Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
Public Member Functions | Private Member Functions | List of all members
Nektar::MultiRegions::ContField3DHomogeneous1D Class Reference

#include <ContField3DHomogeneous1D.h>

Inheritance diagram for Nektar::MultiRegions::ContField3DHomogeneous1D:
Inheritance graph
[legend]
Collaboration diagram for Nektar::MultiRegions::ContField3DHomogeneous1D:
Collaboration graph
[legend]

Public Member Functions

 ContField3DHomogeneous1D ()
 ContField3DHomogeneous1D (const LibUtilities::SessionReaderSharedPtr &pSession, const LibUtilities::BasisKey &HomoBasis, const NekDouble lhom, const bool useFFT, const bool dealiasing, const SpatialDomains::MeshGraphSharedPtr &graph2D, const std::string &variable, const bool CheckIfSingularSystem=false)
 ContField3DHomogeneous1D (const ContField3DHomogeneous1D &In)
 Copy constructor.
virtual ~ContField3DHomogeneous1D ()
 Destructor.
virtual void v_SmoothField (Array< OneD, NekDouble > &field)
- Public Member Functions inherited from Nektar::MultiRegions::DisContField3DHomogeneous1D
 DisContField3DHomogeneous1D ()
 DisContField3DHomogeneous1D (const LibUtilities::SessionReaderSharedPtr &pSession, const LibUtilities::BasisKey &HomoBasis, const NekDouble lhom, const bool useFFT, const bool dealiasing)
 DisContField3DHomogeneous1D (const LibUtilities::SessionReaderSharedPtr &pSession, const LibUtilities::BasisKey &HomoBasis, const NekDouble lhom, const bool useFFT, const bool dealiasing, const SpatialDomains::MeshGraphSharedPtr &graph2D, const std::string &variable)
 DisContField3DHomogeneous1D (const DisContField3DHomogeneous1D &In, const bool DeclarePlanesSetCoeffPhys=true)
 Copy constructor.
virtual ~DisContField3DHomogeneous1D ()
 Destructor.
void SetupBoundaryConditions (const LibUtilities::BasisKey &HomoBasis, const NekDouble lhom, SpatialDomains::BoundaryConditions &bcs, const std::string variable)
void EvaluateBoundaryConditions (const NekDouble time=0.0, const std::string varName="")
 This function evaluates the boundary conditions at a certaintime-level.
const Array< OneD, const
MultiRegions::ExpListSharedPtr > & 
GetBndCondExpansions ()
const Array< OneD, const
SpatialDomains::BoundaryConditionShPtr > & 
GetBndConditions ()
boost::shared_ptr< ExpList > & UpdateBndCondExpansion (int i)
Array< OneD,
SpatialDomains::BoundaryConditionShPtr > & 
UpdateBndConditions ()
void GetBoundaryToElmtMap (Array< OneD, int > &ElmtID, Array< OneD, int > &EdgeID)
 Set up a list of element ids and edge ids the link to the boundary conditions.
void GetBCValues (Array< OneD, NekDouble > &BndVals, const Array< OneD, NekDouble > &TotField, int BndID)
 This funtion extract form a vector containing a full 3D-homogenous-1D field the value associated with a specific boundary conditions. TotField is the full field contaning all the physical values BndVals is the vector where the boundary physical values are stored BndID is the identifier of the boundary region.
void NormVectorIProductWRTBase (Array< OneD, const NekDouble > &V1, Array< OneD, const NekDouble > &V2, Array< OneD, NekDouble > &outarray, int BndID)
 This function calculate the inner product of two vectors (V1 and V2) respect to the basis along a boundary region. outarray is the inner product result multiplied by the normal to the edge (specified by the BndID)
- Public Member Functions inherited from Nektar::MultiRegions::ExpList3DHomogeneous1D
 ExpList3DHomogeneous1D ()
 Default constructor.
 ExpList3DHomogeneous1D (const LibUtilities::SessionReaderSharedPtr &pSession, const LibUtilities::BasisKey &HomoBasis, const NekDouble lhom, const bool useFFT, const bool dealiasing)
 ExpList3DHomogeneous1D (const LibUtilities::SessionReaderSharedPtr &pSession, const LibUtilities::BasisKey &HomoBasis, const NekDouble lhom, const bool useFFT, const bool dealiasing, const SpatialDomains::MeshGraphSharedPtr &graph2D, const std::string &var="DefaultVar")
 Sets up a list of local expansions based on an input mesh.
 ExpList3DHomogeneous1D (const LibUtilities::SessionReaderSharedPtr &pSession, const LibUtilities::BasisKey &HomoBasis, const NekDouble lhom, const bool useFFT, const bool dealiasing, const SpatialDomains::ExpansionMap &expansions)
 Sets up a list of local expansions based on an mesh expansion.
