
Numerical Differentiation

Tutorials
November 9, 2025

Department of Aeronautics, Imperial College London, UK
Scientific Computing and Imaging Institute, University of Utah, USA

2

Chapter 1
Introduction

Welcome to the tutorial on the fundamentals of the Nektar++ framework where we
will look at how to perform Differentiation using the Nektar++ LibUtilities library.
If you have not already downloaded and installed Nektar++, please do so by visiting
http://www.nektar.info, where you can also find the User-Guide with the instructions on
how to install the library.

This tutorial requires:

• Nektar++ compiled libraries and include files compiled from source so additional
code can be compiled with the framework libraries

Goals

After completing this tutorial, you should be familiar with:

• The concept of differentiation using classical Gauss and Gauss-Lobatto rules in a
standard interval ξ ∈ [−1, 1];

• Using the Nektar++ programming concepts of a NekMatrix, an Array, a PointsKey
and the PointsManager to generate Gaussian quadrature zeros and differentiation
matrices;

• Differentiating in the standard segment (ξ ∈ [−1, 1]) and quadrilateral region
(ξ ∈ [−1, 1] × [−1, 1]);

• The mathematical concept of mapping a general quadrilateral region to the standard
region, evaluating the jacobian of this mapping and using this to evaluate a derivative
in a general straight sided quadrilateral region.

3

http://www.nektar.info
http://www.nektar.info/src/user-guide-5.9.0.pdf

4 Chapter 1 Introduction

Task 1.1
Prepare for the tutorial. Make sure that you have:

• Installed and tested Nektar++ v5.9.0 compiled from source. We will
refer to the directory where you installed Nektar++ as $NEKDIST for the
remainder of the tutorial.
The tutorial folder also contains:

– CMakeList.txt
– LocDifferentiation2D.cpp
– StdDifferentiation1D.cpp
– StdDifferentiation2D.cpp

• Make a directory of your chosing, for example tutorial , and download
the tutorial files from http://doc.nektar.info/tutorials/5.9.0/
fundamentals/differentiation/fundamentals-differentiation.
tar.gz into this directory.

• Unpack the tutorial files by using

tar -xzvf fundamentals-differentiation.tar.gz

to produce a directory fundamentals-differentiation with subdirec-
tories called tutorial and complete .

• Change to the
fundamentals-differentiation/tutorial

directory and configure the tutorial examples for compilation by typing
the command

cmake -DCMAKE_PREFIX_PATH=$NEKDIST/build .

You should now see a file called Makefile in this directory.

• Change to the
$NEKDIST/tutorial/fundamentals-differentiation/complete

directory and configure the completed version of the tutorial examples
for compilation by again typing the command

cmake -DCMAKE_PREFIX_PATH=$NEKDIST/build

You should now see a file called Makefile in this directory.

http://doc.nektar.info/tutorials/5.9.0/fundamentals/differentiation/fundamentals-differentiation.tar.gz
http://doc.nektar.info/tutorials/5.9.0/fundamentals/differentiation/fundamentals-differentiation.tar.gz
http://doc.nektar.info/tutorials/5.9.0/fundamentals/differentiation/fundamentals-differentiation.tar.gz

Chapter 2
Differentiation

Assuming a polynomial approximation of the form:

uδ(x) =
P∑

p=0
ûpϕp(χ−1) =

P∑
p=0

ûpϕp(ξ),

where χ(ξ) is the mapping from the standard region ξ ∈ Ωs to the region containing x in
the interval [a, b], we can differentiate u(x) using the chain rule to obtain

duδ(ξ)
dx

= duδ(ξ)
dξ

dξ

dx
=

P∑
p=0

ûp
dϕp(ξ)

dξ

dξ

dx
.

The differentiation of uδ(x) is therefore dependent on evaluating dϕp(ξ)/dξ and dξ
dx . In

this section we shall consider the case where ϕp(ξ) is the Lagrange polynomial hp(ξ) and
discuss how to evaluate dϕp(ξ)/dξ. If χ(ξ) is an isoparametric mapping this technique
can also be used to evaluate dχ

dξ =
[

dξ
dx

]−1
. Differentiation of this form is often referred to

as differentiation in physical space or collocation differentiation.

