10import matplotlib.pyplot
as plt
17from functions_main
import Find_Topologies
18from functions_main
import Partition
19from functions_main
import Find_Nektar_Files
20from functions_main
import Parse_Nektar_Output
26from class_topology
import Topology
33def Run_Parallel_Model(Parallelisation, Scheme, Mesh_File, Num_Modes, P, Num_Constants, Fit, BW_Node_To_Node, LAT_Node_To_Node, BW_Socket_To_Socket,
34 LAT_Socket_To_Socket, BW_Core_To_Core, LAT_Core_To_Core, Num_Core_Per_Socket, Num_Sock_Per_Node, PROC_TOT, Pressure, Velocity_1, Velocity_2,
38 if (Parallelisation
is 'Hybrid_Socket' or Parallelisation
is 'Hybrid_Node'):
42 if (Parallelisation
is 'Modal'):
43 PROC_Z = [2, 4, 5, 8, 10, 20]
44 PROC_XY = [1, 1, 1, 1, 1, 1]
47 if (Parallelisation
is 'Elemental'):
48 PROC_Z = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
49 PROC_XY = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
68 for i
in range(0, len(PROC_Z)):
71 Communication_Count = 0.0
74 Simulation =
Topology(PROC_Z[i], PROC_XY[i], Num_Core_Per_Socket, Num_Sock_Per_Node, Scheme)
77 (Num_Element_Msg, Num_Elements) =
Partition(Mesh_File, PROC_XY[i])
80 Simulation.Input_Communication(BW_Node_To_Node, LAT_Node_To_Node, BW_Socket_To_Socket, LAT_Socket_To_Socket, BW_Core_To_Core, LAT_Core_To_Core)
83 Simulation.Distribute_Modes(Num_Modes);
84 Simulation.Distribute_Elements(Num_Element_Msg, Num_Elements);
87 Simulation.CG_Iterations(Pressure, Velocity_1, Velocity_2, Velocity_3)
90 Simulation.Data_Size(P)
93 Simulation.Hardware_Constant(Num_Constants, Fit)
96 Pairwise.append(Simulation.Communication_Pairwise_Exchange())
97 Communication_Count += Pairwise[i]
100 Allreduce.append(Simulation.Communication_Allreduce())
101 Communication_Count += Allreduce[i]
104 Alltoall.append(Simulation.Communication_Alltoall())
105 Communication_Count += Alltoall[i]
108 Serial.append(Simulation.Serial_Compute())
111 Serial_Pairwise.append(Serial[i] + Pairwise[i])
112 Serial_Allreduce.append(Serial[i] + Allreduce[i])
113 Serial_Alltoall.append(Serial[i] + Alltoall[i])
116 Communication.append(Communication_Count)
119 Total.append(Communication[i] + Serial[i])
121 if (Parallelisation ==
'Hybrid'):
122 fig, ax = plt.subplots()
123 ax.plot(PROC_Z, Total, label =
'Model')
124 ax.set_xlabel(
'$ R_Z $')
125 ax.set_ylabel(
'Timestep (s)')
126 ax.set_title(
'Length of Single Timestep: Model')
128 fig.savefig(
"Output/Figures/Model_Hybrid.png")
130 if (Parallelisation ==
'Modal'):
131 fig, ax = plt.subplots()
132 ax.plot(PROC_Z, Total, label =
'Model')
133 ax.set_xlabel(
'$ R_Z $')
134 ax.set_ylabel(
'Timestep (s)')
135 ax.set_title(
'Length of Single Timestep: Model')
137 fig.savefig(
"Output/Figures/Model_Modal.png")
139 if (Parallelisation ==
'Elemental'):
140 fig, ax = plt.subplots()
141 ax.plot(PROC_XY, Total, label =
'Model')
142 ax.set_xlabel(
'$ R_{XY} $')
143 ax.set_ylabel(
'Timestep (s)')
144 ax.set_title(
'Length of Single Timestep: Model')
146 fig.savefig(
"Output/Figures/Model_Elemental.png")
148 return(PROC_Z, PROC_XY, Total)
153 if (Parallelisation
is 'Modal'):
157 (Nektar_Modes_Fin, Timing_Files_Fin) =
Find_Nektar_Files(Loc_Parallel_Timing_Files)
159 for i
in range(0, len(Timing_Files_Fin)):
160 Data.append(np.mean(
Parse_Nektar_Output(Loc_Parallel_Timing_Files + Timing_Files_Fin[i]))/10)
165 for i
in range(0, len(Timing_Files_Fin)):
166 difference.append(
abs(Data[i] - Total[i]))
168 mean_diff = np.mean(difference)
