
Compressible Flow Solver:
Navier Stokes equations

Tutorials
November 25, 2017

Department of Aeronautics, Imperial College London, UK
Scientific Computing and Imaging Institute, University of Utah, USA

2

Chapter 1
Introduction

The aim of this tutorial is to introduce the user to the spectral/hp element framework
Nektar+ + and to describe the main features of its Compressible Flow Solver in a simple
manner. If you have not already downloaded and installed Nektar + +, please do so by
visiting www.nektar.info, where you can also find the User-Guide with the instructions
to install the library.

This tutorial requires:

• Nektar + + CompressibleFlowSolver and pre- and post-processing tools,

• The visualisation tool Paraview or VisIt

1.1 Goals

After the completion of this tutorial, you will be familiar with:

• The setup of the initial and boundary conditions, the parameters and the solver
settings;

• The expansions set up to mitigate aliasing effects;

• The addition of artificial viscosity to deal with flow discontinuities and the conse-
quential numerical oscillations;

• Running a simulation with the CompressibleFlow solver;

• The post-processing of the data and the visualisation of the results in Paraview or
VisIt;

• The creation of Paraview animation to monitor the evolution of the simulation or
visualize non-steady simulations; and

• The use of FieldConvert modules to extract useful quantities from the field variables.

3

http://www.nektar.info
http://www.nektar.info/downloads/8
http://www.paraview.org
https://wci.llnl.gov/simulation/computer-codes/visit/downloads

4 Chapter 1 Introduction

Task 1.1
Prepare for the tutorial. Make sure that you have:

• Installed and tested Nektar++ v4.4.1 from a binary package, or compiled
it from source. By default binary packages will install all executables in
/usr/bin . If you compile from source they will be in the sub-directory
dist/bin of the build directory you created in the Nektar++ source
tree. We will refer to the directory containing the executables as $NEK
for the remainder of the tutorial.

• Downloaded the tutorial files: http://doc.nektar.info/tutorials/4.
4.1/cfs/CylinderSubsonic_NS/cfs-CylinderSubsonic_NS.tar.gz
Unpack it using unzip cfs-CylinderSubsonic_NS.tar.gz to pro-
duce a directory cfs-CylinderSubsonic_NS with subdirectories called
tutorial and complete We will refer to the tutorial directory as
$NEKTUTORIAL .

Task 1.2
Additionally, you should also install

• a visualization package capable of reading VTK files, such as ParaView
(which can be downloaded from here) or VisIt (downloaded from here).
Alternatively, you can generate Tecplot formatted .dat files for use with
Tecplot.

1.2 Background

The Compressible Flow Solver allows us to solve the unsteady compressible Euler and
Navier-Stokes equations for 1D/2D/3D problems using a discontinuous representation of
the variables. For a more detailed description of this solver, please refer to the User-Guide.

In this tutorial we focus on the 2D Compressible Navier-Stokes equations. The two-
dimensional second order partial differential equations can be written as:

∂q
∂t

+ ∂f
∂x

+ ∂g
∂y

= 0, (1.1)

where q is the vector of the conserved variables,

q =


ρ
ρu
ρv
E

 (1.2)

http://doc.nektar.info/tutorials/4.4.1/cfs/CylinderSubsonic_NS/cfs-CylinderSubsonic_NS.tar.gz
http://doc.nektar.info/tutorials/4.4.1/cfs/CylinderSubsonic_NS/cfs-CylinderSubsonic_NS.tar.gz
http://www.paraview.org/download/
https://wci.llnl.gov/simulation/computer-codes/visit/downloads
http://www.nektar.info/downloads/8

1.2 Background 5

where ρ is the density, u and v are the velocity components in x and y directions, p is
the pressure and E is the total energy. In this work we considered a perfect gas law for
which the pressure is related to the total energy by the following expression:

E = p

γ − 1 + 1
2ρ(u2 + v2), (1.3)

where γ is the ratio of specific heats.