If we assume that uδ(ξ) is a polynomial of order equal to or less than P [that is,
uδ(ξ) ∈ PP ([−1, 1])], then it can be exactly expressed in terms of Lagrange polynomials
hi(ξ) through a set of q nodal points ξi (0 ≤ i ≤ q − 1) as

u(ξ) =
q−1∑
i=0

u(ξi)hi(ξ), hi(ξ) =
Πq−1

j=0,j ̸=i(ξ − ξj)
Πq−1

j=0,j ̸=i(ξi − ξj)

where q ≥ P + 1. Therefore the derivative of u(ξ) can be represented as

du(ξ)
dξ

=
q−1∑
i=0

u(ξi)
d

dξ
hi(ξ).

Typically, we only require the derivative at the nodal points ξi which is given by

du(ξ)
dξ

∣∣∣∣
ξ=ξi

=
q−1∑
j=0

dij u(ξj),

5

6 Chapter 2 Differentiation

where
dij = dhj(ξ)

dξ

∣∣∣∣
ξ=ξi

.

An alternative representation of the Lagrange polynomial is

hi(ξ) = gq(ξ)
g′

q(ξi)(ξ − ξi)
, gq(ξ) =

q−1∏
j=0

(ξ − ξj).

Taking the derivative of hi(ξ) we obtain

dhi(ξ)
dξ

=
g′

q(ξ)(ξ − ξi) − gq(ξ)
g′

q(ξi)(ξ − ξi)2 .

Finally, noting that because numerator and denominator of this expression are zero as
ξ → ξi, and because Pq(ξi) = 0 by definition,

lim
ξ→ξi

dhi(ξ)
dξ

= lim
ξ→ξi

g′′
q (ξ)

2g′
q(ξ) =

g′′
q (ξi)

2g′
q(ξi)

so we can write dij as

dij =



g′
q(ξi)

g′
q(ξj)

1
(ξi − ξj) i ̸= j,

g′′
q (ξi)

2g′
q(ξi)

i = j.

(2.1)

Equation (2.1) is the general representation of the derivative of the Lagrange polynomials
evaluated at the nodal points ξi (0 ≤ i ≤ q − 1). To proceed further we need to know
specific information about the nodal points ξi which will allow us to deduce alternative
forms of g′

q(ξi) and g′′
q (ξi).

2.1 Legendre Formulae

The most common differentiation matrices dij are those corresponding to the Gauss-
Legendre quadrature points. In this section we illustrate the final form of the differential
matrices that correspond to the use of Gauss-Legendre, Gauss-Radau-Legendre, and
Gauss-Lobatto-Legendre quadrature points. Denoting by ξα,β

i,P the P zeros of the Jacobi
polynomial P α,β

P (ξ) such that

P α,β
P (ξα,β

i,P) = 0 i = 0, 1, . . . , P −1,

the derivative matrix dij used to evaluate du(ξ)
dξ at ξi, that is,

du(ξ)
dξ

∣∣∣∣
ξ=ξi

=
q−1∑
j=0

dij u(ξj),

2.1 Legendre Formulae 7

is defined as:

(1) Gauss-Legendre
ξi = ξ0,0

i,q

dij =



L′
q(ξi)

L′
q(ξj)(ξi − ξj) i ̸= j, 0 ≤ i, j ≤ q − 1

ξi

(1 − ξ2
i)

i = j

(2) Gauss-Radau-Legendre

ξi =
{

−1 i = 0
ξ0,1

i−1,q−1 i = 1, . . . , q − 1

dij =



−(q − 1)(q + 1)
4 i = j = 0

Lq−1(ξi)
Lq−1(ξj)

(1 − ξj)
(1 − ξi)

1
(ξi − ξj) i ̸= j, 0 ≤ i, j ≤ q − 1

1
2(1 − ξi)

1 ≤ i = j ≤ q − 1

(3) Gauss-Lobatto-Legendre

ξi =


−1 i = 0

ξ1,1
i−1,q−2 i = 1, . . . , q − 2

1 i = q − 1

dij =



−q(q − 1)
4 i = j = 0

Lq−1(ξi)
Lq−1(ξj)

1
(ξi − ξj) i ̸= j, 0 ≤ i, j ≤ q − 1

0 1 ≤ i = j ≤ q − 2

q(q − 1)
4 i = j = q − 1

In a similar way to the quadrature formulae the construction of the differen-
tiation matrices require the quadrature zeros to be determined numerically. Having
determined the zeros, the components of the differentiation matrix can be evaluated di-
rectly from the above formulae by generating the Legendre polynomial from the recursion
relationship.

