
Advection Solver

Tutorials
November 9, 2025

Department of Aeronautics, Imperial College London, UK
Scientific Computing and Imaging Institute, University of Utah, USA

2

Chapter 1
Introduction

Welcome to the tutorial of the Advection problem using the Advection-Diffusion-Reaction
(ADR) Solver in the Nektar++ framework. This tutorial is aimed to show the main
features of the ADR solver in a simple manner. If you have not already downloaded and
installed Nektar++, please do so by visiting nektar.info, where you can also find the
User-Guide with the instructions to install the library.

This tutorial requires:

• Nektar++ ADRSolver and pre- and post-processing tools,

• the open-source mesh generator Gmsh,

• the visualisation tool Paraview or VisIt

1.1 Goals

After the completion of this tutorial, you will be familiar with:

• the generation of a simple mesh in Gmsh and its conversion into a Nektar++-
compatible format;

• the visualisation of the mesh in Paraview or VisIt

• the setup of the initial and boundary conditions, the parameters and the solver
settings;

• running a simulation with the ADR solver; and

• the post-processing of the data and the visualisation of the results in Paraview or
VisIt.

3

http://www.nektar.info
http://www.nektar.info/src/user-guide-5.9.0.pdf
http://geuz.org/gmsh/
http://www.paraview.org
https://wci.llnl.gov/simulation/computer-codes/visit/downloads

4 Chapter 1 Introduction

Task 1.1
Prepare for the tutorial. Make sure that you have:

• Installed and tested Nektar++ v5.9.0from a binary package, or compiled
it from source. By default binary packages will install all executables in
/usr/bin . If you compile from source they will be in the sub-directory
dist/bin of the build directory you created in the Nektar++ source
tree. We will refer to the directory containing the executables as $NEK
for the remainder of the tutorial.

• Downloaded the tutorial files: http://doc.nektar.info/tutorials/
5.9.0/basics/advection-diffusion/basics-advection-diffusion.
tar.gz
Unpack it using tar -xzvf basics-advection-diffusion.tar.gz to
produce a directory basics-advection-diffusion with subdirectories
called tutorial and complete .

We will refer to the tutorial directory as $NEKTUTORIAL .
The tutorial folder contains:

– a Gmsh file to generate the mesh, ADR_mesh.geo ;
– a .msh file containing the mesh in Gmsh format, ADR_mesh.msh ;

Task 1.2
Additionally, you should also install

• a visualization package capable of reading VTK files, such as ParaView
(which can be downloaded from here) or VisIt (downloaded from here).
Alternatively, you can generate Tecplot formatted .dat files for use with
Tecplot.

1.2 Background

The ADR solver can solve various problems, including the unsteady advection, unsteady
diffusion, unsteady advection diffusion equation, etc. For a more detailed description of
this solver, please refer to the User-Guide.

In this tutorial we focus on the unsteady advection equation
∂u

∂t
+ V · ∇u = 0, (1.1)

where u is the independent variable and V = [Vx Vy Vz] is the advection velocity. The
unsteady advection equation can be solved in one, two and three spatial dimensions. We
will here consider a two-dimensional problem, so that V = [Vx Vy].

http://doc.nektar.info/tutorials/5.9.0/basics/advection-diffusion/basics-advection-diffusion.tar.gz
http://doc.nektar.info/tutorials/5.9.0/basics/advection-diffusion/basics-advection-diffusion.tar.gz
http://doc.nektar.info/tutorials/5.9.0/basics/advection-diffusion/basics-advection-diffusion.tar.gz
http://www.paraview.org/download/
https://wci.llnl.gov/simulation/computer-codes/visit/downloads
http://www.nektar.info/src/user-guide-5.9.0.pdf

1.3 Problem description 5

1.3 Problem description

The problem we want to run consists of a given initial condition (which depends on x and
y) travelling in the x-direction at a constant advection velocity. To model this problem
we create a computational domain also referred to as mesh or grid (see section 2.1) on
which we apply the following two-dimensional function as initial condition and periodic
as well as time-dependent Dirichlet boundary conditions at the mesh boundaries

∂u

∂t
+ Vx

∂u

∂x
+ Vy

∂u

∂y
= 0,

u(x, y; t = 0) = sin(κx) cos(κy),

u(xb = [−1, 1], yb; t) = periodic,

u(xb, yb = [−1, 1]; t) = sin(κ(x − Vx t)) cos(κ(y − Vy t)),

(1.2)

where xb and yb represent the boundaries of the computational domain (see section 2.2),
Vx = 2, Vy = 0 and κ = 2π.