The vector of the fluxes f = f(q,∇(q)) and g = g(q,∇(q)) can also be written as:

f = fi − fv, g = gi − gv, (1.4)

The inviscid fluxes fi and gi take the form:

fi =


ρu

p+ ρu2

ρuv
u(E + p)

 , gi =


ρv
ρuv

p+ ρv2

v(E + p)

 , (1.5)

while the viscous fluxes fv and gv take the following form:

fv =


0
τxx

τyx

uτxx + vτyx + kTx

 , gv =


0
τxy

τyy

uτxy + vτyy + kTy

 , (1.6)

where τxx, τxy, τyx and τyy, are the components of the stress tensor1

τxx = 2µ
(
ux − ux+vy

3

)
,

τyy = 2µ
(
vy − ux+vy

3

)
,

τxy = τyx = µ(vx + uy),

(1.7)

where µ is the dynamic viscosity calculated using the Sutherland’s law and k is the
thermal conductivity.

1Note that we use Stokes hypothesis λ = −2/3.

6 Chapter 1 Introduction

1.3 Problem description

We aim to simulate the flow past a cylinder by solving the Compressible Navier Stokes
equations. For our study we use the following free-stream parameters: A Mach number
equal to M∞ = 0.2, a Reynolds number ReL=1 = 200 and Pr = 0.72, with the pressure
set to p∞ = 101325 Pa and the density equal to ρ = 1.225 Kg/m3.

The flow domain is a rectangle of sizes [-10 20] x [-10 10]. The mesh consists of 639
quadrilaterals in which we applied the following boundary conditions (BCs): Non− slip
isothermal wall on the cylinder surface, far − field at the bottom and top boundaries,
inflow at the left boundary and outflow at the right boundary.

For the Navier-Stokes equations a non− slip condition must me applied to the velocity
field at a solid wall, which corresponds to the cylinder for this problem. The cylinder
wall is defined as an isothermal wall with imposed temperature Twall = 300.15 K.

Figure 1.1 639 elements mesh.

Inflow, Outflow and Farfield BCs:

In the Compressible Flow Solver the boundary conditions are weakly implemented- (i.e
the BCs are applied to the fluxes). In the Euler equations, for farfield BCs, the flux is

1.3 Problem description 7

computed via a Riemann solver. The use of a Riemann solver for applying BCs implies
the usage of a ghost point where it is necessary to apply a consistent ghost state, which
is not always trivial. In evaluating the boundary, the Riemann solver takes automatically
into account the eigenvalues (characteristic lines) of the Euler equations and therefore the
problem is always well posed. This approach is equivalent to a characteristic approach
where the corresponding Riemann invariants are computed and applied as BCs, taking
into account if the boundary is an inflow or outflow. The method is also known as
no-reflective BCs as it damps the spurious reflections from the boundaries.

The characteristic approach presented for the Euler equations for farfield boundaries,
works also for the advective flux of the Navier-Stokes equations in regions where viscosity
effects can be neglected. However, in our outflow case shedding is present, so viscosity
effects become important. In this case, the characteristic treatment of the BCs generates
spurious oscillations polluting the overall solution and leading to numerical instabilities.
In order to avoid this, Nektar + + implements a method based on the so-called sponge
terms, modifying the RHS of the compressible NS equations as follows:

∂u
∂t

+ ∂f1
∂x1

+ ∂f2
∂x2

= σ(x̄)(uref − u), (1.8)

Where σ(x̄) is a damping coefficient defined in a region x̄ in proximity to the boundaries
and uref is a known reference solution. The length and the shape of the damping
coefficient depend on the problem being solved.

For further understanding of the boundary conditions implementation, please visit A
Guide to the Implementation of Boundary Conditions in Compact High-Order Methods
for Compressible Aerodynamics.

The initial condition is chosen to be that of a free flow field without the cylinder. If the
solution greatly differs from the initial condition waves develop giving stability problems.

Tip
Set the initial conditions close to the expected solution to accelerate convergence
and increment stability. Examples of setting more realistic initial conditions:

• In the case of a low Mach number, an incompressible flow solution can be
used as initial condition.

• Also, setting an inviscid solution as initial conditions may help. Note that
this can be done by selecting Euler equations instead of Navier-Stokes in
the SOLVERINFO tag.

We successively setup the parameters of the problem (section 2.3). We finally run the
solver (section 3) and post-process the data in order to visualise the results (section 4).

https://www.researchgate.net/publication/264044118_A_Guide_to_the_Implementation_of_Boundary_Conditions_in_Compact_High-Order_Methods_for_Compressible_Aerodynamics
https://www.researchgate.net/publication/264044118_A_Guide_to_the_Implementation_of_Boundary_Conditions_in_Compact_High-Order_Methods_for_Compressible_Aerodynamics
https://www.researchgate.net/publication/264044118_A_Guide_to_the_Implementation_of_Boundary_Conditions_in_Compact_High-Order_Methods_for_Compressible_Aerodynamics

Chapter 2
Pre-processing

To set up the problem we have three steps. The first is setting up a mesh as discussed
in section 2.1. The second one is setting the expansion bases as explained in section
2.2. We also need to configure the problem initial conditions, boundary conditions and
parameters which are discussed in 2.3.

