AY,

iy

Global Stability Analysis:
Channel Flow

Tutorials

September 9, 2016

Department of Aeronautics, Imperial College London, UK
Scientific Computing and Imaging Institute, University of Utah, USA

CHAPTER].

Introduction

The aim of this tutorial is to introduce the user to the spectral/hp element framework
Nektar++ and its use for global stability computations. Information on how to install
the libraries, solvers, and utilities on your own computer is available on the webpage
www.nektar.info.

Task 1.1
ﬁ Prepare for the tutorial. Make sure that you have:

e Installed and tested Nektar++ v4.3.4from a binary package, or compiled
it from source. By default binary packages will install all executables in
/usr/bin. If you compile from source they will be in the sub-directory
dist/bin of the build directory you created in the Nektar+-+ source
tree. We will refer to the directory containing the executables as $NEK
for the remainder of the tutorial.

e Downloaded the tutorial files: http://doc.nektar.info/tutorials/4.
3.4/flow-stability/channel/flow-stability-channel.tar.gz
Unpack it using unzip flow-stability-channel.tar.gz to pro-
duce a directory flow-stability-channel with subdirectories called
tutorial and complete We will refer to the tutorial directory as
$NEKTUTORIAL .

http://www.nektar.info
http://doc.nektar.info/tutorials/4.3.4/flow-stability/channel/flow-stability-channel.tar.gz
http://doc.nektar.info/tutorials/4.3.4/flow-stability/channel/flow-stability-channel.tar.gz

4 Chapter 1 Introduction

Task 1.2
f! Additionally, you should also install

e a visualization package capable of reading VTK files, such as ParaView
(which can be downloaded from here) or Vislt (downloaded from here).
Alternatively, you can generate Tecplot formatted .dat files for use with
Tecplot.

e a plotting program capable of reading data from ASCII text files, such as
GNUPIlot or MATLAB.

Optionally, you can install the open-source mesh generator Gmsh (which can
be downloaded from here) to generate the meshes for the tutorial examples
yourself. However, pre-generated meshes are provided.

In this tutorial, we will cover the stability analysis of a two-dimensional channel flow,
through both a splitting scheme (the Velocity Correction Scheme) and the direct inversion
algorithm (also referred to as the Coupled Linearised Navier-Stokes solver). We will
briefly show the application of the stability tools presented to a three-dimensional channel
flow test case.

Linear stability analysis is a technique that allows us to determine the asymptotic stability
of a flow. By decomposing the velocity and pressure in the Navier-Stokes equations as
a summation of a base flow (U, P) and perturbation (u’,p’), such that u = U + eu/,
p= P +¢p, with € < 1, we derive the linearised Navier-Stokes equations,

ou’ / / /
E+U~Vu +u -VU=-Vp +

1
ﬁv%’ + (1.1)

V-u' =0. (1.2)

We will consider a parallel base flow through a 2-D channel (known as Poiseuille flow) at
Reynolds number Re = 7500. The velocity has the following analytic form:

U=(y+1)(1—-yex (1.3)

The domain is 2 = [—m, 7] x [—1, 1] and it is composed by 48 quadrilateral elements as
shown in figure 1.1. The problem has been made non-dimensional using the centreline
velocity and the channel half-height.

This mesh was created using the software Gmsh and the first step is to convert it into a
suitable input format so that it can be processed by the Nektar++ libraries.

The files in the $NEKTUTORIAL directory are as follows:

http://www.paraview.org/download/
https://wci.llnl.gov/simulation/computer-codes/visit/downloads
http://geuz.org/gmsh/

Chapter 1 Introduction 5

0.5
0.5 F
_1'||||||||||||||||||||||||||||
-3 2 -1 0 1 Z 3
X

Figure 1.1 48 quadrilaterals mesh

Folder geometry

— Channel.geo - Gmsh file that contains the geometry of the problem

— Channel .msh - Gmsh generated mesh data listing mesh vertices and elements.
Folder base

— Channel-Base.xml - Nektar++ session file, generated with the $NEK/NekMesh
utility, for computing the base flow.

Folder stability/VCS

— Channel-VCS.xml - Nektar++ session file, generated with $NEK/NekMesh, for
performing the stability analysis.

