fld"

Iteration 40, output: 0, ido=1

Writing: "Channel-Coupled.fld"

Iteration 60, output: 0, ido=1

Writing: "Channel-Coupled.fld"

Iteration 65, output: 0, ido=99

Converged in 65 iterations

Converged Eigenvalues: 4

Real Imaginary

EV: 0 -0.000328987 -0

Writing: "Channel-Coupled_eig_0.fld"

EV: 1 -0.00131595 -0

Writing: "Channel-Coupled_eig_1.fld"

EV: 2 -0.00296088 -0

Writing: "Channel-Coupled_eig_2.fld"

EV: 3 -0.00526379 -0

Writing: "Channel-Coupled_eig_3.fld"

L 2 error (variable u) : 2.58891

L inf error (variable u) : 1.00401

L 2 error (variable v) : 0.00276107

L inf error (variable v) : 0.0033678

Using the Stokes algorithm, we are computing the leading eigenvalue of the inverse of the operator
L−1. Therefore the eigenvalues of L are the inverse of the computed values3. However, it is interesting
to note that these values are different from those calculated with the Velocity Correction Scheme,
producing an apparent inconsistency. However, this can be explained considering that the largest
eigenvalues associated to the operator L correspond to the ones that are clustered near the origin
of the complex plane if we consider the spectrum of L−1. Therefore, eigenvalues with a smaller
magnitude may be present but are not associated with the largest-magnitude eigenvalue of operator
L. One solution is to consider a large Krylov dimension specified by kdim and the number of
eigenvalues to test using nvec. This will however take more iterations. Another alternative is to
use shifting but in this case it will make a real problem into a complex one (we shall show an
example later). Finally, another alternative is to search for the eigenvalue with a different criterion,
for example, the largest imaginary part.

Task 1.16
Set up the Solver Info tag ArpackProblemType to LargestImag and run the simulation again.

===

Solver Type: Coupled Linearised NS

===

Arnoldi solver type : Arpack

3L is the evolution operator du/dt = Lu

15

Arpack problem type : LI

Single Fourier mode : false

Beta set to Zero : false

Shift (Real,Imag) : 0,0

Krylov-space dimension : 64

Number of vectors : 4

Max iterations : 500

Eigenvalue tolerance : 1e-06

==

Initial Conditions:

- Field u: 0 (default)

- Field v: 0 (default)

Matrix Setup Costs: 0.557085

Multilevel condensation: 0.101482

Inital vector : random

Iteration 0, output: 0, ido=-1

Writing: "Channel-Coupled.fld"

Iteration 20, output: 0, ido=1

Writing: "Channel-Coupled.fld"

Iteration 40, output: 0, ido=1

Writing: "Channel-Coupled.fld"

Iteration 60, output: 0, ido=1

Writing: "Channel-Coupled.fld"

Iteration 65, output: 0, ido=99

Converged in 65 iterations

Converged Eigenvalues: 4

Real Imaginary

EV: 0 0.00223509 0.249891

Writing: "Channel-Coupled_eig_0.fld"

EV: 1 0.00223509 -0.249891

Writing: "Channel-Coupled_eig_1.fld"

EV: 2 -0.0542748 0.300562

Writing: "Channel-Coupled_eig_2.fld"

EV: 3 -0.0542748 -0.300562

Writing: "Channel-Coupled_eig_3.fld"

L 2 error (variable u) : 2.58891

L inf error (variable u) : 1.00401

L 2 error (variable v) : 0.00276107

L inf error (variable v) : 0.0033678

In this case, it is easy to to see that the eigenvalues of the evolution operator L are the same ones
computed in the previous section with the time-stepping approach (apart from round-off errors). It
is interesting to note that this method converges much quicker that the time-stepping algorithm.
However, building the coupled matrix that allows us to solve the problem can take a non-negligible
computational time for more complex cases.