2.1 Mesh generation

The first pre-processing step consists in generating the mesh in a Nektar+ + compatible
format. One option to do this is to use the open-source mesh-generator Gmesh to first
create the geometry. The mesh format provided by Gmesh is not consistent with the
Nektar + + solvers and, therefore, it needs to be converted. An example of how to do
this can be found in the Advection Solver Tutorial.

For two-dimensional simulations, the mesh definition contains 6 tags encapsulated within
the GEOMETRY tag. The first tag, VERTEX , contains the spatial coordinates of the vertices
of the various elements of the mesh. The second tag, EDGE contains the lines connecting
the vertices. The third tag, ELEMENT , defines the elements (note that in this case we
have only quadrilateral - e.g. <Q ID="85"> - elements). The fourth tag, CURVED , is used
to describe the control points for the curve. Note this tag is only necessary if curved
edges or faces are present in the mesh and may otherwise be obmitted. The fifth tag,
COMPOSITE , is constituted by the physical regions of the mesh called composite, where
the composites formed by elements represent the solution sub-domains - i.e. the mesh
sub-domains where we want to solve our set of equations (note that we will use these
composites to define expansion bases on each sub-domain in section 2.3) - while the
composites formed by edges are the boundaries of the domain where we need to apply
suitable boundary conditions (note that we will use these composites to specify the
boundary conditions in section 2.3). Finally, the sixth tag, DOMAIN , formally specifies the
overall solution domain as the union of the composites forming the solution subdomains
(note that the specification of different subdomain - i.e. composites - in this case is not
necessary since they are constituted by same element shapes). For additional details on

8

http://doc.nektar.info/tutorials/latest/basics/advection-diffusion/basics-advection-diffusion.pdf

2.2 Expansion bases 9

the GEOMETRY tag refer to the User-Guide.
1 <?xml version="1.0" encoding="utf−8" ?>
2 <NEKTAR>
3 <GEOMETRY DIM="2" SPACE="2">
4 <VERTEX>
5 <V ID="0">−1.00000000e+01 1.00000000e+01 0.00000000e+00 </V>
6 ...
7 <V ID="706">−4.93844170e−01 −7.82172325e−02 0.00000000e+00 </V>
8 </VERTEX>
9 <EDGE>

10 <E ID="0"> 0 1 </E>
11 ...
12 <E ID="1346"> 706 668 </E>
13 </EDGE>
14 <ELEMENT>
15 <Q ID="0"> 0 1 2 3 </Q>
16 ...
17 <Q ID="639"> 1345 1346 1269 615 </Q>
18 </ELEMENT>
19 <CURVED>
20 <E ID="0" EDGEID="1344" NUMPOINTS="4" TYPE="PolyEvenlySpaced"> ...
21 ...
22 <E ID="1346" EDGEID="235" NUMPOINTS="4" TYPE="PolyEvenlySpaced"> ...
23 </CURVED>
24 <COMPOSITE>
25 <C ID="100"> E[1268,1271,...,1344,1346] </C>
26 <C ID="101"> E[3,6,...,1256,1266] </C>
27 ...
28 <C ID="0"> Q[0−639] </C>
29 </COMPOSITE>
30 <DOMAIN> C[0] </DOMAIN>
31 </GEOMETRY>
32 </NEKTAR>

Note
In this case the mesh has been defined under the GEOMETRY tag with the
EXPANSIONS definition and the CONDITIONS section in the same .xml file. How-
ever, the mesh can be a separate input .xml format containing only the geometry
definition. Also, note that this mesh is in uncompressed format. In order to
reduce the size of a large mesh compressed format should be used.