— Channel-VCS.rst - Nektar++ field file that contains a set of initial conditions
closer to the solution in order to achieve faster convergence.

Folder stability/Coupled

— Channel-Coupled.xml - Nektar++ session file, generated with $NEK/NekMesh,
for performing the stability analysis.

Folder stability3D

— PPF_R10000_3D.xml - Nektar++ session file for performing coupled 3D sta-
bility analysis at Re = 10000.

— PPF_R15000_3D.xml - Nektar++ session file for performing coupled 3D sta-
bility analysis at Re = 15000.

6

Chapter 1

Introduction

1.1 Mesh generation

The first step is to generate a mesh that is readable by Nektar++. The files necessary

in this section can be found in $NEKTUTORIAL/geometry/. To achieve this task we use
Gmsh in conjunction with the Nektar++ pre-processing utility called $NEK/NekMesh.
Specifically, we first generate the mesh in figure 1.1 using Gmsh and successively we
convert it into a suitable Nektar++ format using $NEK/NekMesh.

g Task

1.3

Convert the Gmsh geometry provided into the XML Nektar++ format and
with two periodic boundaries

Channel .msh can be generated using Gmsh by running the following
command:

gmsh -2 Channel.geo

Channel .xml can be generated using the $NEK/NekMesh pre-processing
tool:

$NEK/NekMesh Channel.msh Channel.xml

Channel-al.xml can be generated using the module peralign available
with the pre-processing tool $NEK/NekMesh:

$NEK/NekMesh -m peralign:surfl=2:surf2=3:dir=x Channel.xml
Channel-al.xml

where surfl and surf2 correspond to the periodic physical surface IDs
specified in Gmsh (in our case the inflow has a physical ID=2 while the
outflow has a physical ID=3) and dir is the periodicity direction (i.e. the
direction normal to the inflow and outflow boundaries - in our case x).

Examine the Channel.xml and Channel-al.xml files you have just created.

Only

the mesh and default expansions are defined at present and the only

difference between the two files is the ordering of the edges in the section
composite ID=3 which has been re-ordered in order to apply periodic boundary
conditions correctly.

1.1 Mesh generation 7

Warning

There is currently an issue when using the coupled solver and periodic
edges which is being investigated. For achieving the correct channel
flow stability results when using the Coupled Linearised Navier-Stokes

algorithm (see section 3.2), please use the files provided in the folder
$NEKTUTORIAL/stability/Coupled.

CHAPTER 2

Computation of the base flow

We must first create an appropriate base flow. Since, in hydrodynamic stability theory,
it is assumed that the base flow is incompressible, this can be computed using the
incompressible Navier-Stokes solver ($NEK/IncNavierStokesSolver).

Tip

Note that the incompressible Navier-Stokes solver

($NEK/IncNavierStokesSolver) executable encapsulates the nonlinear

equations as well as the stability tools. Therefore, when you setup either a

-()- nonlinear incompressible problem or an incompressible stability problem you
should use the same executable - i.e.:

$NEK/IncNavierStokesSolver file.xml.

The instructions for running one or the other are specified on the XML file.

For the problem considered here, the specified boundary conditions will be no-slip on
the walls and periodic for the inflow/outflow. In this case, since it is not a constant
pressure gradient that drives the flow, it is necessary to use a constant body-force in the
streamwise direction. It can be shown that this should be equal to 2v.

In the folder $NEKTUTORIAL/base you will find the file Channel-Base.xml which contains
the geometry along with the necessary parameters to solve the problem. The GEOMETRY
section defines the mesh of the problem and it is generated automatically as you have seen
in the previous task. The expansion type and order is specified in the EXPANSIONS section.
An expansion basis is applied to a geometry composite, where by composite we mean a
collection of mesh entities (specifically here, a collection of mesh elements), specified in
the GEOMETRY section. A default entry is always included by the $NEK/NekMesh utility.
In this case the composite C[0] refers to the set of all elements. The FIELDS attribute
specifies the fields for which this expansion should be used. The TYPE attribute specifies
the kind of the polynomial basis functions to be used in the expansion. For example,

8

Chapter 2 Computation of the base flow 9

1 <EXPANSIONS>
2 <E COMPOSITE= NUMMODES= FIELDS= TYPE= />
3 </EXPANSIONS>.

