AY/
n"éé
Integration using Gaussian
Quadrature

Tutorials

January 31, 2024

Department of Aeronautics, Imperial College London, UK
Scientific Computing and Imaging Institute, University of Utah, USA

CHAPTER].

Introduction

Welcome to the tutorial on the fundamentals of the Nektar++ framework where we will
look at how to perform 1D and 2D Gaussian Quadrature using the Nektar++ LibUtilities
library. If you have not already downloaded and installed Nektar+-+, please do so
by visiting http://www.nektar.info, where you can also find the User-Guide with the
instructions on how to install the library.

This tutorial requires:

e Nektar++ compiled libraries and include files compiled from source so additional
code can be compiled with the framework libraries

Goals

After completing this tutorial, you should be familiar with:

The concept of Gaussian integration using classical Gauss and Gauss-Lobatto rules
in a standard interval £ € [—1,1];

e Using the Nektar++ programming concepts of an Array, PointsKey and the
PointsManager to generate Gaussian quadrature weights;

o Integrating in the standard segment (¢ € [—1,1]) and quadrilateral region (§ €
[_L 1] X [_11 1])a

¢ The mathematical concept of mapping a general quadrilateral region to the standard
region, evaluating the jacobian of this mapping and using this to evaluate an integral
in a general straight sided quadrilateral region.

3

http://www.nektar.info
http://www.nektar.info/src/user-guide-5.4.0.pdf

Chapter 1 Introduction

Task 1.1
f! Prepare for the tutorial. Make sure that you have:

o Installed and tested Nektar+-+ v5.4.0 compiled from source. We will
refer to the directory where you installed Nektar++ as $NEKDIST for the
remainder of the tutorial.

The tutorial folder also contains:

— CMakeList.txt
— LocIntegration2D.cpp

StdIntegration1D.cpp

StdIntegration2D.cpp

e Make a directory of your chosing, for example tutorial, and down-
load the tutorial files from http://doc.nektar.info/tutorials/5.4.0/
fundamentals/integration/fundamentals-integration.tar.gz into
this directory.

o Unpack the tutorial files by using
tar -xzvf fundamentals-integration.tar.gz

to produce a directory fundamentals-integration with subdirectories
called tutorial and complete.

e Change to the
fundamentals-integration/tutorial

directory and configure the tutorial examples for compilation by typing
the command

cmake -DCMAKE_PREFIX_PATH=$NEKDIST/build .
You should now see a file called Makefile in this directory.

e Change to the
$NEKDIST/tutorial/fundamentals-integration/complete

directory and configure the completed version of the tutorial examples
for compilation by again typing the command

cmake -DCMAKE_PREFIX PATH=$NEKDIST/build

You should now see a file called Makefile in this directory.

http://doc.nektar.info/tutorials/5.4.0/fundamentals/integration/fundamentals-integration.tar.gz
http://doc.nektar.info/tutorials/5.4.0/fundamentals/integration/fundamentals-integration.tar.gz

CHAPTER 2

Integration on a one-dimensional
standard region

In our finite element formulation we typically require a technique to evaluate, within
each elemental domain, integrals of the form

[(e, 2.)

-1

where u(£) may well be made up of products of polynomial bases. Since the form of u(§)
is problem specific, we need an automated way to evaluate such integrals. This suggests
the use of numerical integration or quadrature. The fundamental building block is the
approximation of the integral by a finite summation of the form

1 q-1
[uede ~ 3 wiu(s),
- =0

where w; are specified constants or weights and &; represents an abscissa of ¢ distinct
points in the interval —1 < &; < 1. Although there are many different types of numerical
integration we shall restrict our attention to Gaussian quadrature.