16

2 Backward-facing step

In this section we will perform a transient growth analysis of the flow over a backward-facing step.
This is an important case which allows us to understand the effects of separation due to abrupt
changes of geometry in an open flow. The transient growth analysis consists of computing the
maximum energy growth, G(τ), attainable over all possible initial conditions u′(0) for a specified
time horizon τ . It can be demonstrated that it is equivalent to calculating the largest eigenvalue of
A∗(τ)A(τ), with A and A∗ being the direct and the adjoint operators, respectively. Also note that
the eigenvalue must necessarily be real since A∗(τ)A(τ) is self-adjoint in this case.

The files for this section can be found in the $NEKTUTORIAL/BackwardStep directory.

• Folder Geometry

– bfs.geo - Gmsh file that contains the geometry of the problem

– bfs.msh - Gmsh generated mesh data listing mesh vertices and elements.

• Folder Base

– bfs-Base.xml - Nektar++ session file, generated with the $NEK/MeshConvert utility, for
computing the base flow.

– bfs-Base.fld - Nektar++ field file that contains the base flow, generated using
bfs-Base.xml.

• Folder Stability

– bfs tg.xml - Nektar++ session file, generated with $NEK/MeshConvert, for performing
the transient growth analysis.

– bfs tg.bse - Nektar++ field file that contains the base flow. It is the same as the .fld

file present in the folder Base.

Figure 4 shows the mesh, along with a detailed view of the step edge, that we will use for the
computation. The geometry is non-dimensionalised by the step height. The domain has an inflow
length of 10 upstream of the step edge and a downstream channel of length 50. The mesh consist of
N = 430 elements. Note that in this case the mesh is composed of both triangular and quadrilateral
elements. A refined triangular unstructured mesh is used near the step to capture the separation
effects, whereas the inflow/outflow channels have a structure similar to the previous example. There-
fore in the EXPANSION section of the bfs-Base.xml file, two composites (C[0] and C[1]) are present.
For this example, we will use the modal basis with 7th-order polynomials.

We will perform simulations at Re = 500, since it is well-known that for this value the flow presents
a strong convective instability.

2.1 Computation of the base flow

The file bfs tg.bse is the output of the base-flow computation that should be run for a non-
dimensional time of t ≥ 300 to ensure that the solution is steady.

17

Figure 4: Mesh used for the backward-facing step

Task 2.1
Convert the base flow field file bfs tg.bse into VTK format to look at the profile of the base
flow. Note the separation at the step-edge and the reattachment downstream.

The streamwise component of the velocity, u, should look like in figure 5.

Figure 5: Streamwise component of the velocity of the backward-facing step base flow.

2.2 Stability analysis

We will now perform transient growth analysis with a Krylov subspace of kdim=4. The parameters
and properties needed for this are present in the file bfs tg.xml in BackwardStep/Stability. In
this case the Arpack library was used to compute the largest eigenvalue of the system and the

18

corresponding eigenmode. We will compute the maximum growth for a time horizon of τ = 1,
usually denoted G(1).

Task 2.2
Configure the bfs tg.xml session for performing transient growth analysis:

• Set the EvolutionOperator to TransientGrowth.

• Define a parameter FinalTime that is equal to 1 (this is the time horizon τ).

• Set the number of steps (NumSteps) to be the ratio between the final time and the time
step.

• Since the simulations take several iterations to converge, use the restart file bfs tg.rst

for the initial condition. This file contains an eigenmode of the system.

Now run the simulation

IncNavierStokesSolver bfs tg.xml

The terminal screen should look like this:

===

EquationType: UnsteadyNavierStokes

Session Name: bfs_tg

Spatial Dim.: 2

Max SEM Exp. Order: 7

Expansion Dim.: 2

Projection Type: Continuous Galerkin

Advection: explicit

Diffusion: explicit

Time Step: 0.002

No. of Steps: 500

Checkpoints (steps): 500

Integration Type: IMEXOrder2

===

Arnoldi solver type : Arpack

Arpack problem type : LM

Single Fourier mode : false

Beta set to Zero : false

Evolution operator : TransientGrowth

Krylov-space dimension : 4

Number of vectors : 1

Max iterations : 500

Eigenvalue tolerance : 1e-06

==

Initial Conditions:

Field p not found.