Note that all the results obtained in this tutorial refers to the expansion parameters just
defined (i.e. NUMMODES="11" FIELDS="u,v,p" TYPE="GLL_LAGRANGE").

In order to complete the problem definition and generate the base flow we need to specify
a section called CONDITIONS in the session file. If we examine Channel-Base.xml, we
can see how to define the conditions of the particular problem to solve.

In particular, the CONDITIONS section contains the following entries:

1. Solver information (SOLVERINFO) such as the equation, the projection type
(Continuous or Discontinuous Galerkin), the evolution operator (Nonlinear for
non-linear Navier-Stokes, Direct!, Adjoint or TransientGrowth for linearised
forms) and the analysis driver to use (Standard, Arpack or ModifiedArnoldi),
along with other properties. The solver properties are specified as quoted attributes
and have the form

1 <SOLVERINFO>
2 <I PROPERTY= VALUE= />

3
4 </SOLVERINFO>

Task 2.1
ﬁ In the SOLVERINFO section of Channel-Base.xml:
Note: The bits to be completed are identified by ...in this file.

e set EQTYPE to UnsteadyNavierStokes to select the unsteady incom-
pressible Navier-Stokes equations,

e set the EvolutionOperator to Nonlinear in order to select the
non-linear Navier-Stokes,

e set the Projection property to Continuous in order to select the
continuous Galerkin approach,

e set the Driver to Standard in order to perform standard time-
integration.

2. The parameters (PARAMETERS) are specified as name-value pairs:

in this case the term Direct refers to the direct stability analysis (opposed to the adjoint analysis)
and it has no relation with the Coupled Linearised Navier-Stokes algorithm that will be explained in the
next section

10 Chapter 2 Computation of the base flow

1 <PARAMETERS>

2 <P> [KEY] = [VALUE] </P>
3

4 </PARAMETERS>

Parameters may be used within other expressions, such as function definitions,
boundary conditions or the definition of other subsequently defined parameters.

Task 2.2

d Declare the two parameters Re, that represents the Reynolds number, and
Kinvis, which represents the kinematic viscosity. Now set the Reynolds
number to 7500 and the kinematic viscosity to 1/Re - i.e.

<P> Re = 7500 </P>
<P> Kinvis = 1/Re </P>

Note that you can put previously defined parameters in the VALUE entry
which can be an expression.

3. The declaration of the variable(s) (VARIABLES).

1 <VARIABLES >

2 <V ID="0"> u </V>
3 <VID="1">v </V>
4 <VID="2">p </V>
5 </VARIABLES>

4. The specification of boundary regions (BOUNDARYREGIONS) in terms of composites
defined in the GEOMETRY section and the conditions applied on those boundaries
(BOUNDARYCONDITIONS). Boundary regions have the form

1 <BOUNDARYREGIONS>

2 <BID= > [COMPOSITE—ID]
3 .

4 </BOUNDARYREGIONS>

The boundary conditions enforced on a region take the following format and
must define the condition for each variable specified in the VARIABLES section to
ensure the problem is well-posed.

1 <BOUNDARYCONDITIONS>

2 <REGION REF= >

3 <[TYPE] VAR= VALUE= />
4 <[TYPE] VAR= VALUE= />
5

6 </REGION>

7

8 </BOUNDARYCONDITIONS>

The REF attribute for a boundary condition region should correspond to the
ID="[INDEX]" of the desired boundary region specified in the BOUNDARYREGIONS
section.

Chapter 2 Computation of the base flow 11

5. The definition of the (time- and) space-dependent functions (FUNCTION), in terms

of x, y, z and t, such as initial conditions, forcing functions, and exact solutions.
The VARIABLES represent the components of the specific function in a specified
direction and they must be the same for every function.

1 <FUNCTION NAME= >
2 <E VAR= VALUE= />
3 <E VAR= VALUE= />

4
5 </FUNCTION>

Alternatively, one can specify the function using an external Nektar++ field file. For
example, this will be used to specify the InitialConditions or ExactConditions.

1 <FUNCTION NAME= >
2 <F FILE= />
3 </FUNCTION>

Task 2.3
f! Define a function called ExactSolution. For the Poiseuille flow with a
streamwise forcing term the exact solution is:

U=(y+1)(1-y) (2.1)
V=0 .
P=0 (2.3)

Note: You need to use the first definition of FUNCTION where you can set
an EXPRESSION.