2.1 Gaussian Quadrature

Gaussian quadrature is a particularly accurate method for treating integrals where the
integrand, u(&), is smooth. In this technique the integrand is represented as a Lagrange
polynomial using the ¢ points §;, which are to be specified, that is,

|
—

q

u(§) =) ul€i)hi(€) +e(u), (2.2)

~
I
o

where e(u) is the approximation error. If we substitute equation (2.2) into (2.1) we
obtain a representation of the integral as a summation:

6 Chapter 2 Integration on a one-dimensional standard region

-1

q—1

[u(ede = Y wan(e + Bw). 23)
=0

where

wi = /1 hi(€)de, (2.4)

-1

Ru) — /1 e(u)de. (2.5)

-1

Equation (2.4) defines the weights w; in terms of the integral of the Lagrange polynomial
but to perform this integration we need to know the location of the abscissae or zeros
&;. Since u(§) is represented by a polynomial of order (¢ — 1) we would expect the
relation above to be exact if u(€) is a polynomial of order (¢ — 1) or less [that is, when
u(§) € Py—1([—1,1]) then R(u) = 0]. This would be true if, for example, we choose the
points so that they are equispaced in the interval. There is, however, a better choice of
zeros which permits exact integration of polynomials of higher order than (¢ — 1). This
remarkable fact was first recognised by Gauss and is at the heart of Gaussian quadrature.

We here consider only the result of the Gauss quadrature for integrals of the type shown
in equation (2.3) known as Legendre integration. There are three different types of
Gauss quadrature known as Gauss, Gauss-Radau, and Gauss-Lobatto, respectively. The
difference between the three types of quadrature lies in the choice of the zeros. Gauss
quadrature uses zeros which have points that are interior to the interval, —1 < &; < 1 for

1=0,...,q — 1. In Gauss-Radau the zeros include one of the end-points of the interval,
usually £ = —1, and in Gauss-Lobatto the zeros include both end points of the interval,
that is, £ = £1.

Introducing &' }f to denote the P zeros of the P* order Jacobi polynomial Pg’ﬂ such
that

Pei(ef) =0, i=0,1,...,P—1,

where
&p <&ip < <& p,

we can define zeros and weights which approximate the integral

-1

q—1
/ () = 3 win(e) + Ru),
=0

as:

2.1 Gaussian Quadrature

(1) Gauss-Legendre
& = &7 i=0,...,q—1

0,0 __ 2 d I -2 . 1
w; - m d75(Q(é))|g:§i i=0,...,q—

Rw) = 0 ifu() € Poyor([~1,1)

(2) Gauss-Radau-Legendre

-1 1=20
& = o
éiil,q—l Z'le'-?q—l
0,0 (1-&) .
w = e i=0,...,q—1
¢*[Lg-1(&)]?

R(u) = 0 ifu(f) € Py—2([-1,1])

-1 1=0
i = 1,1 .
Si §illg2 1=1,...,4—2
1 i=q—1
2
w? = 1=0,...,q9—1

! q(q = 1)[Lq—1(&)]
R(u) = 0 ifu(f) € Poy-3([-1,1])

In all of the above quadrature formulae Ly (£) is the Legendre polynomial (Lg(§) = P0(€)).
The zeros of the Jacobi polynomial &",L»Cf nf do not have an analytic form and commonly
the zeros and weights are tabulated. Tabulation of data can lead to copying errors and
therefore a better way to evaluate the zeros is by the use of a numerical algorithm (see

the appendix in “Spectral/hp element methods for CFD”).

CHAPTER 3

Computational Exercises

3.1 One dimensional integration in a standard segment

In this first exercise we will demonstrate how to integrate the function f(¢) = £'2 on
the standard segment £ € [—1, 1] using Gaussian quadrature. The Gaussian quadrature
weights and zeros are coded in the LIbUtilities library and for future reference this
can be found under the directory $NEKDIST/library/LibUtilities/Foundations/.
For the following exercises we will access the zero and points from the PointsManager.
The PointsManager is a type of map (or manager) which requires a key defining known
Gaussian quadrature types called PointsKey.

In the $NEKDIST/tutorial/fundamentals-integration/tutorial directory open the
file named StdIntegrationlD.cpp. Look over the comments supplied in the file which
outline how to define the number of quadrature points to apply, the type of Gaussian
quadrature and some arrays to hold the zeros, weights and solution. Finally a PointsKey
is defined which is then used to obtain the zeros and weights in two arrays called
quadZeros and quadWeights.