Field p not found.

- Field u: from file bfs_tg.rst

19

- Field v: from file bfs_tg.rst

- Field p: from file bfs_tg.rst

Writing: "bfs_tg_0.chk"

Inital vector : input file

Iteration 0, output: 0, ido=1 Steps: 500 Time: 1 CPU Time: 10.4384s

Writing: "bfs_tg_1.chk"

Time-integration : 10.4384s

Steps: 500 Time: 29 CPU Time: 8.96463s

Writing: "bfs_tg_1.chk"

Time-integration : 8.96463s

Writing: "bfs_tg.fld"

Iteration 1, output: 0, ido=1 Steps: 500 Time: 2 CPU Time: 8.90168s

Writing: "bfs_tg_1.chk"

Time-integration : 8.90168s

Steps: 500 Time: 30 CPU Time: 8.90607s

Writing: "bfs_tg_1.chk"

Time-integration : 8.90607s

Iteration 2, output: 0, ido=1 Steps: 500 Time: 3 CPU Time: 8.96875s

Writing: "bfs_tg_1.chk"

Time-integration : 8.96875s

Steps: 500 Time: 31 CPU Time: 8.92276s

Writing: "bfs_tg_1.chk"

Time-integration : 8.92276s

Iteration 3, output: 0, ido=1 Steps: 500 Time: 4 CPU Time: 8.92597s

Writing: "bfs_tg_1.chk"

Time-integration : 8.92597s

Steps: 500 Time: 32 CPU Time: 8.96103s

Writing: "bfs_tg_1.chk"

Time-integration : 8.96103s

Iteration 4, output: 0, ido=99

Converged in 4 iterations

Converged Eigenvalues: 1

Magnitude Angle Growth Frequency

EV: 0 3.23586 0 1.1743 0

Writing: "bfs_tg_eig_0.fld"

L 2 error (variable u) : 0.0118694

L inf error (variable u) : 0.0118647

L 2 error (variable v) : 0.0174185

L inf error (variable v) : 0.0244285

L 2 error (variable p) : 0.0109063

L inf error (variable p) : 0.0138423

Initially, the solution will be evolved forward in time using the operator A , then backward in time
through the adjoint operator A∗.

Task 2.3
Verify that the leading eigenvalue is equal to λ = 3.23586.

The leading eigenvalue corresponds to the largest possible transient growth at the time horizon τ = 1.
The leading eigenmode is shown in figures 6 and 7. This is the optimal initial condition which will

20

Figure 6: u′-component of the eigenmode

Figure 7: v′-component of the eigenmode

lead to the greatest growth when evolved under the linearised Navier-Stokes equations. We can
visualise graphically the optimal growth, recalling that the energy of the perturbation field at any
given time t is defined by means of the inner product:

E(τ) =
1

2
(u′(t),u′(t)) =

1

2

∫
Ω

u′ · u′dv (8)

The solver can output the evolution of the energy of the perturbation in time by using the ModalEnergy
filter (defined in the FILTERS section of the XML file):

1 <FILTER TYPE=”ModalEnergy”>
2 <PARAM NAME=”OutputFile”>energy</PARAM>
3 <PARAM NAME=”OutputFrequency”>10</PARAM>
4 </FILTER>

This will write the energy of the perturbation every 10 time steps to the file energy.mld. Repeating
these simulations for different τ with the optimal initial perturbation as the initial condition, it is
possible to create a plot similar to figure 8. Each curve necessarily meets the optimal growth envelope
(denoted by the circles) at its corresponding value of τ , and never exceeds it.

The BackwardStep/Energy folder contains the files bfs energy tau01.xml and bfs energy tau20.xml,
as well as the pre-computed optimal initial condition for τ = 20 (bfs energy tau20.rst), with cor-
responding optimal growth of 2172.9.

21

Figure 8: Envelope of two-dimensional optimal at Re = 500 together with curves of linear energy
evolution starting from the three optimal initial conditions for specific values of τ 20, 60 and 100.
Figure reproduced from J. Fluid. Mech. (2008), vol 603, pp. 271-304.