Tip
If you are interested in the meaning of the other parameters and options present

in the XML file, they should be available in the User-Guide. If not - just ask
and we should be able to answer!

1\

Task 2.4
é Define a body forcing function in the streamwise direction (called BodyForce):

fz = 2v = 2*Kinvis.

Note that for using the body force you need the following additional tag outside the
section CONDITIONS:

1 <FORCING>

2 <FORCE TYPE= >

3 <BODYFORCE> BodyForce </BODYFORCE>
4 </FORCE>

5 </FORCING>

http://www.nektar.info/downloads/8

12 Chapter 2 Computation of the base flow

It is possible to specify an arbitrary initial condition. In this case, it was decided to
start from the exact solution of the problem in order to have a steady state in just few
iterations. If the initial condition is not specified, it will be set to zero by default.

This completes the specification of the problem.

4

Task 2.5
Compute the base flow using the Channel-Base.xml session file by typing:

$NEK/IncNavierStokesSolver Channel-Base.xml

At the end of the simulation, the fields will be written to a binary file Channel-Base.f1ld
and the Lo error (using the given exact solution) and the L, error will be printed on
the terminal for each of the variables.

In particular, the terminal screen should look like this:

EquationType: UnsteadyNavierStokes
Session Name: Channel-Base
Spatial Dim.: 2
Max SEM Exp. Order: 11
Expansion Dim.: 2
Projection Type: Continuous Galerkin

Advection: explicit
Diffusion: explicit
Time Step: 0.001
No. of Steps: 1000
Checkpoints (steps): 500
Integration Type: IMEXOrder3
Initial Conditions:
- Field u: (y+1)*(1-y)
- Field v: O
- Field p: O
Writing: "Channel-Base_O.chk"
Steps: 100 Time: 0.1 CPU Time: 1.296s
Steps: 200 Time: 0.2 CPU Time: 0.440151s
Steps: 300 Time: 0.3 CPU Time: 0.440857s
Steps: 400 Time: 0.4 CPU Time: 0.438776s
Steps: 500 Time: 0.5 CPU Time: 0.441416s
Writing: "Channel-Base_1.chk"
Steps: 600 Time: 0.6 CPU Time: 0.439318s
Steps: 700 Time: 0.7 CPU Time: 0.438448s
Steps: 800 Time: 0.8 CPU Time: 0.443955s
Steps: 900 Time: 0.9 CPU Time: 0.443197s
Steps: 1000 Time: 1 CPU Time: 0.440219s

Writing: "Channel-Base_2.chk"

Chapter 2 Computation of the base flow 13

Time-integration : 5.26234s
Writing: "Channel-Base.fld"

L 2 error (variable u) : 1.7664e-12

L inf error (variable u) : 3.59475e-12
L 2 error (variable v) : 4.79197e-13

L inf error (variable v) : 1.12599e-11
L 2 error (variable p) : 1.68712e-11

L inf error (variable p) : 5.2737e-12

The final step regarding the base flow is to visualise the flow fields. Specifically, we need
to convert convert the .f1d file into a format readable by a visualisation post-processing
tool. In this tutorial we decided to convert the .f1d file into a VI'K format and to use
the open-source visualisation package called Paraview .

Task 2.6
5 Convert the file:
$NEK/FieldConvert Channel-Base.xml Channel-Base.fld
Channel-Base.vtu

Now open Paraview and use File ->Open, to select the VTK file, click the
"Apply’ button to render the geometry, and select each field in turn from the
left-most drop-down menu on the toolbar to visualise the output.

Note: You can also open this type of file in Vislt.

In figure 2.1 we show how the base flow just computed should look like.

Tip
N Note that Nektar++ supports also Tecplot. To obtain a Tecplot-readable file
—@/— you can run the following command:

$NEK/FieldConvert Channel-Base.xml Channel-Base.fld
Channel-Base.dat

14

g

Chapter 2

Computation of the base flow

Figure 2.1 u-component of the velocity

ul-]

A

0.75
0.5
0.25

OME .