2.2 Expansion bases

We need to specify the expansion bases we want to use in each of the composites or
sub-domains (COMPOSITE="..") introduced in section 2.1:

1 <EXPANSIONS>
2 <E COMPOSITE="C[0]" NUMMODES="3" FIELDS="rho,rhou,rhov,E"
3 TYPE="MODIFIED" />
4 </EXPANSIONS>

http://www.nektar.info/downloads/8

10 Chapter 2 Pre-processing

For this case there is only one composite, COMPOSITE="C[0]" , where NUMMODES is the
number of coefficients we want to use for the basis functions (that is commonly equal to
P+1 where P is the polynomial order of the basis functions), TYPE allows selecting the
basis functions, FIELDS is the solution variable of our problem and COMPOSITE are the
mesh regions. For additional details on the EXPANSIONS tag refer to the User-Guide.

Tip
One source of instability is aliasing effects which arise from the nonlinearity
of the underlying problem. Dealiasing techniques based on the concept of
consistent integration can be applied in order to improve the robustness of
the solver. For further information about dealisaing techniques, please check
Dealiasing techniques for high-order spectral element methods on regular and
irregular grids.

An example of dealiasing technique on for quadrilateral elements:
1 <EXPANSIONS>
2 <E COMPOSITE="C[0]" BASISTYPE="GLL_Lagrange,GLL_Lagrange"
3 NUMMODES="5,5" POINTSTYPE="GaussLobattoLegendre,GaussLobattoLegendre"
4 NUMPOINTS="10,10" FIELDS="rho,rhou,rhov,E" />
5 </EXPANSIONS>

2.3 Configuring problem definitions

We will now proceed to set up the various problem parameters, the solver settings, initial
and boundary conditions.

Parameters

The case will be run at Mach number equal to M∞ = 0.2, Reynolds number ReL=1 = 200
and Pr = 0.72, with the pressure set to p∞ = 101325 Pa and the density equal
to ρ = 1.225 Kg/m3. The cylinder is defined as an isothermal wall with imposed
temperature Twall = 300.15 K.

Within PARAMETERS tag, we can can also define the final physical time of the simulation,
FinTime , the number of steps NumSteps , the step-interval when an output file is written
IO_CheckSteps and the step-interval when information about the simulation is printed
to the screen IO_InfoSteps .

Task 2.1
In the .xml file under the tag PARAMETERS , define all the flow parameters as
described above. These are declared asMach, Re, Pr, pinf , rhoinf and Twall.
Define the number of steps NumSteps as the ratio of the FinalT ime to the
time-step TimeStep.

http://www.nektar.info/downloads/8
http://www.sciencedirect.com/science/article/pii/S0021999115004301
http://www.sciencedirect.com/science/article/pii/S0021999115004301

2.3 Configuring problem definitions 11

Warning
Do not define both Prandtl number and the thermal conductivity parameters.
They are correlated and defining both will prevent the simulation to start.

1 <PARAMETERS>
2 <P> TimeStep = 0.00001 </P>
3 <P> FinTime = 0.01 </P>
4 <P> NumSteps = FinTime/TimeStep </P>
5 <P> IO_CheckSteps = 100 </P>
6 <P> IO_InfoSteps = 100 </P>
7 <P> GasConstant = 287.058 </P>
8 <P> Gamma = 1.4 </P>
9 <P> pInf = 101325 </P>

10 <P> rhoInf = 1.225 </P>
11 <P> Mach = 0.2 </P>
12 <P> cInf = sqrt(Gamma ∗ pInf / rhoInf) </P>
13 <P> uInf = Mach∗cInf </P>
14 <P> vInf = 0.0 </P>
15 <P> Twall = 300.15 </P>
16 <P> Re = 200 </P>
17 <P> L = 1 </P>
18 <P> mu = rhoInf ∗ L ∗ uInf / Re </P>
19 <P> Pr = 0.72 </P>
20 </PARAMETERS>

Solver Settings

We now declare how the flow will be solved. We want to include the effects of fluid
viscosity and heat conduction and consequently the equation type we are going to use is
the Navier-Stokes equations.

Note
In Nektar + + the spatial discretization of the compressible Navier-Stokes
equations is projected in the polynomial space via discontinuous projection.
Specifically we make use of either of the discontinuous Galerkin (DG) method or
the Flux-Reconstruction (FR) approach. Consequently, set the Projection to
DisContinuous , as Continuous Projection is not supported in the Compressible
Flow Solver.

We must specify the advection type which will be the classical DG in weak form. Note
Nektar + + also presents the FRDG scheme, which recovers the DG scheme with exact
mass matrix, the FRHU scheme, which recovers the DG scheme with lumped mass
matrix and the FRSD scheme, which recovers a spectral difference scheme. We must also
define the diffusion operator we want to use, which will be local Discontinuous Galerkin
and the time integration method which will be the Classical Runge Kutta of order 4.