Task 3.1
f! Implement a short block of code where you see the comments
"Write your code here" which evaluates the loop

i<Qmaz

/ CHOdex > wil().

-1 i=0

To compile your code type

make StdIntegationlD

3.1 One dimensional integration in a standard segment 9

in the tutorial directory. When your code compiles successfully! then type
./StdIntegrationlD

You should now get some output similar to

| INTEGRATION ON A 1D STANDARD REGION |

Integrate the function f(xi) = xi~12 on the standard
segment xi=[-1,1] with Gaussian quadrature
Q = 4: Error = 0.179594

Task 3.2

g Evaluate the previous integral for a quadrature order of) = Quax Where
Qmax = 7 is the number of quadrature points required for an exact evaluation
of the integral (calculate this value analytically). Verify that the error is zero
(up to numerical precision).

We can also use Gauss-Lobatto-Legendre type integration rather than Gauss-Legendre
type in the previous exercises. To do this we replace

LibUtilities :: PointsType quadPointsType =
LibUtilities :: eGaussGaussLegendre;
with

LibUtilities :: PointsType quadPointsType =
LibUtilities :: eGaussLobattoLegendre;

Task 3.3

ﬁ Evaluate the previous integral for a quadrature order of) = Quax Where
Qmax = 7 and 8 to verify that to exactly integrate with Gauss-Lobatto type
integration you require an additional quadrature point and weights.

If you are unable to get your code to compile you can see a completed exercise in the
$NEKDIST/tutorial/fundamentals-integration/completed directory. The tutorial code is contained

within a #if WITHSOLUTION block

10 Chapter 3 Computational Exercises

3.2 Two-dimensional integration in a standard and local region

3.2.1 Quadrilateral element in a standard region

A straightforward extension of the one-dimensional Gaussian rule is to the two-dimensional
standard quadrilateral region and similarly to the three-dimensional hexahedral region.
Integration over Q2 = {—1 < £, & < 1} is mathematically defined as two one-dimensional
integrals of the form

/;22 u(§1,&2) d&y dés = /11 {/11 u(&1,&2)

So if we replace the right-hand-side integrals with our one-dimensional Gaussian integra-
tion rules we obtain

d§1} dés.
&2

q1—1 g2—1

/ (6, &) dy déy ~ Zwl ij w(Eri €7 b |

where g1 and ¢ are the number of quadrature points in the £; and & directions. This
expression will be exact if u(&1,&2) is a polynomial and ¢, g2 are chosen appropriately.
To numerically evaluate this expression the summation over ‘2’ must be performed ¢;
times at every &9; point, that is,

q1—1

Jpo e e des = 3w s,

<121

f&u) = ng u(&14, &25)-

Task 3.4

ﬁ Integrate the function f(&1,&) = &2 €3* on the standard quadrilateral element
Q € [-1,1] x [-1, 1] using Gaussian quadrature.
Using a series of one-dimensional Gaussian quadrature rules as outlined above
evaluate the integral by completing the first part of the code in the file
StdIntegration2D.cpp in the directory
$NekDist/tutorial/fundamentals-integration/tutorial.
The quadrature weights and zeros in each of the coordinate directions have
already been setup and are initially set to g1 = 6, gs = 7 using a Gauss-Lobatto-
Legendre quadrature rule. Complete the code by writing a structure of loops
which implement the two-dimensional Gaussian quadrature rule®. The expected
output is given below). Also verify that the error is zero when ¢; = 8,¢2 = 9.
Recall that to compile the file you type

make StdIntegration2D

“If you need help there is a completed version in the completed directory

3.2 Two-dimensional integration in a standard and local region 11

When executing the tutorial with the quadrature order ¢; = 6,¢2 = 7 you should get an
output of the form:

INTEGRATION ON 2 DIMENSIONAL ELEMENTS

Integrate the function f(x1,x2) = (x1)712x(x2)"14
on the standard quadrilateral element:
ql = 6, g2 = 7: Error = 0.00178972

3.2.2 General straight-sided quadrilateral element

Figure 3.1 To construct a C° expansion from multiple elements of specified shapes (for example,
triangles or rectangles), each elemental region Q¢ is mapped to a standard region {24 in which all
local operations are evaluated.