 ExpList3DHomogeneous1D (const ExpList3DHomogeneous1D &In, const bool DeclarePlanesSetCoeffPhys=true)
 Copy constructor.
virtual ~ExpList3DHomogeneous1D ()
 Destructor.
void GetCoords (Array< OneD, NekDouble > &coord_0, Array< OneD, NekDouble > &coord_1=NullNekDouble1DArray, Array< OneD, NekDouble > &coord_2=NullNekDouble1DArray)
 This function calculates the coordinates of all the elemental quadrature points $\boldsymbol{x}_i$.
void GetCoords (const int eid, Array< OneD, NekDouble > &xc0, Array< OneD, NekDouble > &xc1, Array< OneD, NekDouble > &xc2)
- Public Member Functions inherited from Nektar::MultiRegions::ExpListHomogeneous1D
 ExpListHomogeneous1D ()
 Default constructor.
 ExpListHomogeneous1D (const LibUtilities::SessionReaderSharedPtr &pSession, const LibUtilities::BasisKey &HomoBasis, const NekDouble lz, const bool useFFT, const bool dealiasing)
 ExpListHomogeneous1D (const ExpListHomogeneous1D &In)
 Copy constructor.
virtual ~ExpListHomogeneous1D ()
 Destructor.
void Homogeneous1DTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool IsForwards, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
void HomogeneousFwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
void HomogeneousBwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
void DealiasedProd (const Array< OneD, NekDouble > &inarray1, const Array< OneD, NekDouble > &inarray2, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
LibUtilities::BasisSharedPtr GetHomogeneousBasis (void)
void PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2)
 This function discretely evaluates the derivative of a function $f(\boldsymbol{x})$ on the domain consisting of all elements of the expansion.
void PhysDeriv (Direction edir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d)
ExpListSharedPtrGetPlane (int n)
- Public Member Functions inherited from Nektar::MultiRegions::ExpList
 ExpList ()
 The default constructor.
 ExpList (const LibUtilities::SessionReaderSharedPtr &pSession)
 The default constructor.
 ExpList (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 The default constructor.
 ExpList (const ExpList &in, const bool DeclareCoeffPhysArrays=true)
 The copy constructor.
virtual ~ExpList ()
 The default destructor.
int GetNcoeffs (void) const
 Returns the total number of local degrees of freedom $N_{\mathrm{eof}}=\sum_{e=1}^{{N_{\mathrm{el}}}}N^{e}_m$.
int GetNcoeffs (const int eid) const
 Returns the total number of local degrees of freedom for element eid.
ExpansionType GetExpType (void)
 Returns the type of the expansion.
void SetExpType (ExpansionType Type)
 Returns the type of the expansion.
int EvalBasisNumModesMax (void) const
 Evaulates the maximum number of modes in the elemental basis order over all elements.
const Array< OneD, int > EvalBasisNumModesMaxPerExp (void) const
 Returns the vector of the number of modes in the elemental basis order over all elements.
int GetTotPoints (void) const
 Returns the total number of quadrature points m_npoints $=Q_{\mathrm{tot}}$.
int GetTotPoints (const int eid) const
 Returns the total number of quadrature points for eid's element $=Q_{\mathrm{tot}}$.
int GetNpoints (void) const
 Returns the total number of quadrature points m_npoints $=Q_{\mathrm{tot}}$.
int Get1DScaledTotPoints (const NekDouble scale) const
 Returns the total number of qudature points scaled by the factor scale on each 1D direction.
void SetWaveSpace (const bool wavespace)
 Sets the wave space to the one of the possible configuration true or false.
void SetModifiedBasis (const bool modbasis)
 Set Modified Basis for the stability analysis.
void SetPhys (int i, NekDouble val)
 Set the i th value of m_phys to value val.
bool GetWaveSpace (void) const
 This function returns the third direction expansion condition, which can be in wave space (coefficient) or not It is stored in the variable m_WaveSpace.
void SetPhys (const Array< OneD, const NekDouble > &inarray)
 Fills the array m_phys.
void SetPhysArray (Array< OneD, NekDouble > &inarray)
 Sets the array m_phys.
void SetPhysState (const bool physState)
 This function manually sets whether the array of physical values $\boldsymbol{u}_l$ (implemented as m_phys) is filled or not.
bool GetPhysState (void) const