Task 2.4
(Advanced/Optional) Generate energy curves for the optimal initial condition (leading eigen-
mode) computed in the previous task for τ = 1, and for τ = 20.
Use your favourite plotting program (e.g. MATLAB or GNUPlot) to read in the files produced
by the energy filter and plot the normalised energy growth curves.

Tip

You will need to switch to using the Standard driver. You should also use the Direct
evolution operator for this task, similar to the channel example.

Examine your plot. Verify the energy at time t = τ matches the optimal growth in each case. Now
examine the plot at time t = 1. Note that although the overall energy growth for the τ = 20 curve
is far greater than the corresponding τ = 1 curve, the τ = 1 curve has greater growth at t = τ = 1.

3 Flow past a cylinder

As a final example we will compute the direct and adjoint modes of a two-dimensional flow past
a cylinder. We will investigate a case in the subcritical regime (Re = 42), below the onset of the
Bernard-von Kärmän vortex shedding that is observed when the Reynolds number is above the
critical value Rec ' 47; this analysis is important because it allows us to study the sensitivity of the
flow, much like that reported by Giannetti and Luchini (J. Fluid Mech., 2007; 592:177-194). Due to
the more complex nature of the flow and the more demanding computational time that is required,
only some basic information will be presented in this section, mainly to show the potential of the
code for stability analysis.

The files for this section can be found in the Cylinder directory.

22

• Folder Geometry

– Cylinder.geo - Gmsh file that contains the geometry of the problem

– Cylinder.msh - Gmsh generated mesh data listing mesh vertices and elements.

• Folder Base

– Cylinder-Base.xml - Nektar++ session file, generated with the $NEK/MeshConvert util-
ity, for computing the base flow.

– Cylinder-Base.fld - Nektar++ field file that contains the base flow, generated using
Cylinder-Base.xml.

• Folder Stability/Direct

– Cylinder Direct.xml - Nektar++ session file, generated with $NEK/MeshConvert.

– Cylinder Direct.bse - Nektar++ field file that contains the base flow.

– Cylinder Direct.rst - Nektar++ field file that contains the initial conditions.

The mesh is shown in figure 9 along with a detailed view around the cylinder. This mesh is made
up of 782 quadrilateral elements.

Figure 9: Mesh used for the direct stability analysis

Note: It is important to note that stability and transient growth calculations in particular, have
a strong dependence on the domain size as reported by Cantwell and Barkley (Physical Review E,
2010; 82); moreover, poor mesh design can lead to incorrect results. Specifically, the mesh must
be sufficiently refined around the cylinder in order to capture the separation of the flow and abrupt
variations in the size of the elements should be avoided.

3.1 Computation of the base flow

Cylinder-Base.xml can be found inside the $NEKTUTORIAL/Cylinder/Base folder. This is the
Nektar++ file generated using $NEK/MeshConvert and augmented with all the configuration settings
that are required. In this case, CFL conditions can be particularly restrictive and the time step must
be set around 8× 10−4. We will be using Reynolds number Re = 42 for this study.

23

The supplied file Cylinder-Base.bse is the converged base flow required for the analysis and is the
result of running Cylinder-Base.xml. To have a steady solution it was necessary to evolve the fields
for a non-dimensional time τ ≥ 300 and it is very important to be sure that the solution is steady.
This can be verified by putting several history points on the centre line of the flow and monitoring
their variation.

Task 3.1
Convert the base flow into VTK format and visualise the profile of the flow past a cylinder in
Paraview .

The base flow should look like the one in figure 10.

Figure 10: Base flow for the cylinder test case

3.2 Stability analysis

3.2.1 Direct

In the folder $NEKTUTORIAL/Cylinder/Stability/Direct there are the files that are required for
the direct stability analysis. Since, the computation would normally take several hours to converge,
we will use a restart file and a Krylov-space of just κ = 4. Therefore, it will be possible to obtain
the eigenvalue and the corresponding eigenmode after 2 iterations.