169 std_dev_diff = np.std(difference)
170 var_diff = np.var(difference)
173 print(
'The mean of the differences between the Data and the Model is ' + str(mean_diff))
174 print(
'The standard deviation of the differences between the Data and the Model is ' + str(std_dev_diff))
175 print(
'The variance of the differences between the Data and the Model is ' + str(var_diff))
177 fig, ax = plt.subplots()
178 ax.plot(PROC_Z, Data, label =
'Data')
179 ax.plot(PROC_Z, Total, label =
'Model')
180 ax.set_xlabel(
'$ R_Z $')
181 ax.set_ylabel(
'Timestep (s)')
182 ax.set_title(
'Length of Single Timestep: Model vs Data')
184 fig.savefig(
"Output/Figures/Mode_Full.png")
186 if (Parallelisation
is 'Elemental'):
190 (Nektar_Modes_Fin, Timing_Files_Fin) =
Find_Nektar_Files(Loc_Parallel_Timing_Files)
192 for i
in range(0, len(Timing_Files_Fin)):
193 Data.append(np.mean(
Parse_Nektar_Output(Loc_Parallel_Timing_Files + Timing_Files_Fin[i]))/10)
198 for i
in range(0, len(Timing_Files_Fin)):
199 difference.append(
abs(Data[i] - Total[i]))
201 mean_diff = np.mean(difference)
202 std_dev_diff = np.std(difference)
203 var_diff = np.var(difference)
206 print(
'The mean of the differences between the Data and the Model is ' + str(mean_diff))
207 print(
'The standard deviation of the differences between the Data and the Model is ' + str(std_dev_diff))
208 print(
'The variance of the differences between the Data and the Model is ' + str(var_diff))
210 fig, ax = plt.subplots()
211 ax.plot(PROC_XY, Data, label =
'Data')
212 ax.plot(PROC_XY, Total, label =
'Model')
213 ax.set_xlabel(
'$ R_{XY} $')
214 ax.set_ylabel(
'Timestep (s)')
215 ax.set_title(
'Length of Single Timestep: Model vs Data')
217 fig.savefig(
"Output/Figures/Element_Full.png")
219 if (Parallelisation
is 'Hybrid_Socket' or Parallelisation
is 'Hybrid_Node'):
222 (Nektar_Modes_Fin, Timing_Files_Fin) =
Find_Nektar_Files(Loc_Parallel_Timing_Files)
224 for i
in range(0, len(Timing_Files_Fin)):
225 Data.append(np.mean(
Parse_Nektar_Output(Loc_Parallel_Timing_Files + Timing_Files_Fin[i]))/10)
230 for i
in range(0, len(Timing_Files_Fin)):
231 difference.append(
abs(Data[i] - Total[i]))
233 mean_diff = np.mean(difference)
234 std_dev_diff = np.std(difference)
235 var_diff = np.var(difference)
238 print(
'The mean of the differences between the Data and the Model is ' + str(mean_diff))
239 print(
'The standard deviation of the differences between the Data and the Model is ' + str(std_dev_diff))
240 print(
'The variance of the differences between the Data and the Model is ' + str(var_diff))
242 fig, ax = plt.subplots()
243 ax.plot(PROC_Z, Data, label =
'Data')
244 ax.plot(PROC_Z, Total, label =
'Model')
245 ax.set_xlabel(
'$ R_Z $')
246 ax.set_ylabel(
'Timestep (s)')
247 ax.set_title(
'Length of Single Timestep: Model vs Data')
249 fig.savefig(
"Output/Figures/Hybrid_Full.png")
def Parse_Nektar_Output(Input_Filename, Skip_Steps)
def Partition(Input_Filename, PROC_XY)
def Find_Topologies(PROC_TOT, Num_Modes)
def Find_Nektar_Files(Input_Filename)
def Run_Parallel_Comparison(Loc_Parallel_Timing_Files, Parallelisation, PROC_Z, PROC_XY, Total)
def Run_Parallel_Model(Parallelisation, Scheme, Mesh_File, Num_Modes, P, Num_Constants, Fit, BW_Node_To_Node, LAT_Node_To_Node, BW_Socket_To_Socket, LAT_Socket_To_Socket, BW_Core_To_Core, LAT_Core_To_Core, Num_Core_Per_Socket, Num_Sock_Per_Node, PROC_TOT, Pressure, Velocity_1, Velocity_2, Velocity_3)
scalarT< T > abs(scalarT< T > in)