Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
Functions
SplitModes.cpp File Reference
#include <cstdio>
#include <cstdlib>
#include <StdRegions/StdTriExp.h>
#include <SpatialDomains/MeshGraph.h>
Include dependency graph for SplitModes.cpp:

Go to the source code of this file.

Functions

int main (int argc, char *argv[])

Function Documentation

int main ( int  argc,
char *  argv[] 
)

Definition at line 9 of file SplitModes.cpp.

References ASSERTL0, Nektar::LibUtilities::eQuadrilateral, Nektar::LibUtilities::eTriangle, Nektar::LibUtilities::StdTriData::getNumberOfCoefficients(), Nektar::LibUtilities::Import(), Nektar::iterator, and Nektar::LibUtilities::Write().

{
if(argc != 2)
{
fprintf(stderr,"Usage: Splitmodes fieldfile \n");
exit(1);
}
//default meshgraph
//----------------------------------------------
// Import fieldfile2.
string fieldfile(argv[argc-1]);
vector<LibUtilities::FieldDefinitionsSharedPtr> fielddef;
vector<vector<NekDouble> > fielddata;
LibUtilities::Import(fieldfile,fielddef,fielddata);
//----------------------------------------------
ASSERTL0(fielddef[0]->m_numModes[2] > 1,"Expected Fourier field to have at least 2 modes");
ASSERTL0(fielddef[0]->m_numHomogeneousDir == 1,"Expected second fld to have one homogeneous direction");
int nmodes = fielddef[0]->m_numModes[2];
// take off modes from fielddef
vector<unsigned int> newNumModes;
newNumModes.push_back(fielddef[0]->m_numModes[0]);
newNumModes.push_back(fielddef[0]->m_numModes[1]);
vector<LibUtilities::BasisType> newBasis;
newBasis.push_back(fielddef[0]->m_basis[0]);
newBasis.push_back(fielddef[0]->m_basis[1]);
for(int i = 0; i < fielddata.size(); ++i)
{
fielddef[i]->m_numModes = newNumModes;
fielddef[i]->m_basis = newBasis;
fielddef[i]->m_numHomogeneousDir = 0;
}
for(int m = 0; m < nmodes; ++m)
{
vector<vector<NekDouble> > writedata;
// outfile
string outfile(argv[argc-1]);
string out = outfile.substr(0, outfile.find_last_of("."));
char num[16] ="";
sprintf(num,"%d",(m/2));
if(m%2 == 0)
{
out = out + "_mode_" + num + "_real.fld";
}
else
{
out = out + "_mode_" + num + "_imag.fld";
}
for(int i = 0; i < fielddata.size(); ++i)
{
vector<NekDouble> newdata;
// Determine the number of coefficients per element
int ncoeffs;
switch(fielddef[i]->m_shapeType)
{
ncoeffs = LibUtilities::StdTriData::getNumberOfCoefficients(fielddef[i]->m_numModes[0], fielddef[i]->m_numModes[1]);
break;
ncoeffs = fielddef[i]->m_numModes[0]*fielddef[i]->m_numModes[1];
break;
default:
ASSERTL0(false,"Shape not recognised");
break;
}
vec_iter = fielddata[i].begin();
for(int k = 0; k < fielddef[i]->m_fields.size(); ++k)
{
for(int n = 0; n < fielddef[i]->m_elementIDs.size(); ++n)
{
// Put orginal mode in here.
vec_iter += m*ncoeffs;
newdata.insert(newdata.end(),vec_iter,vec_iter+ncoeffs);
vec_iter += (nmodes-m)*ncoeffs;
}
}
writedata.push_back(newdata);
}
//-----------------------------------------------
// Write out datafile.
LibUtilities::Write(out.c_str(), fielddef, writedata);
//-----------------------------------------------
}
//----------------------------------------------
return 0;
}