Task 3.2
Define a Kyrlov space of 4 and compute the leading 2 eigenvalues and the eigenvectors of the
problem using Arpack and the restart file Cylinder Direct.rst.

24

The simulation should converge in 6 iterations and the terminal screen should look similar to the
one below:

===

EquationType: UnsteadyNavierStokes

Session Name: Cylinder_Direct

Spatial Dim.: 2

Max SEM Exp. Order: 7

Expansion Dim.: 2

Projection Type: Continuous Galerkin

Advection: explicit

Diffusion: explicit

Time Step: 0.0008

No. of Steps: 1250

Checkpoints (steps): 1000

Integration Type: IMEXOrder2

===

Arnoldi solver type : Arpack

Arpack problem type : LM

Single Fourier mode : false

Beta set to Zero : false

Evolution operator : Direct

Krylov-space dimension : 4

Number of vectors : 2

Max iterations : 500

Eigenvalue tolerance : 1e-06

==

Initial Conditions:

- Field u: from file Cylinder_Direct.rst

- Field v: from file Cylinder_Direct.rst

- Field p: from file Cylinder_Direct.rst

Writing: "Cylinder_Direct_0.chk"

Inital vector : input file

Iteration 0, output: 0, ido=1 Writing: "Cylinder_Direct_1.chk"

Steps: 1250 Time: 1 CPU Time: 46.5477s

Time-integration : 46.5477s

Writing: "Cylinder_Direct.fld"

Iteration 1, output: 0, ido=1 Writing: "Cylinder_Direct_1.chk"

Steps: 1250 Time: 2 CPU Time: 41.7221s

Time-integration : 41.7221s

Iteration 2, output: 0, ido=1 Writing: "Cylinder_Direct_1.chk"

Steps: 1250 Time: 3 CPU Time: 41.8717s

Time-integration : 41.8717s

Iteration 3, output: 0, ido=1 Writing: "Cylinder_Direct_1.chk"

Steps: 1250 Time: 4 CPU Time: 41.9465s

Time-integration : 41.9465s

Iteration 4, output: 0, ido=1 Writing: "Cylinder_Direct_1.chk"

Steps: 1250 Time: 5 CPU Time: 41.987s

Time-integration : 41.987s

Iteration 5, output: 0, ido=1

Writing: "Cylinder_Direct_1.chk"

25

Steps: 1250 Time: 6 CPU Time: 42.2642s

Time-integration : 42.2642s

Iteration 6, output: 0, ido=99

Converged in 6 iterations

Converged Eigenvalues: 2

Magnitude Angle Growth Frequency

EV: 0 0.9792 0.726586 -0.0210196 0.726586

Writing: "Cylinder_Direct_eig_0.fld"

EV: 1 0.9792 -0.726586 -0.0210196 -0.726586

Writing: "Cylinder_Direct_eig_1.fld"

L 2 error (variable u) : 0.0501837

L inf error (variable u) : 0.0296123

L 2 error (variable v) : 0.0635524

L inf error (variable v) : 0.0355673

L 2 error (variable p) : 0.0344665

L inf error (variable p) : 0.0176009

Task 3.3
Verify that the leading eigenvalues show a growth rate of σ = −2.10196× 10−2 and a frequency
ω = ±7.26586× 10−1.

Task 3.4
Plot the leading eigenvector in Paraview or VisIt. This should look like the solution shown in
figures 11.

Figure 11: u′-component and v′-component of the eigenmode

3.2.2 Adjoint

After the direct stability analysis, it is now interesting to compute the eigenvalues and eigenvectors
of the adjoint operator A∗ that allows us to evaluate the effects of generic initial conditions and
forcing terms on the asymptotic behaviour of the solution of the linearised equations. In the folder

26

Cylinder/Stability/Adjoint there is the file Cylinder Adjoint.xml that is used for the adjoint
analysis.