 This function indicates whether the array of physical values $\boldsymbol{u}_l$ (implemented as m_phys) is filled or not.
NekDouble PhysIntegral (void)
 This function integrates a function $f(\boldsymbol{x})$ over the domain consisting of all the elements of the expansion.
NekDouble PhysIntegral (const Array< OneD, const NekDouble > &inarray)
 This function integrates a function $f(\boldsymbol{x})$ over the domain consisting of all the elements of the expansion.
void IProductWRTBase_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function calculates the inner product of a function $f(\boldsymbol{x})$ with respect to all {local} expansion modes $\phi_n^e(\boldsymbol{x})$.
void IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
void IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function calculates the inner product of a function $f(\boldsymbol{x})$ with respect to the derivative (in direction.
void FwdTrans_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function elementally evaluates the forward transformation of a function $u(\boldsymbol{x})$ onto the global spectral/hp expansion.
void FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
void MultiplyByElmtInvMass (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function elementally mulplies the coefficient space of Sin my the elemental inverse of the mass matrix.
void MultiplyByInvMassMatrix (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
void SmoothField (Array< OneD, NekDouble > &field)
 Smooth a field across elements.
void HelmSolve (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const FlagList &flags, const StdRegions::ConstFactorMap &factors, const StdRegions::VarCoeffMap &varcoeff=StdRegions::NullVarCoeffMap, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
 Solve helmholtz problem.
void LinearAdvectionDiffusionReactionSolve (const Array< OneD, Array< OneD, NekDouble > > &velocity, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const NekDouble lambda, CoeffState coeffstate=eLocal, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
 Solve Advection Diffusion Reaction.
void LinearAdvectionReactionSolve (const Array< OneD, Array< OneD, NekDouble > > &velocity, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const NekDouble lambda, CoeffState coeffstate=eLocal, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
 Solve Advection Diffusion Reaction.
void FwdTrans_BndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void BwdTrans_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function elementally evaluates the backward transformation of the global spectral/hp element expansion.
void BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
void ApplyGeomInfo ()
 Apply geometry information to each expansion.
void WriteTecplotHeader (std::ofstream &outfile, std::string var="")
void WriteTecplotZone (std::ofstream &outfile, int expansion=-1)
void WriteTecplotField (std::ofstream &outfile, int expansion=-1)
void WriteTecplotConnectivity (std::ofstream &outfile, int expansion=-1)
void WriteVtkHeader (std::ofstream &outfile)
void WriteVtkFooter (std::ofstream &outfile)
void WriteVtkPieceHeader (std::ofstream &outfile, int expansion)
void WriteVtkPieceFooter (std::ofstream &outfile, int expansion)
void WriteVtkPieceData (std::ofstream &outfile, int expansion, std::string var="v")
int GetCoordim (int eid)
 This function returns the dimension of the coordinates of the element eid.
void SetCoeff (int i, NekDouble val)
 Set the i th coefficiient in m_coeffs to value val.
void SetCoeffs (int i, NekDouble val)
 Set the i th coefficiient in m_coeffs to value val.
void SetCoeffsArray (Array< OneD, NekDouble > &inarray)
 Set the m_coeffs array to inarray.
const Array< OneD, const
NekDouble > & 
GetCoeffs () const
 This function returns (a reference to) the array $\boldsymbol{\hat{u}}_l$ (implemented as m_coeffs) containing all local expansion coefficients.
void ImposeDirichletConditions (Array< OneD, NekDouble > &outarray)
 Impose Dirichlet Boundary Conditions onto Array.
void FillBndCondFromField (void)
 Fill Bnd Condition expansion from the values stored in expansion.
void LocalToGlobal (void)
 Put the coefficients into global ordering using m_coeffs.
void GlobalToLocal (void)