CHAPTER 3

Stability Analysis

After having computed the base flow it is now possible to calculate the eigenvalues and
the eigenmodes of the linearised Navier-Stokes equations. Two different algorithms can
be used to solve the equations:

e the Velocity Correction Scheme (VelocityCorrectionScheme) and

e the Coupled Linearised Navier-Stokes algorithm (CoupledLinearisedNS).

We will consider both cases, highlighting the similarities and differences of these two
methods. In this tutorial we will use the Implicitly Restarted Arnoldi Method (IRAM),
which is implemented in the open-source library ARPACK and the modified Arnoldi
algorithm! that is also available in Nektar++.

3.1 Velocity Correction Scheme

First, we will compute the leading eigenvalues and eigenvectors using the velocity
correction scheme method. In the $NEKTUTORIAL/stability folder there is a file called
Channel-VCS.xml. This file is similar to Channel-Base.xml, but contains additional
instructions to perform the direct stability analysis.

Note: The entire GEOMETRY section, and EXPANSIONS section must be identical to that
used to compute the base flow.

"nternational Journal for Numerical Methods in Fluids, 2008; 57:1435-1458

15

16 Chapter 3 Stability Analysis

Task 3.1
f! Configure the following additional SOLVERINFO options which are related to the
stability analysis.

1.

set the EvolutionOperator to Direct in order to activate the forward
linearised Navier-Stokes system.

. set the Driver to Arpack in order to use the ARPACK eigenvalue

analysis.

. Instruct ARPACK to converge onto specific eigenvalues through the solver

property ArpackProblemType. In particular, set ArpackProblemType to
LargestMag to get the eigenvalues with the largest magnitude (that
determines the stability of the flow).

Note: It is also possible to select the eigenvalue with the largest real
part by setting ArpackProblemType to (LargestReal) or with the largest
imaginary part by setting ArpackProblemType to (LargestImag).

Task 3.2
Set the parameters for the IRAM algorithm.

kdim=16: dimension of Krylov-space,
nvec=2: number of requested eigenvalues,
nits=500: number of maximum allowed iterations,

evtol=1e-6: accepted tolerance on the eigenvalues and it determines the
stopping criterion of the method.

-4

3.1 Velocity Correction Scheme 17

Task 3.3
Configure the two FUNCTION called InitialConditions and BaseFlow.

1. A restart file is provided to accelerate communications. Set the

InitialConditions function to be read from Channel-VCS.rst. The
solution will then converge after 16 iterations after it has populated the
Krylov subspace.

Note: The restart file is a field file (same format as .f1d files) that
contains the eigenmode of the system.

Note: Since the simulations often take hundreds of iterations to converge,
we will not initialise the IRAM method with a random vector during
this tutorial. Normally, a random vector would be used by setting the
SolverInfo option InitialVector to Random.

. The base flow file (Channel-Base.fld), computed in the previous sec-

tion, should be copied into the Channel/Stability folder and renamed
Channel-VCS.bse. Now specify a function called BaseFlow which reads
this file.

Task 3.4
ﬁ Run the solver to perform the analysis
$NEK/IncNavierStokesSolver Channel-VCS.xml

At the end of the simulation, the terminal screen should look like this:

Iteration 16, output: 0, ido=99
Converged in 16 iterations
Converged Eigenvalues: 2

Magnitude Angle Growth

EV: 0 1.00112 0.124946 0.0022353
Writing: "Channel-al_eig_0.f14"
EV: 1 1.00112 -0.124946 0.0022353
Writing: "Channel-al_eig_1.f14"

F P E

2 error (variable u) : 0.0367941
inf error (variable u) : 0.0678149
2 error (variable v) : 0.0276887
inf error (variable v) : 0.0649249
2 error (variable p) : 0.00512347
inf error (variable p) : 0.00135455

Frequency
0.249892

-0.249892

The eigenvalues are computed in the exponential form Me? where M = |)| is the
magnitude, while § = arctan()\;/\,) is the phase:

A1z = 1.00112¢=0-2498920,

(3.1)

18 Chapter 3 Stability Analysis

It is interesting to consider more general quantities that do not depend on the time length
chosen for each iteration 7. For this purpose we consider the growth rate o = In(M)/T
and the frequency w = 6/T.