We successively setup the other parameters of the problem, such as the time-step, the
time-integration scheme, the I/O configuration, etc. (see section 2.2). We finally run
the solver (see section 3) and post-process the data in order to visualise the results (see
section 4).

Chapter 2
Pre-processing

As already mentioned to set up the problem we have two step. The first is setting up a
mesh in an input xml format consistent with Nektar++ as discussed in section 2.1. We
also need to configure the problem initial, boundary and parameters which are discussed
in 2.2.

2.1 Mesh generation

The first pre-processing step consists in generating the mesh in a Nektar++ compatible
format. One option to do this is to use the open-source mesh-generator Gmsh to first
create the geometry, that in our case is a square and successively the mesh. The mesh
format provided by Gmsh shown in Fig. (2.1) - i.e. .msh extension - is not consistent with
the Nektar++ solvers and, therefore, it needs to be converted. To do so, we need to run

Z

Y

XZ X

Y

Figure 2.1 Mesh generated by Gmsh.

the pre-processing routine called NekMesh within Nektar++. This routine requires two
line arguments, the mesh file generated by Gmsh, ADR_mesh.msh , and the name of the

6

2.1 Mesh generation 7

Nektar++-compatible mesh file that NekMesh will generate, for instance ADR_mesh.xml .
The command line for this step is

Task 2.1
Convert the .meh file into a Nektar++ input by calling
$NEK/NekMesh ADR_mesh.msh ADR_mesh.xml

or
$NEK/NekMesh ADR_mesh.msh ADR_mesh.xml:xml:uncompress

Note that by default the information is stored in Xml blocks of compressed data to
reduce the size of large meshes. The second command above tells the converter NekMesh
to write the file out in uncompressed format. The generated .xml mesh file is reported
below and can also be found in the completed directory. It contains 5 tags encapsulated
within the GEOMETRY tag, which describes the mesh. The first tag, VERTEX , contains the
spatial coordinates of the vertices of the various elements of the mesh. The second tag,
EDGE contains the lines connecting the vertices. The third tag, ELEMENT , defines the

elements (note that in this case we have both triangular - e.g. <T ID="0"> - as well as
quadrilateral - e.g. <Q ID="85"> - elements). The fourth tag, COMPOSITE , is constituted
by the physical regions of the mesh called composite, where the composites formed
by elements represent the solution sub-domains - i.e. the mesh sub-domains where we
want to solve the linear advection problem (note that we will use these composites to
define expansion bases on each sub-domain in section 2.2) - while the composites formed
by edges are the boundaries of the domain where we need to apply suitable boundary
conditions (note that we will use these composites to specify the boundary conditions in
section 2.2). Finally, the fifth tag, DOMAIN , formally specifies the overall solution domain
as the union of the three composites forming the three solution subdomains (note that
the specification of three subdomain - i.e. composites - in this case is necessary since they
are constituted by different element shapes). For additional details on the GEOMETRY tag
refer to the User-Guide.

1 <?xml version="1.0" encoding="utf−8" ?>
2 <NEKTAR>
3 <GEOMETRY DIM="2" SPACE="2">
4 <VERTEX>
5 <V ID="0">2.00000000e−01 −1.00000000e+00 0.00000000e+00</V>
6 <V ID="1">5.09667784e−01 −6.15240515e−01 0.00000000e+00</V>
7 ...
8 <V ID="68">−1.00000000e+00 1.25000000e−01 0.00000000e+00</V>
9 </VERTEX>