 Put the coefficients into local ordering and place in m_coeffs.
NekDouble GetCoeff (int i)
 Get the i th value (coefficient) of m_coeffs.
NekDouble GetCoeffs (int i)
 Get the i th value (coefficient) of m_coeffs.
const Array< OneD, const
NekDouble > & 
GetPhys () const
 This function returns (a reference to) the array $\boldsymbol{u}_l$ (implemented as m_phys) containing the function $u^{\delta}(\boldsymbol{x})$ evaluated at the quadrature points.
NekDouble Linf (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &soln=NullNekDouble1DArray)
 This function calculates the $L_\infty$ error of the global spectral/hp element approximation.
NekDouble L2 (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &soln=NullNekDouble1DArray)
 This function calculates the $L_2$ error with respect to soln of the global spectral/hp element approximation.
NekDouble H1 (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &soln=NullNekDouble1DArray)
 Calculates the $H^1$ error of the global spectral/hp element approximation.
NekDouble Integral (const Array< OneD, const NekDouble > &inarray)
Array< OneD, const NekDoubleHomogeneousEnergy (void)
 This function calculates the energy associated with each one of the modesof a 3D homogeneous nD expansion.
void SetHomo1DSpecVanVisc (Array< OneD, NekDouble > visc)
 This function sets the Spectral Vanishing Viscosity in homogeneous1D expansion.
Array< OneD, const unsigned int > GetZIDs (void)
 This function returns a vector containing the wave numbers in z-direction associated with the 3D homogenous expansion. Required if a parellelisation is applied in the Fourier direction.
LibUtilities::TranspositionSharedPtr GetTransposition (void)
 This function returns the transposition class associaed with the homogeneous expansion.
NekDouble GetHomoLen (void)
 This function returns the Width of homogeneous direction associaed with the homogeneous expansion.
Array< OneD, const unsigned int > GetYIDs (void)
 This function returns a vector containing the wave numbers in y-direction associated with the 3D homogenous expansion. Required if a parellelisation is applied in the Fourier direction.
void PhysInterp1DScaled (const NekDouble scale, const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function interpolates the physical space points in inarray to outarray using the same points defined in the expansion but where the number of points are rescaled by 1DScale.
void PhysGalerkinProjection1DScaled (const NekDouble scale, const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function Galerkin projects the physical space points in inarray to outarray where inarray is assumed to be defined in the expansion but where the number of points are rescaled by 1DScale.
int GetExpSize (void)
 This function returns the number of elements in the expansion.
int GetNumElmts (void)
 This function returns the number of elements in the expansion which may be different for a homogeoenous extended expansionp.
const boost::shared_ptr
< LocalRegions::ExpansionVector
GetExp () const
 This function returns the vector of elements in the expansion.
LocalRegions::ExpansionSharedPtrGetExp (int n) const
 This function returns (a shared pointer to) the local elemental expansion of the $n^{\mathrm{th}}$ element.
LocalRegions::ExpansionSharedPtrGetExp (const Array< OneD, const NekDouble > &gloCoord)
 This function returns (a shared pointer to) the local elemental expansion containing the arbitrary point given by gloCoord.
int GetExpIndex (const Array< OneD, const NekDouble > &gloCoord, NekDouble tol=0.0, bool returnNearestElmt=false)
int GetExpIndex (const Array< OneD, const NekDouble > &gloCoords, Array< OneD, NekDouble > &locCoords, NekDouble tol=0.0, bool returnNearestElmt=false)
int GetCoeff_Offset (int n) const
 Get the start offset position for a global list of m_coeffs correspoinding to element n.
int GetPhys_Offset (int n) const
 Get the start offset position for a global list of m_phys correspoinding to element n.
int GetOffset_Elmt_Id (int n) const
 Get the element id associated with the n th consecutive block of data in m_phys and m_coeffs.
Array< OneD, NekDouble > & UpdateCoeffs ()
 This function returns (a reference to) the array $\boldsymbol{\hat{u}}_l$ (implemented as m_coeffs) containing all local expansion coefficients.