Figures 7?7 and 7?7 show the profile of the computed eigenmode. The eigenmodes
associated with the computed eigenvalues are stored in the files Channel _VCS_eig_0.f1d
and Channel_VCS_eig_1.f1d. It is possible to convert this file into VITK format in the
same way as previously done for the base flow.

v'[]

il -0.01 0 0.01 o -0,008 | -0.004 0 0.004 0.008
. L L L] Il NN Il
- - - - e
-0.018994 0.018994 -0.008515 0.008515

Figure 3.1 v/- and v'-component of the eigenmode.

Task 3.5
g Verify that for the channel flow case :

o =22353 x 1073
w = +2.49892 x 107!

and that the eigenmodes match those given in figures 3.1.

This values are in accordance with the literature, in fact in Canuto et al., 1988 suggests
2.23497 x 1073 and 2.4989154 x 10! for growth and frequency, respectively.

Tip
| Note that Nektar++ implements also the modified Arnoldi algorithm. You can
Y. try to use it for this test case by setting Driver to ModifiedArnoldi. You can
@ now try to re-run the simulation and verify that the modified Arnoldi algorithm

provides a results that is consistent with the previous computation obtained
with Arpack.

3.2 Coupled Linearised Navier-Stokes algorithm

Note: Remember to use the files provided in the folder Stability/Coupled for this
case.

3.2 Coupled Linearised Navier-Stokes algorithm 19

It is possible to perform the same stability analysis using a different method based on the
Coupled Linearised Navier-Stokes algorithm. This method requires the solution of the
full velocity-pressure system, meaning that the velocity matrix system and the pressure
system are coupled, in contrast to the velocity correction scheme/splitting schemes.

Inside the folder $NEKTUTORIAL/stability there is a file called Channel-Coupled.xml
that contains all the necessary parameters that should be defined. In this case we will
specify the base flow through an analytical expression. Even in this case, the geometry,
the type and number of modes are the the same of the previous simulations.

Task 3.6
g Edit the file Channel-Coupled.xml:

Note: As before the bits to be completed are identified by .. .in this file.

e Set the SolverType property to CoupledLinearisedNS in order to solve
the linearised Navier-Stokes equations using Nektar + +’s coupled solver.

e the EQTYPE must be set to SteadyLinearisedNS and the Driver to
Arpack.

e Set the InitialVector property to Random to initialise the IRAM with a
random initial vector. In this case the function InitialConditions will
be ignored.

e To compute the eigenvalues with the largest magnitude, specify
LargestMag in the property ArpackProblemType.

It is important to note that the use of the coupled solver requires that only the velocity
component variables are specified, while the pressure is implicitly evaluated.

Task 3.7
f! Continue modifying Channel-Coupled.xml:

e It is necessary to set up the base flow. For the SteadyLinearisedNS cou-
pled solver, this is defined through a function called AdvectionVelocity.
The u component must be set up to 1 — y2, while the v-component to
ZEero.

For the coupled solver, it is also necessary to define the following additional tag outside
of the CONDITIONS tag:

1 <FORCING>

2 <FORCE TYPE= >
3 </FORCE>

4 </FORCING>

20 Chapter 3 Stability Analysis

This has already been set up in the XML file. This is necessary to tell Nektar++ to use
the previous solution as the right hand side vector for each Arnoldi iteration.

Task 3.8
é Now run the solver to compute the eigenvalues
$NEK/IncNavierStokesSolver Channel-Coupled.xml

The terminal screen should look like this:

Solver Type: Coupled Linearised NS

Arnoldi solver type : Arpack
Arpack problem type : LM
Single Fourier mode : false
Beta set to Zero : false
Shift (Real,Imag) : 0,0
Krylov-space dimension : 64
Number of vectors : 4

Max iterations : 500
Eigenvalue tolerance : 1le-06

Initial Conditions:

- Field u: 0 (default)

- Field v: 0 (default)
Matrix Setup Costs: 0.565916
Multilevel condensation: 0.098134

Inital vector : random

Iteration O, output: O, ido=-1
Writing: "Channel-Coupled.fld"
Iteration 20, output: O, ido=1
Writing: "Channel-Coupled.fld"
Iteration 40, output: 0, ido=1
Writing: "Channel-Coupled.fld"
Iteration 60, output: O, ido=1
Writing: "Channel-Coupled.fld"
Iteration 65, output: 0, ido=99