12 Chapter 2 Pre-processing

Tip
When selecting the Advection Type scheme, bear in mind that:

• The error associated with the FRDG and DGSEM −EMM scheme is the
lowest. It corresponds to the most accurate scheme but it also presents
the most severe restrictions in terms of time-step.

• The FRHU and FRSD are slightly less accurate but have more favourable
time-step restrictions.

• For futher understanding, please visit Connections between the discontin-
uous Galerkin method and high-order flux reconstruction schemes and On
the Connections Between Discontinuous Galerkin and Flux Reconstruction
Schemes: Extension to Curvilinear Meshes..

Additionally, we need to define the Upwind Type (i.e. Riemann solver) we want to
use for the advection operator. For this problem we will use HLLC (Harten, Lax, van
Leer+Contact) Riemann solver. Also, we will use the constant viscosity type.

Note
A Riemann problem is solved at each interface of the computational domain
for the advection term. Nektar + + provides ten different Riemann solvers,
one exact and nine approximated. The exact one solves the problem using
a Newton iterative method. The high accuracy of this method may imply a
high computational cost. The approximated Riemann solvers do not take into
account the full Riemann problem, these simplifications of the exact solver
provide lower computational cost but lower accuracy.

Task 2.2
In the .xml file under the tag SOLVERINFO , define all the solver parameters as
described above. These are declared as EQType, Projection, AdvectionType,
DiffusionType, TimeIntegrationMethod, UpwindType, ViscosityType.

1 <SOLVERINFO>
2 <I PROPERTY="EQType" VALUE="NavierStokesCFE" />
3 <I PROPERTY="Projection" VALUE="DisContinuous" />
4 <I PROPERTY="AdvectionType" VALUE="WeakDG" />
5 <I PROPERTY="DiffusionType" VALUE="LDGNS" />
6 <I PROPERTY="TimeIntegrationMethod" VALUE="ClassicalRungeKutta4"/>
7 <I PROPERTY="UpwindType" VALUE="HLLC" />
8 <I PROPERTY="ProblemType" VALUE="General" />
9 <I PROPERTY="ViscosityType" VALUE="Constant" />

10 </SOLVERINFO>

http://onlinelibrary.wiley.com/doi/10.1002/fld.3915/pdf
http://onlinelibrary.wiley.com/doi/10.1002/fld.3915/pdf
https://www.researchgate.net/profile/Spencer_Sherwin/publication/283563496_On_the_Connections_Between_Discontinuous_Galerkin_and_Flux_Reconstruction_Schemes_Extension_to_Curvilinear_Meshes/links/5641c57508aec448fa61d509.pdf?origin=publication_list
https://www.researchgate.net/profile/Spencer_Sherwin/publication/283563496_On_the_Connections_Between_Discontinuous_Galerkin_and_Flux_Reconstruction_Schemes_Extension_to_Curvilinear_Meshes/links/5641c57508aec448fa61d509.pdf?origin=publication_list
https://www.researchgate.net/profile/Spencer_Sherwin/publication/283563496_On_the_Connections_Between_Discontinuous_Galerkin_and_Flux_Reconstruction_Schemes_Extension_to_Curvilinear_Meshes/links/5641c57508aec448fa61d509.pdf?origin=publication_list

2.3 Configuring problem definitions 13

Variables

In the VARIABLES tag we set the solution variable. For the 2D case we have:
1 <VARIABLES>
2 <V ID="0"> rho </V>
3 <V ID="1"> rhou </V>
4 <V ID="2"> rhov </V>
5 <V ID="3"> E </V>
6 </VARIABLES>

Note again the weak enforcement of the boundary conditions. The BCs are applied to
the fluxes rather than to the non conservative variables of the problem. For further
understanding, please check A guide to the Implementation of the Boundary Conditions.