Array< OneD, NekDouble > & UpdatePhys ()
 This function returns (a reference to) the array $\boldsymbol{u}_l$ (implemented as m_phys) containing the function $u^{\delta}(\boldsymbol{x})$ evaluated at the quadrature points.
void PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d)
void Upwind (const Array< OneD, const Array< OneD, NekDouble > > &Vec, const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &Upwind)
void Upwind (const Array< OneD, const NekDouble > &Vn, const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &Upwind)
boost::shared_ptr< ExpList > & GetTrace ()
boost::shared_ptr
< AssemblyMapDG > & 
GetTraceMap (void)
const Array< OneD, const int > & GetTraceBndMap (void)
void GetNormals (Array< OneD, Array< OneD, NekDouble > > &normals)
void AddTraceIntegral (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
void AddTraceIntegral (const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
void AddFwdBwdTraceIntegral (const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &outarray)
void GetFwdBwdTracePhys (Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd)
void GetFwdBwdTracePhys (const Array< OneD, const NekDouble > &field, Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd)
void ExtractTracePhys (Array< OneD, NekDouble > &outarray)
void ExtractTracePhys (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void EvaluateBoundaryConditions (const NekDouble time=0.0, const std::string varName="", const NekDouble=NekConstants::kNekUnsetDouble, const NekDouble=NekConstants::kNekUnsetDouble)
void GeneralMatrixOp (const GlobalMatrixKey &gkey, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 This function calculates the result of the multiplication of a matrix of type specified by mkey with a vector given by inarray.
void GeneralMatrixOp_IterPerExp (const GlobalMatrixKey &gkey, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void SetUpPhysNormals ()
void GeneralGetFieldDefinitions (std::vector< LibUtilities::FieldDefinitionsSharedPtr > &fielddef, int NumHomoDir=0, Array< OneD, LibUtilities::BasisSharedPtr > &HomoBasis=LibUtilities::NullBasisSharedPtr1DArray, std::vector< NekDouble > &HomoLen=LibUtilities::NullNekDoubleVector, std::vector< unsigned int > &HomoZIDs=LibUtilities::NullUnsignedIntVector, std::vector< unsigned int > &HomoYIDs=LibUtilities::NullUnsignedIntVector)
const
NekOptimize::GlobalOptParamSharedPtr
GetGlobalOptParam (void)
map< int, RobinBCInfoSharedPtrGetRobinBCInfo ()
void GetPeriodicEntities (PeriodicMap &periodicVerts, PeriodicMap &periodicEdges, PeriodicMap &periodicFaces=NullPeriodicMap)
std::vector
< LibUtilities::FieldDefinitionsSharedPtr
GetFieldDefinitions ()
void GetFieldDefinitions (std::vector< LibUtilities::FieldDefinitionsSharedPtr > &fielddef)
void AppendFieldData (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata)
 Append the element data listed in elements fielddef->m_ElementIDs onto fielddata.
void AppendFieldData (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, Array< OneD, NekDouble > &coeffs)
 Append the data in coeffs listed in elements fielddef->m_ElementIDs onto fielddata.
void ExtractElmtDataToCoeffs (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, std::string &field, Array< OneD, NekDouble > &coeffs)
 Extract the data in fielddata into the coeffs using the basic ExpList Elemental expansions rather than planes in homogeneous case.
void ExtractCoeffsToCoeffs (const boost::shared_ptr< ExpList > &fromExpList, const Array< OneD, const NekDouble > &fromCoeffs, Array< OneD, NekDouble > &toCoeffs)
 Extract the data from fromField using fromExpList the coeffs using the basic ExpList Elemental expansions rather than planes in homogeneous case.
void ExtractDataToCoeffs (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, std::string &field, Array< OneD, NekDouble > &coeffs)
 Extract the data in fielddata into the coeffs.
boost::shared_ptr< ExpListGetSharedThisPtr ()
 Returns a shared pointer to the current object.
boost::shared_ptr
< LibUtilities::SessionReader
GetSession ()
 Returns the session object.
boost::shared_ptr
< LibUtilities::Comm
GetComm ()
 Returns the comm object.
SpatialDomains::MeshGraphSharedPtr GetGraph ()