10 <EDGE>
11 <E ID="0"> 0 1 </E>
12 <E ID="1"> 1 2 </E>
13 ...
14 <E ID="153"> 40 68 </E>
15 </EDGE>
16 <ELEMENT>

http://www.nektar.info/src/user-guide-5.9.0.pdf

8 Chapter 2 Pre-processing

17 <T ID="0"> 0 1 2 </T>
18 <T ID="1"> 3 4 5 </T>
19 ...
20 <Q ID="85"> 146 93 153 151 </Q>
21 </ELEMENT>
22 <COMPOSITE>
23 <C ID="1"> T[0−30] </C>
24 <C ID="2"> Q[62−85] </C>
25 <C ID="3"> T[31−61] </C>
26 <C ID="100"> E[46,12,20,10,45] </C>
27 <C ID="200"> E[50,32,108,111,114,117,87,103] </C>
28 <C ID="300"> E[100,64,74,66,99] </C>
29 <C ID="400"> E[49,33,148,150,152−153,86,104] </C>
30 </COMPOSITE>
31 <DOMAIN> C[1,2,3] </DOMAIN>
32 </GEOMETRY>
33 </NEKTAR>

After having generated the mesh file in a Nektar++-compatible format, ADR_mesh.xml ,
we can visualise the mesh. This step can be done by using the following Nektar++
built-in post-processing routine:

Task 2.2
Convert the .xml file into a .vtu format by calling
$NEK/FieldConvert ADR_mesh.xml ADR_mesh.vtu

Alternatively a tecplot .dat file can be created by changing the extension of the
second file, i.e.
$NEK/FieldConvert ADR_mesh.xml ADR_mesh.dat

This will produce a ADR_mesh.vtu file which can be directly read by the open-source
visualisation tool called Paraview or VisIt. In Fig. 2.2 we show the mesh distribution for
the mesh considered in this tutorial, ADR_mesh.xml . Before configuring the input files,
if we want to use periodic boundary conditions, we need to make sure that the edges
of the two periodic boundaries (i.e. xb = [−1, 1], yb) are properly aligned. Gmsh and
the NekMesh routine within Nektar++ does not guarantee proper alignment. However,
NekMesh provides a module, called peralign , that enforces the reordering of pair of

edges (for more details refer to the User-Guide. We can apply this by using the following
command:

Task 2.3
Convert the .xml file into a .xml file with periodic edges aligned
$NEK/NekMesh -m peralign:surf1=200:surf2=400:dir=x ADR_mesh.xml
ADR_mesh_aligned.xml

http://www.nektar.info/src/user-guide-5.9.0.pdf

2.2 Configuring problem definitions 9

Figure 2.2 Mesh distribution with local polynomial subdivision

where -m peralign is selecting the module for aligning the edges which are specified by
surf1 and surf2 (their IDs in this case are 200 and 400) and dir is the direction to

which the two periodic edges are perpendicular (in this case x). Note that since we have
not used the extension :xml:uncompress the blocks of data in this file are now stored
in compressed format.

After having typed the last command, we have a mesh, ADR_mesh_aligned.xml , which
is fully compatible with Nektar++ and which allows us applying periodic boundary
conditions without encountering errors.

We can therefore now configure the conditions: initial conditions, boundary conditions,
parameters and solver settings.

2.2 Configuring problem definitions

To set the various problem parameters, the solver settings, initial and boundary conditions
and the expansion basese, we use the file called ADR_conditions.xml , which can be found
within the tutorial directory for this tutorial. This new file contains the CONDITIONS
tag where we can specify the parameters of the simulations, the solver settings, the initial
conditions, the boundary conditions and the exact solution and contains the EXPANSIONS
tag where we can specify the polynomial order to be used inside each element of the
mesh, the type of expansion bases and the type of points.

We begin to describe the ADR_conditions.xml file from the CONDITIONS tag, and in
particular from the boundary conditions, initial conditions and exact solution sections:

1 <CONDITIONS>
2 ...
3 ...
4 ...