Task 3.5
Set the EvolutionOperator to Adjoint, the Krylov space to 4 and compute the leading eigen-
value and eigenmode of the adjoint operator, using the restart file Cylinder Adjoint.rst

The solution should converge after 4 iterations and the terminal screen should look like this:

===

EquationType: UnsteadyNavierStokes

Session Name: Cylinder_Adjoint

Spatial Dim.: 2

Max SEM Exp. Order: 7

Expansion Dim.: 2

Projection Type: Continuous Galerkin

Advection: explicit

Diffusion: explicit

Time Step: 0.001

No. of Steps: 1000

Checkpoints (steps): 1000

Integration Type: IMEXOrder3

===

Arnoldi solver type : Arpack

Arpack problem type : LM

Single Fourier mode : false

Beta set to Zero : false

Evolution operator : Adjoint

Krylov-space dimension : 4

Number of vectors : 2

Max iterations : 500

Eigenvalue tolerance : 0.001

==

Initial Conditions:

Field p not found.

- Field u: from file Cylinder_Adjoint.rst

- Field v: from file Cylinder_Adjoint.rst

- Field p: from file Cylinder_Adjoint.rst

Writing: "Cylinder_Adjoint_0.chk"

Inital vector : input file

Iteration 0, output: 0, ido=1 Steps: 1000 Time: 27 CPU Time: 42.0192s

Writing: "Cylinder_Adjoint_1.chk"

Time-integration : 42.0192s

Writing: "Cylinder_Adjoint.fld"

Iteration 1, output: 0, ido=1 Steps: 1000 Time: 28 CPU Time: 37.1084s

Writing: "Cylinder_Adjoint_1.chk"

Time-integration : 37.1084s

Iteration 2, output: 0, ido=1 Steps: 1000 Time: 29 CPU Time: 37.4794s

27

Writing: "Cylinder_Adjoint_1.chk"

Time-integration : 37.4794s

Iteration 3, output: 0, ido=1 Steps: 1000 Time: 30 CPU Time: 37.3142s

Writing: "Cylinder_Adjoint_1.chk"

Time-integration : 37.3142s

Iteration 4, output: 0, ido=99

Converged in 4 iterations

Converged Eigenvalues: 2

Magnitude Angle Growth Frequency

EV: 0 0.980493 0.727526 -0.0197 0.727526

Writing: "Cylinder_Adjoint_eig_0.fld"

EV: 1 0.980493 -0.727526 -0.0197 -0.727526

Writing: "Cylinder_Adjoint_eig_1.fld"

L 2 error (variable u) : 0.434746

L inf error (variable u) : 0.156905

L 2 error (variable v) : 0.698425

L inf error (variable v) : 0.120624

L 2 error (variable p) : 0.216948

L inf error (variable p) : 0.0676028

Task 3.6
Verify that the eigenvalues of the system are λ1,2 = 0.980495 × e±i0.727502 with a growth rate
equal to σ = −1.969727× 10−2 and a frequency ω = ±7.275024× 10−1.

Task 3.7
Plot the leading eigenmode in Paraview or VisIt that should look like figures 12 and 12.

Note that, in spatially developing flows, the eigenmodes of the direct stability operator tend to be
located far downstream while the eigenmodes of the adjoint operator tend to be located upstream
and near to the body, as can be seen in figures 12 and 13. From the profiles of the eigemodes, it
can be deducted that the regions with the maximum receptivity for the momentum forcing and mass
injection are near the wake of the cylinder, close to the upper and lower sides of the body surface,
in accordance with results reported in the literature.

28

Figure 12: Close-up of the u∗-component of the adjoint eigenmode.

Figure 13: The v∗-component of the adjoint eigenmode extends far upstream of the cylinder

4 Three-dimensional Channel flow

Now that we have presented the various stability-analysis tools present in Nektar++ , we conclude
showing the capabilities of the code in three spatial dimensions. In the folder
$NEKTUTORIAL/Channel-3D/Stability there are the files that are required for the stability analysis
- note that we do not show the geometry and the base flow generation (we will be using the exact
solution) since we have already presented these features in the previous tutorials.