Private Member Functions

virtual void v_ImposeDirichletConditions (Array< OneD, NekDouble > &outarray)
virtual void v_LocalToGlobal (void)
 Template method virtual forwarded for LocalToGlobal()
virtual void v_GlobalToLocal (void)
 Template method virtual forwarded for GlobalToLocal()
virtual void v_HelmSolve (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const FlagList &flags, const StdRegions::ConstFactorMap &factors, const StdRegions::VarCoeffMap &varcoeff, const Array< OneD, const NekDouble > &dirForcing)
 Solves the three-dimensional Helmholtz equation, subject to the boundary conditions specified.

Additional Inherited Members

- Public Attributes inherited from Nektar::MultiRegions::DisContField3DHomogeneous1D
Array< OneD, int > m_BCtoElmMap
 Storage space for the boundary to element and boundary to trace map. This member variable is really allocated just in case a boundary expansion recasting is required at the solver level. Otherwise is the 2 vectors are not filled up. If is needed all the funcitons whihc require to use this map do not have to recalculate it anymore.
Array< OneD, int > m_BCtoEdgMap
- Protected Member Functions inherited from Nektar::MultiRegions::DisContField3DHomogeneous1D
virtual void v_GetBoundaryToElmtMap (Array< OneD, int > &ElmtID, Array< OneD, int > &EdgeID)
virtual void v_GetBCValues (Array< OneD, NekDouble > &BndVals, const Array< OneD, NekDouble > &TotField, int BndID)
virtual void v_NormVectorIProductWRTBase (Array< OneD, const NekDouble > &V1, Array< OneD, const NekDouble > &V2, Array< OneD, NekDouble > &outarray, int BndID)
void SetUpDG ()
 Set up all DG member variables and maps.
virtual ExpListSharedPtrv_GetTrace ()
virtual AssemblyMapDGSharedPtrv_GetTraceMap ()
virtual const Array< OneD,
const
MultiRegions::ExpListSharedPtr > & 
v_GetBndCondExpansions (void)
virtual const Array< OneD,
const
SpatialDomains::BoundaryConditionShPtr > & 
v_GetBndConditions ()
virtual map< int,
RobinBCInfoSharedPtr
v_GetRobinBCInfo ()
virtual void v_ExtractTracePhys (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This method extracts the trace (edges in 2D) for each plane from the field inarray and puts the values in outarray.
virtual void v_ExtractTracePhys (Array< OneD, NekDouble > &outarray)
- Static Protected Member Functions inherited from Nektar::MultiRegions::ExpList
static
SpatialDomains::BoundaryConditionShPtr 
GetBoundaryCondition (const SpatialDomains::BoundaryConditionCollection &collection, unsigned int index, const std::string &variable)
- Protected Attributes inherited from Nektar::MultiRegions::DisContField3DHomogeneous1D
Array< OneD,
MultiRegions::ExpListSharedPtr
m_bndCondExpansions
 An object which contains the discretised boundary conditions.
ExpListSharedPtr m_trace
Array< OneD, int > m_traceBndMap
Array< OneD,
SpatialDomains::BoundaryConditionShPtr
m_bndConditions
 An array which contains the information about the boundary condition on the different boundary regions.

Detailed Description

Definition at line 47 of file ContField3DHomogeneous1D.h.

Constructor & Destructor Documentation

Nektar::MultiRegions::ContField3DHomogeneous1D::ContField3DHomogeneous1D ( void  )

Definition at line 45 of file ContField3DHomogeneous1D.cpp.

Nektar::MultiRegions::ContField3DHomogeneous1D::ContField3DHomogeneous1D ( const LibUtilities::SessionReaderSharedPtr pSession,
const LibUtilities::BasisKey HomoBasis,
const NekDouble  lhom,
const bool  useFFT,
const bool  dealiasing,
const SpatialDomains::MeshGraphSharedPtr graph2D,
const std::string &  variable,
const bool  CheckIfSingularSystem = false 
)

Definition at line 72 of file ContField3DHomogeneous1D.cpp.