10 Chapter 2 Pre-processing

5 <VARIABLES>
6 <V ID="0"> u </V>
7 </VARIABLES>
8
9 <BOUNDARYREGIONS>

10 <B ID="0"> C[100]
11 <B ID="1"> C[200]
12 <B ID="2"> C[300]
13 <B ID="3"> C[400]
14 </BOUNDARYREGIONS>
15
16 <BOUNDARYCONDITIONS>
17 <REGION REF="0">
18 <D VAR="u" USERDEFINEDTYPE="TimeDependent"
19 VALUE="sin(k∗(x−advx∗t))∗cos(k∗(y−advy∗t))" />
20 </REGION>
21 <REGION REF="1">
22 <P VAR="u" VALUE="[3]" />
23 </REGION>
24 <REGION REF="2">
25 <D VAR="u" USERDEFINEDTYPE="TimeDependent"
26 VALUE="sin(k∗(x−advx∗t))∗cos(k∗(y−advy∗t))" />
27 </REGION>
28 <REGION REF="3">
29 <P VAR="u" VALUE="[1]" />
30 </REGION>
31 </BOUNDARYCONDITIONS>
32
33 <FUNCTION NAME="InitialConditions">
34 <E VAR="u" VALUE="sin(k∗x)∗cos(k∗y)" />
35 </FUNCTION>
36
37 <FUNCTION NAME="AdvectionVelocity">
38 <E VAR="Vx" VALUE="advx" />
39 <E VAR="Vy" VALUE="advy" />
40 </FUNCTION>
41
42 <FUNCTION NAME="ExactSolution">
43 <E VAR="u" VALUE="sin(k∗(x−advx∗t))∗cos(k∗(y−advy∗t))" />
44 </FUNCTION>
45 </CONDITIONS>

In the above piece of .xml , we first need to specify the non-optional tag called VARIABLES
that sets the solution variable (in this case u).

The second tag that needs to be specified is BOUNDARYREGIONS through which the
user can specify the regions where to apply the boundary conditions. For instance,
<B ID="0"> C[100] indicates that composite 100 (which has been introduced in

section 2.1) has a boundary ID equal to 0. This boundary ID is successively used to
prescribe the boundary conditions.

The third tag is BOUNDARYCONDITIONS by which the boundary conditions are actually

2.2 Configuring problem definitions 11

specified for each boundary ID specified in the BOUNDARYREGIONS tag. The syntax
<D VAR="u" corresponds to a D irichlet boundary condition for the variable u (note

that in this case we used the additional tag USERDEFINEDTYPE="TimeDependent" which is
a special option when using time-dependent boundary conditions), while <P VAR="u"
corresponds to P eriodic boundary conditions. For additional details on the various
options possible in terms of boundary conditions refer to the User-Guide.

Finally, <FUNCTION NAME="InitialConditions"> allows the specification of the initial con-
ditions, <FUNCTION NAME="AdvectionVelocity"> specifies the advection velocities in both
the x- and y-direction (for this two-dimensional case) and is a non-optional parameters
for the unsteady advection equation and <FUNCTION NAME="ExactSolution"> permits us
to provide the exact solution, against which the L2 and L∞ errors are computed.

After having configured the VARIABLES tag, the initial and boundary conditions, the
advection velocity and the exact solution we can complete the tag CONDITIONS prescrib-
ing the parameters necessary (PARAMETERS), solver settings (SOLVERINFO), and time
integration scheme (TIMEINTEGRATIONSCHEME):

1 <CONDITIONS>
2 <PARAMETERS>
3 <P> FinTime = 1.0 </P>
4 <P> TimeStep = 0.001 </P>
5 <P> NumSteps = FinTime/TimeStep </P>
6 <P> IO_InfoSteps = 100 </P>
7 <P> advx = 2.0 </P>
8 <P> advy = 0.0 </P>
9 <P> k = 2∗PI </P>

10 </PARAMETERS>
11
12 <SOLVERINFO>
13 <I PROPERTY="EQTYPE" VALUE="UnsteadyAdvection" />
14 <I PROPERTY="Projection" VALUE="DisContinuous" />
15 <I PROPERTY="AdvectionType" VALUE="WeakDG" />
16 <I PROPERTY="UpwindType" VALUE="Upwind" />
17 </SOLVERINFO>
18
19 <TIMEINTEGRATIONSCHEME>
20 <METHOD> RungeKutta </METHOD>
21 <ORDER> 4 </ORDER>
22 </TIMEINTEGRATIONSCHEME>
23 ...
24 ...
25 ...