Chapter 3
Computational Exercises

3.1 One dimensional differentiation in a standard segment

In this first exercise we will demonstrate how to differentiate the function f(ξ) = ξ7 in the
standard segment ξ ∈ [−1, 1] using Gaussian quadrature. The Gaussian quadrature zeros
and the differentiation matrix are coded in the LIbUtilities library and for future refer-
ence this can be found under the directory $NEKDIST/library/LibUtilities/Foundations/ .
For the following exercises we will access the zeros and differentiation matrix from the
PointsManager. The PointsManager is a type of map (or manager) which requires a
key defining known Gaussian quadrature types called PointsKey.

In the $NEKDIST/tutorial/fundamentals-differentiation/tutorial directory open
the file named StdDifferentiation1D.cpp . Look over the comments supplied in the
file which outline how to define the number of quadrature points to apply, the type of
Gaussian quadrature, a differentiation matrix and some arrays to hold the zeros and
solution. Finally a PointsKey is defined which is then used to obtain the zeros in an
array called quadZeros and the differentiation matrix in a pointer to a matrix called
derivMatrix .

Task 3.1
Implement a short block of code where you see the comments
“Write your code here” which evaluates the loop

du(ξ)
dξ

∣∣∣∣
ξ=ξi

=
q−1∑
j=0

dij u(ξj),

8

3.1 One dimensional differentiation in a standard segment 9

Tip
To access individual elements in MatrixSharedPtrType, the pointer must
first be dereferenced then accessed using the parantheses operator. This
should look like (*derivMatrix)(i, j). On the other hand, to access el-
ements in Array<OneD, NekDouble>, the bracket operator can be directly
used such as quadZerosDir1[i]. If the array is two-dimensional (Array<TwoD,
NekDouble>), elements would be accessed through quadDerivsDir1[i][j].

To compile your code type

make StdDifferentiation1D

in the tutorial directory. When your code compiles successfully1 then type

./StdDifferentiation1D

You should now get some output similar to

==
| DIFFERENTIATION IN A 1D STANDARD REGION |
==
Differentiate the function f(xi) = xi^7 in the
standard segment xi=[-1,1] using quadrature points

Q = 7: Error = 1.49647

Task 3.2
Evaluate the previous derivatives for a quadrature order of Q = Qmax where
Qmax = 8 is the number of quadrature points required for an exact evaluation
of the derivatives (calculate this value analytically). Verify that the error is
zero (up to numerical precision).

We can also use Gauss-Lobatto-Legendre type differentiation rather than Gauss-Legendre
type in the previous exercises. To do this we replace

L i b U t i l i t i e s : : PointsType quadPointsType =
L i b U t i l i t i e s : : eGaussGaussLegendre ;

with
1If you are unable to get your code to compile you can see a completed exercise in the

$NEKDIST/tutorial/fundamentals-differentiation/completed directory. The tutorial code is con-
tained within a #if WITHSOLUTION block

10 Chapter 3 Computational Exercises

L i b U t i l i t i e s : : PointsType quadPointsType =
L i b U t i l i t i e s : : eGaussLobattoLegendre ;

3.2 Two-dimensional differentiation in a standard and local region

3.2.1 Quadrilateral element in a standard region

A straightforward extension of the one-dimensional Gaussian rule is to the two-dimensional
standard quadrilateral region and similarly to the three-dimensional hexahedral region.
Differentiation in Q2 = {−1 ≤ ξ1, ξ2 ≤ 1} in the ξ1 direction is defined as

du(ξ1, ξ2)
dξ1

=
q1−1∑
i=0

q2−1∑
j=0

u(ξ1i, ξ2j) d

dξ1
(h1i(ξ1)h2j(ξ2))

where h1 and h2 are the polynomials associated respectively with coordinates ξ1 and ξ2.