Converged in 65 iterations
Converged Eigenvalues: 4

Real Imaginary
EV: 0 -0.000328987 -0
Writing: "Channel-Coupled_eig_0.f1ld"
EVv: 1 -0.00131595 -0
Writing: "Channel-Coupled_eig_1.f1d"
Ev: 2 -0.00296088 -0

Writing: "Channel-Coupled_eig_2.f1d"

3.2 Coupled Linearised Navier-Stokes algorithm 21

EV: 3 -0.00526379 -0
Writing: "Channel-Coupled_eig_3.f1d"
L 2 error (variable u) : 2.58891

L inf error (variable u) : 1.00401

L 2 error (variable v) : 0.00276107
L inf error (variable v) : 0.0033678

Using the Stokes algorithm, we are computing the leading eigenvalue of the inverse of the
operator £~!. Therefore the eigenvalues of £ are the inverse of the computed values?.
However, it is interesting to note that these values are different from those calculated
with the Velocity Correction Scheme, producing an apparent inconsistency. However,
this can be explained considering that the largest eigenvalues associated to the operator
L correspond to the ones that are clustered near the origin of the complex plane if we
consider the spectrum of £~!. Therefore, eigenvalues with a smaller magnitude may
be present but are not associated with the largest-magnitude eigenvalue of operator L.
One solution is to consider a large Krylov dimension specified by kdim and the number
of eigenvalues to test using nvec. This will however take more iterations. Another
alternative is to use shifting but in this case it will make a real problem into a complex
one (we shall show an example later). Finally, another alternative is to search for the
eigenvalue with a different criterion, for example, the largest imaginary part.

Task 3.9
3 Set up the Solver Info tag ArpackProblemType to LargestImag and run the
simulation again.

Solver Type: Coupled Linearised NS

Arnoldi solver type : Arpack
Arpack problem type : LI
Single Fourier mode : false
Beta set to Zero : false
Shift (Real,Imag) : 0,0
Krylov-space dimension : 64
Number of vectors : 4

Max iterations : 500
Eigenvalue tolerance : 1le-06

Initial Conditions:
- Field u: 0 (default)
- Field v: 0 (default)
Matrix Setup Costs: 0.557085
Multilevel condensation: 0.101482
Inital vector : random

2L is the evolution operator du/dt = Lu

22 Chapter 3 Stability Analysis

Iteration 0, output: 0, ido=-1
Writing: "Channel-Coupled.fld"
Iteration 20, output: 0, ido=1
Writing: "Channel-Coupled.f1ld"
Iteration 40, output: O, ido=1
Writing: "Channel-Coupled.fld"
Iteration 60, output: O, ido=1
Writing: "Channel-Coupled.fld"
Iteration 65, output: 0, ido=99

Converged in 65 iterations
Converged Eigenvalues: 4

Real Imaginary
EV: O 0.00223509 0.249891
Writing: "Channel-Coupled_eig_0.f1d"
EVv: 1 0.00223509 -0.249891
Writing: "Channel-Coupled_eig_1.£f1d"
EV: 2 -0.0542748 0.300562
Writing: "Channel-Coupled_eig_2.f1d"
EV: 3 -0.0542748 -0.300562

Writing: "Channel-Coupled_eig_3.f1d"
L 2 error (variable u) : 2.58891

L inf error (variable u) : 1.00401

L 2 error (variable v) : 0.00276107
L inf error (variable v) : 0.0033678

In this case, it is easy to to see that the eigenvalues of the evolution operator £ are the
same ones computed in the previous section with the time-stepping approach (apart from
round-off errors). It is interesting to note that this method converges much quicker that
the time-stepping algorithm. However, building the coupled matrix that allows us to
solve the problem can take a non-negligible computational time for more complex cases.

3.3 Three-dimensional Channel flow

Now that we have presented the various stability-analysis tools present in Nektar++, we
conclude showing the capabilities of the code in three spatial dimensions. In the folder
$NEKTUTORIAL/stability3D there are the files that are required for the stability analysis
- note that we do not show the geometry and the base flow generation (we will be using the
exact solution) since we have already presented these features in the previous tutorials.