In the PARAMETERS tag, FinTime is the final physical time of the simulation, TimeStep

is the time-step, NumSteps is the number of steps, IO_InfoSteps is the step-interval
when some information about the simulation are printed to the screen, advx and advy

are the advection velocities Vx and Vy, respectively and k is the κ parameter. Note
that advx , advy and k are used in the boundary and initial conditions tags as well as
in the specification of the advection velocities. To output periodic checkpoint files every

http://www.nektar.info/src/user-guide-5.9.0.pdf

12 Chapter 2 Pre-processing

100 time steps, a Checkpoint filter is applied:

1 <FILTERS>
2 <FILTER TYPE="Checkpoint">
3 <PARAM NAME="OutputFrequency">100</PARAM>
4 </FILTER>
5 </FILTERS>

In the SOLVERINFO tag, EQTYPE is the type of equation to be solved, Projection is the
spatial projection operator to be used (which in this case is specified to be ‘DisContinuous’),
AdvectionType is the advection operator to be adopted (where the VALUE ‘WeakDG’

implies the use of a weak Discontinuous Galerkin technique), UpwindType is the numerical
flux to be used at the element interfaces when a discontinuous projection is used. For
additional solver-setting options refer to the User-Guide.

Finally, we need to specify the expansion bases we want to use in each of the three
composites or sub-domains (COMPOSITE="..") introduced in section 2.1:

1 <EXPANSIONS>
2 <E COMPOSITE="C[1]" NUMMODES="5" TYPE="MODIFIED" FIELDS="u" />
3 <E COMPOSITE="C[2]" NUMMODES="5" TYPE="MODIFIED" FIELDS="u" />
4 <E COMPOSITE="C[3]" NUMMODES="5" TYPE="MODIFIED" FIELDS="u" />
5 </EXPANSIONS>

In particular, for all the composites, COMPOSITE="C[i]" with i=1,2,3 we select identical
basis functions and polynomial order, where NUMMODES is the number of coefficients
we want to use for the basis functions (that is commonly equal to P+1 where P is
the polynomial order of the basis functions), TYPE allows selecting the basis functions
FIELDS is the solution variable of our problem and COMPOSITE are the mesh regions

created by Gmsh. For additional details on the EXPANSIONS tag refer to the User-Guide.

Task 2.4
Generate the file ADR_conditions.xml or copy it from the completed direc-
tory.

http://www.nektar.info/src/user-guide-5.9.0.pdf
http://www.nektar.info/src/user-guide-5.9.0.pdf

Chapter 3
Running the solver

Now that we have the mesh file compatible with Nektar++ and periodic bound-
ary conditions, ADR_mesh_aligned.xml , and we have completed the condition file,
ADR_conditions.xml , we can run the solver by using the following command:

Task 3.1
Run the ADRSolver using the command:
$NEK/ADRSolver ADR_mesh_aligned.xml ADR_conditions.xml

Note that we have written the mesh in a separate file from the conditions. This is
generally more efficient because it allows reopening just the condition file which is much
smaller in size than the mesh file (especially for large problems). However, we could
also have written both the mesh and the conditions in unique file and used the same
command as above for running the solver (in this case with just one file instead of two as
line argument).

As soon as the file finishes running, we should see the following screen output:

===
EquationType: UnsteadyAdvection
Session Name: ADR_mesh_aligned
Spatial Dim.: 2

Max SEM Exp. Order: 5
Expansion Dim.: 2
Riemann Solver: Upwind
Advection Type:

Projection Type: Discontinuous Galerkin
Advection: explicit
Diffusion: explicit
Time Step: 0.001

No. of Steps: 1000

13

14 Chapter 3 Running the solver

Checkpoints (steps): 100
Integration Type: RungeKutta4

==
Initial Conditions:

- Field u: sin(k*x)*cos(k*y)
Writing: "ADR_mesh_aligned_0.chk"
Steps: 100 Time: 0.1 CPU Time: 0.435392s
Writing: "ADR_mesh_aligned_1.chk"
Steps: 200 Time: 0.2 CPU Time: 0.430588s
Writing: "ADR_mesh_aligned_2.chk"
Steps: 300 Time: 0.3 CPU Time: 0.428503s
Writing: "ADR_mesh_aligned_3.chk"
Steps: 400 Time: 0.4 CPU Time: 0.428529s
Writing: "ADR_mesh_aligned_4.chk"
Steps: 500 Time: 0.5 CPU Time: 0.430142s
Writing: "ADR_mesh_aligned_5.chk"
Steps: 600 Time: 0.6 CPU Time: 0.429481s
Writing: "ADR_mesh_aligned_6.chk"
Steps: 700 Time: 0.7 CPU Time: 0.433232s
Writing: "ADR_mesh_aligned_7.chk"
Steps: 800 Time: 0.8 CPU Time: 0.431088s
Writing: "ADR_mesh_aligned_8.chk"
Steps: 900 Time: 0.9 CPU Time: 0.427919s
Writing: "ADR_mesh_aligned_9.chk"
Steps: 1000 Time: 1 CPU Time: 0.436098s
Writing: "ADR_mesh_aligned_10.chk"
Time-integration : 4.31097s
Writing: "ADR_mesh_aligned.fld"

Total Computation Time = 4s

L 2 error (variable u) : 0.00863475
L inf error (variable u) : 0.0390366

where the L2 and L inf errors are evaluated against the <FUNCTION NAME="ExactSolution">
provided in the ADR_conditions.xml file. To have a more detailed view on the solver
settings and parameters used, it is possible to use the -v option (which stands for
verbose) as follows:

Task 3.2
Rerun the ADRSolver with the verbose option:
$NEK/ADRSolver -v ADR_mesh_aligned.xml ADR_conditions.xml

The simulation has now produced 11 .chk binary files and a final .fld binary file
(which in this case is identical to the tenth .chk file). These binary files contain the
result of the simulation every 100 time-steps. This output interval has been chosen

Chapter 3 Running the solver 15

through the parameter IO_CheckSteps in ADR_conditions.xml , which was set equal to
100. Also, it is possible to note that every 100 time-steps the solver outputs the physical
time of the simulation and the CPU time required for doing 100 time-steps. The interval
of 100 time-steps is decided through the parameter IO_InfoSteps , which was also equal
to 100.

Chapter 4
Post-processing

Now that the simulation has been completed, we need to post-process the file in order to
visualise the results. In order to do so, we can use the built-in post-processing routines
within Nektar++. In particular, we can use the following command

Task 4.1
Convert the .xml and .chk files into a .vtu format by calling
$NEK/FieldConvert ADR_mesh_aligned.xml ADR_conditions.xml
ADR_mesh_aligned_0.chk ADR_mesh_aligned_0.vtu

which generates a .vtu file that is a readable format for the open-source package
Paraview. Note that we typically have to specify both the mesh .xml file and the
condition .xml file. We can now open the .vtu file just generated (which corresponds
to the initial condition, being the number ‘0’ .chk file) and visualise it with Paraview.
This produces the image in Fig. (4.1). It is possible to use the same post-processing

Figure 4.1 Initial solution

command for visualising the other .chk , thus monitoring the evolution of the simulation

16

Chapter 4 Post-processing 17

in time.

Chapter 5
Summary

You should be now familiar with the following topics:

• Generate a simple mesh in Gmsh and convert it in a Nektar++-compatible format;

• Visualise the mesh in Paraview;

• Setup the initial and boundary conditions, the parameters and the solver settings;

• Run the ADR solver; and

• Post-process the data in order to visualise results in Paraview.

5.1 Additional Exercises

1. Increase the polynomial order and plot the L2 error vs. the polynomial order in a
semilogarithmic scale.

2. Change the projection operator for a fixed polynomial order and look at the error.

3. Increase the time-step for a fixed polynomial order and look at the error.

4. If the solver is compiled with the MPI option, then try running the case in parallel
with mpirun -np 2 .

5. Change the Projection Operator to Continuous to see the same problem running
with a CG solver.

6. Change the solver type to AdvectionDiffusion and CG to change the problem type.
You also need to update the AdvectionType to NonConservative.

18

5.1 Additional Exercises 19

Tip
To check the additional settings and parameters that can be used for this solver,
check the folder: $NEK/solvers/ADRSolver/Tests/ where you can find several
tests associated to the ADR solver.

	Introduction
	Goals
	Background
	Problem description

	Pre-processing
	Mesh generation
	Configuring problem definitions

	Running the solver
	Post-processing
	Summary
	Additional Exercises