The case considered is similar to the channel flow presented in section 1. However, in this case the
Reynolds number is set to 10000. In order to run a three-dimensional simulation, we can either run

29

the full 3D solver by creating a 3D geometry or use a 2D geometry and specify the use of a Fourier
expansion in the third direction. The last method is also known as 3D homogenous 1D approach.
Here we will present this approach.

Specifically, we use a 2D geometry and we add the various parameters necessary to use the Fourier
expansion. Note that in the 2D plane we will use a MODIFIED expansion basis with NUMMODES=11.

Task 4.1
In the file $NEKTUTORIAL/Channel-3D/Stability/PPF R10000 3D.xml , make the following
changes:

• Add a SOLVERINFO tag called HOMOGENEOUS and set it to 1D.

• Add two additional SOLVERINFO tags called ModeType and BetaZero and set them to
SingleMode and True, respectively.

• Add two PARAMETERS called HomModesZ and LZ and set them to 2 and 1, respectively.

• Add two other PARAMETERS called realShift and imagShift and set them to 0.003 and
0.2, respectively.

Now run the solver - the terminal screen should look like this:

===

Solver Type: Coupled Linearised NS

===

Arnoldi solver type : Modified Arnoldi

Single Fourier mode : true

Beta set to Zero : true (overrides LHom)

Shift (Real,Imag) : 0.003,0.2

Krylov-space dimension : 64

Number of vectors : 2

Max iterations : 500

Eigenvalue tolerance : 1e-06

==

Initial Conditions:

- Field u: 0 (default)

- Field v: 0 (default)

- Field w: 0 (default)

Writing: "PPF_R10000_3D_0.chk"

Matrix Setup Costs: 1.97987

Multilevel condensation: 0.427631

Inital vector : random

Iteration: 0

Iteration: 1 (residual : 4.89954)

Iteration: 2 (residual : 3.64295)

Iteration: 3 (residual : 2.54314)

....

Iteration: 20 (residual : 1.35156e-05)

30

Iteration: 21 (residual : 1.64786e-06)

Iteration: 22 (residual : 1.92473e-07)

Writing: "PPF_R10000_3D.fld"

L 2 error (variable u) : 3.01846

L inf error (variable u) : 2.25716

L 2 error (variable v) : 1.8469

L inf error (variable v) : 0.985775

L 2 error (variable w) : 5.97653e-06

L inf error (variable w) : 1.2139e-05

EV: 0 0.518448 -26.6405 0.00373022 0.162477

Writing: "PPF_R10000_3D_eig_0.fld"

EV: 1 0.518448 26.6405 0.00373022 0.237523

Writing: "PPF_R10000_3D_eig_1.fld"

Warning: Level 0 assertion violation

Complex Shift applied. Need to implement Ritz re-evaluation of eigenvalue.

Only one half of complex value will be correct

Now convert the two files containing the eigenvectors and visualise them in Paraview or VisIt - the
solution should look like the one below:

(a) u′ (b) v′

Figure 14: u′- and v′-component of the eigenmode.

Task 4.2
The complete input file $NEKTUTORIAL/Channel-3D/Stability/PPF R15000 3D.xml has been
provided to show a full 3D unstable eigenmode where β is not zero. Run this file and see that
you obtain the eigenvalue 0.00248682±−0.158348i

Task 4.3
You can now see what the difference when not using an imaginary shifting. Set the parameters
imagShift=0, kdim=384 and nvec=196.

This should take 195 iterations to complete and hidden in the list of eigenvalues should
be the unstable values 0.00248662± 0.158347i. They were eigevalues 152 and 153 in my run.

31

5 Solutions

Completed solutions to the tutorials are available in the TutorialFilesComplete directory.

This completes the tutorial.

32

	Two-dimensional Channel flow (optional)
	Mesh generation
	Computation of the base flow
	Stability analysis
	Velocity Correction Scheme
	Coupled Linearised Navier-Stokes algorithm

	Backward-facing step
	Computation of the base flow
	Stability analysis

	Flow past a cylinder
	Computation of the base flow
	Stability analysis
	Direct
	Adjoint

	Three-dimensional Channel flow
	Solutions