Because h2 is not a function of ξ1, we can rewrite the formula as

du(ξ1, ξ2)
dξ1

=
q1−1∑
i=0

q2−1∑
j=0

u(ξ1i, ξ2j)h2j(ξ2) d

dξ1
h1i(ξ1). (3.1)

Typically, we only require the derivative at the nodal points (ξ1i, ξ2j). At these points, h2
has trivial values, i.e. unit value at ξ2j and null value at all other points. The summation
over j therefore drops and we are left with the same formula as in our one-dimensional
problem

du(ξ1, ξ2)
dξ1

∣∣∣∣
ξ=(ξ1i,ξ2j)

=
q1−1∑
k=0

d1ik u(ξ1k, ξ2j) (3.2)

where d1ik is the differentiation matrix in the ξ1 direction such that

d1ik = dh1k(ξ1)
dξ1

∣∣∣∣
ξ1=ξ1i

.

Likewise, the derivative with respect to ξ2 can be expressed by

du(ξ1, ξ2)
dξ2

∣∣∣∣
ξ=(ξ1i,ξ2j)

=
q2−1∑
k=0

d2jk u(ξ1i, ξ2k).

3.2 Two-dimensional differentiation in a standard and local region 11

Task 3.3
Differentiate the function f(ξ1, ξ2) = ξ7

1 ξ9
2 in the standard quadrilateral element

Q ∈ [−1, 1] × [−1, 1] using Gaussian quadrature points.
Using a series of one-dimensional Gaussian quadrature rules as outlined above
evaluate the derivative in each direction and for each quadrature point by
completing the first part of the code in the file StdDifferentiation2D.cpp
in the directory
$NekDist/tutorial/fundamentals-differentiation/tutorial .
The quadrature zeros and differentiation matrices in each of the coordinate
directions have already been setup and are initially set to q1 = 7, q2 = 9 using
a Gauss-Lobatto-Legendre quadrature rule. Complete the code by writing a
structure of loops which implement the two-dimensional Gaussian quadrature
rulea. The expected output is given below). Also verify that the error is zero
when q1 = 8, q2 = 10.
Recall that to compile the file you type
make StdDifferentiation2D

aIf you need help there is a completed version in the completed directory

When executing the tutorial with the quadrature order q1 = 7, q2 = 9 you should get an
output of the form:

===
| DIFFERENTIATION IN 2D ELEMENT in Standard Region |
===

Differentiate the function f(x1,x2) = (x1)^7*(x2)^9
on the standard quadrilateral element:

q1 = 7, q2 = 9: Error = 7.19196

3.2.2 General straight-sided quadrilateral element

For elemental shapes with straight sides a simple mapping may be constructed using a
linear mapping similar to the vertex modes of a hierarchical/modal expansion. For the
straight-sided quadrilateral with vertices labeled as shown in figure 3.1(b) the mapping
can be defined as:

xi = χi(ξ1, ξ2) = xA
i

(1 − ξ1)
2

(1 − ξ2)
2 + xB

i

(1 + ξ1)
2

(1 − ξ2)
2

+xD
i

(1 − ξ1)
2

(1 + ξ2)
2 + xC

i

(1 + ξ1)
2

(1 + ξ2)
2 . i = 1, 2 (3.3)

We denote an arbitrary quadrilateral region by Ωe which is a function of the global
Cartesian coordinate system (x1, x2) in two-dimensions. To differentiate in Ωe we

12 Chapter 3 Computational Exercises

Figure 3.1 To construct a C0 expansion from multiple elements of specified shapes (for example,
triangles or rectangles), each elemental region Ωe is mapped to a standard region Ωst in which all
local operations are evaluated.

transform this region into the standard region Ωst defined in terms of (ξ1, ξ2). We begin
with the basic definition of differentiation:

du(x1, x2)
dx1

=
q1−1∑
i=0

q2−1∑
j=0

u(x1i, x2j) d

dx1
(h1i(x1, x2)h2j(x1, x2))

Unlike differentiation in the standard region, both h1 and h2 are functions of both local
coordinates. The chain rule can be applied to obtain a system similar to the previous
exercise:

du(x1, x2)
dx1

=
q1−1∑
i=0

q2−1∑
j=0

u(x1i, x2j)[h2j(ξ2) dξ1
dx1

d

dξ1
h1i(ξ1)) + h1i(ξ1) dξ2

dx1

d

dξ2
h2j(ξ2))] (3.4)

where h1 and h2 are functions of ξ1 and ξ2 respectively only and where dξ2
dx1

and dξ1
dx1

come
from the inverse two-dimensional Jacobian matrix due to the transformation, defined as:

J−1
2D =


∂x1
∂ξ1

∂x1
∂ξ2

∂x2
∂ξ1

∂x2
∂ξ2


−1

=


∂ξ1
∂x1

∂ξ1
∂x2

∂ξ2
∂x1

∂ξ2
∂x2



As we have assumed that we know the form of the mapping [i.e., x1 = χ1(ξ1, ξ2),
x2 = χ2(ξ1, ξ2)] we can evaluate all the partial derivatives required to determine the
Jacobian matrix. If the elemental region is straight-sided then we have seen that a
mapping from (x1, x2) → (ξ1, ξ2) is given by equations (3.3).