Boundary Conditions

The BOUNDARYREGIONS tag specifies the regions where to apply the boundary conditions.
1 <BOUNDARYREGIONS>
2 <B ID="0"> C[100]
3 <B ID="1"> C[101]
4 <B ID="2"> C[102]
5 <B ID="3"> C[103]
6 </BOUNDARYREGIONS>

The next tag is BOUNDARYCONDITIONS by which the boundary conditions are actually
specified for each boundary ID specified in the BOUNDARYREGIONS tag. The boundary
conditions have been set as explained in section 1.3

1 <!−− Wall −−>
2 <REGION REF="0">
3 <D VAR="rho" USERDEFINEDTYPE="WallViscous" VALUE="0" />
4 <D VAR="rhou" USERDEFINEDTYPE="WallViscous" VALUE="0" />
5 <D VAR="rhov" USERDEFINEDTYPE="WallViscous" VALUE="0" />
6 <D VAR="E" USERDEFINEDTYPE="WallViscous" VALUE="0" />
7 </REGION>
8 <!−− Farfield −−>
9 <REGION REF="1">

10 <D VAR="rho" VALUE="rhoInf" />
11 <D VAR="rhou" VALUE="rhoInf∗uInf" />
12 <D VAR="rhov" VALUE="rhoInf∗vInf" />
13 <D VAR="E" VALUE="pInf/(Gamma−1)+0.5∗rhoInf∗(uInf∗uInf+vInf∗vInf)" />
14 </REGION>
15 <!−− Inflow −−>
16 <REGION REF="2">
17 <D VAR="rho" VALUE="rhoInf" />
18 <D VAR="rhou" VALUE="rhoInf∗uInf" />
19 <D VAR="rhov" VALUE="rhoInf∗vInf" />
20 <D VAR="E" VALUE="pInf/(Gamma−1)+0.5∗rhoInf∗(uInf∗uInf+vInf∗vInf)" />
21 </REGION>
22
23
24

https://arc.aiaa.org/doi/abs/10.2514/6.2014-2923

14 Chapter 2 Pre-processing

25 <!−− Outflow −−>
26 <REGION REF="3">
27 <D VAR="rho" VALUE="rhoInf" />
28 <D VAR="rhou" VALUE="rhoInf∗uInf" />
29 <D VAR="rhov" VALUE="rhoInf∗vInf" />
30 <D VAR="E" VALUE="pInf/(Gamma−1)+0.5∗rhoInf∗(uInf∗uInf+vInf∗vInf)" />
31 </REGION>

Note
As explained in section 2.3 Continuous Projection is not supported in the
Compressible Flow Solver. Therefore, boundary conditions are specified through
Dirichlet BCs and Neumann BCs are not supported.

The initial conditions have been set as explained in section 1.3.
1 <FUNCTION NAME="InitialConditions">
2 <E VAR="rho" VALUE="rhoInf"/>
3 <E VAR="rhou" VALUE="rhoInf∗uInf" />
4 <E VAR="rhov" VALUE="rhoInf∗vInf" />
5 <E VAR="E" VALUE="pInf/(Gamma−1)+0.5∗rhoInf∗(uInf∗uInf+vInf∗vInf)"/>
6 </FUNCTION>

2.4 Artificial Viscosity

In order to stabilise the flow in the presence of flow discontinuities we utilise a shock
capturing technique which makes use of artificial viscosity to damp oscillations in the
solution, in conjunction with a discontinuity sensor to decide where the addition of
artificial viscosity is needed.

Tip
In order to turn the NonSmooth artificial viscosity on:

• Include ShockCaptureType option in SOLVERINFO tag and set it to
NonSmooth .

• Set the parameters Skappa , Kappa and mu0 in the PARAMETERS tag.
mu0 is the maximum value for the viscosity, Kappa is half of the width of
the transition interval and SKappa is value of the centre of the interval.
The viscosity varies from 0 to the maximum values as the sensor goes
from Skappa-Kappa to SKappa+Kappa.

• The default values are: Skappa =-1.3; kappa =0.2; mu0 =1.0.

• For futher details, please read chapter 3 of Mesh adaptation strategies for
compressible flows using a high-order spectral/hp element discretisation

https://spiral.imperial.ac.uk/handle/10044/1/43340
https://spiral.imperial.ac.uk/handle/10044/1/43340

Chapter 3
Running the solver

The CompressibleFlowSolver can be run to solve the Cylinder Subsonic problem.