The case considered is similar to the channel flow presented in section 77. However,
in this case the Reynolds number is set to 10000. In order to run a three-dimensional
simulation, we can either run the full 3D solver by creating a 3D geometry or use a
2D geometry and specify the use of a Fourier expansion in the third direction. The
last method is also known as 3D homogenous 1D approach. Here we will present this
approach.

3.3 Three-dimensional Channel flow 23

Specifically, we use a 2D geometry and we add the various parameters necessary to use
the Fourier expansion. Note that in the 2D plane we will use a MODIFIED expansion basis
with NUMMODES=11.

Task 3.10
g In the file $NEKTUTORIAL/stability3D/PPF_R10000_3D.xml , make the following
changes:

e Add a SOLVERINFO tag called HOMOGENEQUS and set it to 1D.

e Add two additional SOLVERINFO tags called ModeType and BetaZero and
set them to SingleMode and True, respectively.

e Add two PARAMETERS called HomModesZ and LZ and set them to 2 and 1,
respectively.

e Add two other PARAMETERS called realShift and imagShift and set
them to 0.003 and 0.2, respectively.

Now run the solver - the terminal screen should look like this:

Solver Type: Coupled Linearised NS

Arnoldi solver type : Modified Arnoldi
Single Fourier mode : true

Beta set to Zero : true (overrides LHom)
Shift (Real,Imag) : 0.003,0.2
Krylov-space dimension : 64

Number of vectors : 2

Max iterations : 500

Eigenvalue tolerance : 1le-06

Initial Conditions:

- Field u: 0 (default)

- Field v: 0 (default)

- Field w: 0 (default)
Writing: "PPF_R10000_3D_0.chk"
Matrix Setup Costs: 1.97987
Multilevel condensation: 0.427631

Inital vector : random

Iteration: O
Iteration: 1 (residual : 4.89954)
Iteration: 2 (residual : 3.64295)
Iteration: 3 (residual : 2.54314)

Iteration: 20 (residual : 1.35156e-05)
Iteration: 21 (residual : 1.64786e-06)

24 Chapter 3 Stability Analysis

Iteration: 22 (residual : 1.92473e-07)
Writing: "PPF_R10000_3D.f1ld"

L 2 error (variable u) : 3.01846

L inf error (variable u) : 2.25716

L 2 error (variable v) : 1.8469

L inf error (variable v) : 0.985775

L 2 error (variable w) : 5.97653e-06

L inf error (variable w) : 1.2139e-05

EV: O 0.518448 -26.6405 0.00373022 0.162477
Writing: "PPF_R10000_3D_eig_0.fld"

EV: 1 0.518448 26.6405 0.00373022 0.237523

Writing: "PPF_R10000_3D_eig_1.f1d"

Warning: Level O assertion violation

Complex Shift applied. Need to implement Ritz re-evaluation of eigenvalue.
Only one half of complex value will be correct

Now convert the two files containing the eigenvectors and visualise them in Paraview or
Vislt - the solution should look like the one below:

V]

u'l]

f -0.04 -0.02 0O 0.02 0.04 -0.02 ~ -0.01 0 0.01 ~ 0.02
2 me ‘HMHMW mm‘“ ¥ MHH‘HMHHHHHHH \H
-0.059857 0.059857 -0.026082 0.026082

Figure 3.2 u/- and v'-component of the eigenmode.

Task 3.11

f! The complete input file $NEKTUTORIAL/stability3D/PPF_R15000_3D.xml has
been provided to show a full 3D unstable eigenmode where is not zero. Run
this file and see that you obtain the eigenvalue 0.00248682 + —0.158348:

Task 3.12
f! You can now see what the difference when not using an imaginary shifting. Set
the parameters imagShift=0, kdim=384 and nvec=196.

This should take 195 iterations to complete and hidden in the list of
eigenvalues should be the unstable values 0.00248662 + 0.158347:. They were
eigevalues 152 and 153 in my run.

3.4 Solutions 25

3.4 Solutions

Completed solutions to the tutorials are available in the completed directory.

This completes the tutorial.

	Introduction
	Mesh generation

	Computation of the base flow
	Stability Analysis
	Velocity Correction Scheme
	Coupled Linearised Navier-Stokes algorithm
	Three-dimensional Channel flow
	Solutions