3.2 Two-dimensional differentiation in a standard and local region 13

Equation (3.4) turns out to be similar to equation (3.1) in the standard region and can
be also rewritten in the style of equation (3.2):

du(x1, x2)
dx1

∣∣∣∣
x=(x1i,x2j)

= dξ1
dx1

∣∣∣∣
x=(x1i,x2j)

q1−1∑
k=0

d1ik u(x1k, x2j)

+ dξ2
dx1

∣∣∣∣
x=(x1i,x2j)

q2−1∑
k=0

d2jk u(x1i, x2k) (3.5)

Similarly to the differentiation in the standard region, derivatives with respect to the
other local coordinate can also be found by substituting dx2 for dx1. We can also note
that equation (3.2) is a particular case of equation (3.5) where dξ1

dx1
= 1 and dξ2

dx1
= 0. This

effectively corresponds to the situation where the local region has the same shape and
dimensions as the standard region (with the admission of a translation in the plane).

Task 3.4
We now consider how to differentiate the function f(x1, x2) = x7

1 x9
2 in a local

rectangular quadrilateral element. Consider the local quadrilateral element
with vertices

(xA
1 , xA

2) = (0, −1), (xB
1 , xB

2) = (1, −1),
(xC

1 , xC
2) = (1, 1), (xD

1 , xD
2) = (0, 0).

This is clearly similar to the previous exercise. However, as we are calculating
the derivatives of a function defined in a local element rather than in a reference
element, we have to take into account the geometry of the element. Therefore,
the implementation is altered in two ways:

1. The quadrature zeros should be transformed to local coordinates to
evaluate the function f(x1, x2) at the quadrature points.

2. Elements of the inverse Jacobian matrix of the transformation between
local and reference coordinates should be taken into account when evalu-
ating the derivatives.

In the file LocDifferentiation2D.cpp you are provided with the same set
up as the previous task but now with a definition of the coordinate mapping
included. Evaluate the expression for the Jacobian matrix analytically and find
its inverse. Then write a line of code in the loop for the Jacobian as indicated
by the comments “Write your code here” . When you have written your
expression you can compile the code with the command
make LocDifferentiation2D

Using the quadrature order specified in the file your output should look like:

14 Chapter 3 Computational Exercises

===
| DIFFERENTIATION IN 2D ELEMENT in Local Region |
===

Differentiate the function f(x1,x2) = x1^7 * x2^9
in a local quadrilateral element:

q1 = 8, q2 = 10: Average Error = 0.0346594

Advanced Task 3.5
As it turns out in the previous task, the average error is not equal to zero. Why
is that?
Try different values of q1 and q2 and plot the average error with respect to
these two parameters, either one by one or simultaneously. Why are the values
of q1max and q2max (at which the average error reaches computer precision)
different from those expected in the standard region?a

aHint: How can this be explained by the geometry of the local element?

Chapter 4
Summary

You should be now familiar with the following topics:

• Define an Array, a NekMatrix and a PointsKey in Nektar++.

• Use the PointsManager with a PointsKey to get hold of quadrature zeros and
differentiation matrices.

• Differentiate a polynomial function in the standard region ξ ∈ [−1, 1] using Gauss-
Gauss-Legendre and Gauss-Lobatto-Legendre quadrature.

• Extend the standard region to a standard quadrilateral region.

• Introduce a linear mapping from a general quadrilateral region to the standard
quadrilateral region. Evaluate the Jacobian of this mapping and evaluate derivatives
in a general straight sided quadrilateral region.

15

	Introduction
	Differentiation
	Legendre Formulae

	Computational Exercises
	One dimensional differentiation in a standard segment
	Two-dimensional differentiation in a standard and local region

	Summary