Task 3.1
Run the solver by typing the following command on the command line:
$NEK/CompressibleFlowSolver CylinderSubsonic_NS.xml

Tip
To reduce the solution time on computers with multiple processors, MPI can
be used to run the simulation in parallel. Note that, for binaries compiled from
source, the Cmake option NEKTAR_USE_MPI must have been set ON . To run in
parallel, prefix the command in the previous task with mpirun -np X, replacing
X by the number of parallel processes to use. For example, to use 32 processes:
mpirun -np 32 $NEK/CompressibleFlowSolver CylinderSubsonic_NS.xml

The simulation has now produced 10 .chk binary files and a final .fld binary file. These
binary files contain the result of the simulation every 100 time-steps. This output interval
has been chosen through the parameter IO_CheckSteps in PARAMETERS tag. Also, it is
possible to note that every 100 time-steps the solver outputs the physical time of the
simulation and the CPU time required for doing 100 time-steps. The interval of 100
time-steps is decided through the parameter IO_InfoSteps .

Tip
Stability plays a crucial role in the Compressible Flow solver. To ensure the
solution is not polluted leading to numerical instabilities, for long simulations
the .chk files can be checked before the simulation ends.

15

Chapter 4
Simulation Results

Now that the simulation has been completed, we need to post-process the file in order to
visualise the results. In order to do so, we can use the built-in post-processing routines
within Nektar + +. In particular we can use the following command:

Task 4.1
Convert the .xml and .chk files into a .vtu format by calling
$NEK/FieldConvert CylinderSubsonic_NS.xml CylinderSubsonic_NS.fld
CylinderSubsonic_NS.vtu.

Which generates a .vtu file that is a readable format for the open-source package
Paraview. We can now open the .vtu file just generated and visualise it with Paraview.
If we want to monitor the evolution of the simulation we can make an animation in
Paraview by converting successive .chk files into .vtu

Task 4.2
Set the FinTime to 0.6 and run the simulation. In order to do that, define
the number of steps NumSteps as the ratio of the FinalT ime to the time-step
TimeStep and set the FinalT ime. Remember to use MPI in order to reduce
the simulation time.

To create the animation we need to convert the .xml files into .vtu format. To avoid
typing the same command several times, create a routine to create the different .vtu files.
Once all the .vtu files are created (they are found in the completed folder), open them in
paraview as a group (i.e File/Open and select all of them without expanding the tab).

If the final time is set to 0.6 and the .chk files are obtained every 400 steps. The animation
created with the last 20 files should look like the CylinderSubsonic_NS.ogv video included
in the completed folder.

16

Chapter 4 Simulation Results 17

Convert the .xml and .fld files into a .vtu format as shown in Task 4.1.

Figure 4.1 Instantaneous Velocity Flow Field

Calculate Vorticity

To perform the vorticity calculation and obtain an output data containing the vorticity
solution, the user can run:

Task 4.3
Create a .fld file with the vorticity with the command:
$NEK/FieldConvert -m vorticity CylinderSubsonic_NS.xml
CylinderSubsonic_NS.fld CylinderSubsonic_NS_vort.fld

Figure 4.2 Instantaneous Vorticity Flow Field

18 Chapter 4 Simulation Results

Extract Wall Shear Stress

To obtain the wall shear stress vector and magnitude, the user can run:

FieldConvert -m wss:bnd=0:addnormals=0 CylinderSubsonic_NS.xml
CylinderSubsonic_NS.fld CylinderSubsonic_NS_wss.fld

The option bnd specifies which boundary region to extract. In this case the boundary
region ID of the cylinder is 0. If the addnormals is turned on, Nektar + + additionally
outputs the normal vector of the extracted boundary region.

In order to process the ouput file(s) you will need an .xml file of the same region. In
order to do that we can use the NekMesh module extract:

NekMesh -m extract:surf=100 CylinderSubsonic_NS.xml bl.xml

Note, for NekMesh the surface ID we want to extract corresponds to the composite
number of the cylinder surface -i.e 100.

To process the surface file one can use:

FieldConvert bl.xml CylinderSubsonic_NS_wss.fld
CylinderSubsonic_NS_wss.vtu

This command will generate a .dat file with the flow field information in the cylinder
wall. It will produce the information of the density rho, the fluxes rhou, rhov and E,
the pressure p, the sound velocity a, the Mach number Mach, the sensor values Sensor,
the shear values Shearx, Sheary and Shearmag and the norms normx and normy for
the different x and y coordinated along the cylinder. These files can be obtained from
the completed folder.

This completes the tutorial.

	Introduction
	Goals
	Background
	Problem description

	Pre-processing
	Mesh generation
	Expansion bases
	Configuring problem definitions
	Artificial Viscosity

	Running the solver
	Simulation Results