For elemental shapes with straight sides a simple mapping may be constructed using a
linear mapping similar to the vertex modes of a hierarchical/modal expansion. For the
straight-sided quadrilateral with vertices labeled as shown in figure 3.1(b) the mapping
can be defined as:

o= (e =af C A LA

pop(o8)1t8) c0ra s, (3.1)

If we denote an arbitrary quadrilateral region by €2¢ which is a function of the global
Cartesian coordinate system (x1, z2) in two-dimensions. To integrate over {2¢ we transform
this region into the standard region Qg defined in terms of (1, &2) and we have

/ u(ar,) dry dry = /Q w(ér, &) Jap| dé1 dés,

12 Chapter 3 Computational Exercises

where Jop is the two-dimensional Jacobian due to the transformation, defined as:

gy Oy
_| 96 0& | _ 910wy Oni 0w, 2
B0 =1 0z, O | T og 08, 06 08 (3:2)
06 0%
As we have assumed that we know the form of the mapping [i.e., 1 = x1(&1,&2),

xo = x2(&1,&2)] we can evaluate all the partial derivatives required to determine the
Jacobian. If the elemental region is straight-sided then we have seen that a mapping
from (z1,22) — (&1, &2) is given by equations (3.1).

4

Task 3.5
12 .14

We now consider how to integrate the function f(z1,x2) = x1° x5" on a local
rectangular quadrilateral element using Gaussian quadrature. Consider the
local quadrilateral element with vertices

(leél’xgl) = (Ov _1)7 (xlBﬂxQB) = (1, _1)7
(xlcaxg) = (17 1)7 (x?’xQD) = (070)'

This is clearly similar to the previous exercise. However, as we are calculating
the integral of a function defined on a local element rather than on a reference
element, we have to take into account the geometry of the element. Therefore,
the implementation is altered in two ways:

1. The quadrature zeros should be transformed to local coordinates to
evaluate the integrand f(x1,x2) at the quadrature points.

2. The Jacobian of the transformation between local and reference coordi-
nates should be taken into account when evaluating the integral.

In the file LocIntegration2D.cpp you are provided with the same set up
as the previous task but now with a definition of the coordinate mapping
included. Evaluate the expression for the Jacobian analytically. Then write
a line of code in the loop for the Jacobian as indicated by the comments
"Write your code here". When you have written your expression you can
compile the code with the command

make LocIntegration2D

Verify that the error is not equal to zero when ¢; = 8, ¢2 = 9. Why might this
be the case??.

“Hint: What is the function in terms of £1,&2 and what is the polynomial degree of the
Jacobian?

3.2 Two-dimensional integration in a standard and local region 13

Using the quadrature order specified in the file your output should look like:

INTEGRATION ON 2D ELEMENT in Local Region

Integrate the function f(x1,x2) = x1712 * x2714
on a local quadrilateral element:
Error = 0.000424657

CHAPTER 4

Summary

You should be now familiar with the following topics:

e Defining an Array and a PointsKey in Nektar++.

o Use the PointsManager with a PointsKey to get hold of quadrature weights and
Z€eros.

o Integrate a polynomial function in the standard region £ € [—1, 1] using Gauss-
Gauss-Legendre and Gauss-Lobatto-Legendre quadrature.

o Extend the standard region to a standard quadrilateral region.

¢ Introduce a linear mapping from a general quadrilateral region to the standard
quadrilateral region. Evaluate the Jacobian of this mapping and evaluate an integral
in a general straight sided quadrilateral region.

14

	Introduction
	Integration on a one-dimensional standard region
	Gaussian Quadrature

	Computational Exercises
	One dimensional integration in a standard segment
	Two-dimensional integration in a standard and local region

	Summary