References Nektar::MultiRegions::ExpList::GetExp(), Nektar::MultiRegions::ExpList::GetExpSize(), Nektar::MultiRegions::ExpList::m_exp, Nektar::MultiRegions::ExpList::m_globalOptParam, Nektar::MultiRegions::ExpList::m_graph, Nektar::MultiRegions::ExpListHomogeneous1D::m_planes, Nektar::MultiRegions::ExpList::m_session, Nektar::MultiRegions::ExpListHomogeneous1D::m_transposition, Nektar::MultiRegions::ExpList3DHomogeneous1D::SetCoeffPhys(), and Nektar::MultiRegions::DisContField3DHomogeneous1D::SetupBoundaryConditions().

:
DisContField3DHomogeneous1D(pSession,HomoBasis,lhom,useFFT,dealiasing)
{
int i,n,nel;
m_graph = graph2D;
// Plane zero (k=0 - cos) - singularaty check required for Poisson
// problems
pSession, graph2D, variable, false,
CheckIfSingularSystem);
pSession, graph2D, variable, false,
false);
for(n = 0; n < m_planes.num_elements(); ++n)
{
// Plane zero and one (k=0 - cos and sin) - singularaty check
// required for Poisson problems
if(m_transposition->GetK(n) == 0)
{
::AllocateSharedPtr(*plane_zero, graph2D, variable,
false, CheckIfSingularSystem);
}
else
{
// For k > 0 singularty check not required anymore -
// creating another ContField2D to avoid Assembly Map copy
// TODO: We may want to deal with it in a more efficient
// way in the future.
::AllocateSharedPtr(*plane_two, graph2D, variable,
false, false);
}
nel = m_planes[n]->GetExpSize();
for(i = 0; i < nel; ++i)
{
(*m_exp).push_back(m_planes[n]->GetExp(i));
}
}
nel = GetExpSize();
// Do not set up BCs if default variable
if(variable.compare("DefaultVar") != 0)
{
SetupBoundaryConditions(HomoBasis,lhom,bcs,variable);
}
}
Nektar::MultiRegions::ContField3DHomogeneous1D::ContField3DHomogeneous1D ( const ContField3DHomogeneous1D In)

Copy constructor.

Definition at line 50 of file ContField3DHomogeneous1D.cpp.

References Nektar::MultiRegions::ExpListHomogeneous1D::m_planes, and Nektar::MultiRegions::ExpList3DHomogeneous1D::SetCoeffPhys().

:
{
bool False = false;
ContField2DSharedPtr zero_plane =
boost::dynamic_pointer_cast<ContField2D> (In.m_planes[0]);
for(int n = 0; n < m_planes.num_elements(); ++n)
{
AllocateSharedPtr(*zero_plane,False);
}
}
Nektar::MultiRegions::ContField3DHomogeneous1D::~ContField3DHomogeneous1D ( )
virtual

Destructor.

Definition at line 68 of file ContField3DHomogeneous1D.cpp.

{
}

Member Function Documentation

void Nektar::MultiRegions::ContField3DHomogeneous1D::v_GlobalToLocal ( void  )
privatevirtual

Template method virtual forwarded for GlobalToLocal()

Definition at line 175 of file ContField3DHomogeneous1D.cpp.

References Nektar::MultiRegions::ExpListHomogeneous1D::m_planes.

{
for(int n = 0; n < m_planes.num_elements(); ++n)
{
m_planes[n]->GlobalToLocal();
}
};
void Nektar::MultiRegions::ContField3DHomogeneous1D::v_HelmSolve ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const FlagList flags,
const StdRegions::ConstFactorMap factors,
const StdRegions::VarCoeffMap varcoeff,
const Array< OneD, const NekDouble > &  dirForcing 
)
privatevirtual

Solves the three-dimensional Helmholtz equation, subject to the boundary conditions specified.

Definition at line 202 of file ContField3DHomogeneous1D.cpp.

References Nektar::StdRegions::eFactorLambda, Nektar::LibUtilities::eFourierHalfModeIm, Nektar::LibUtilities::eFourierHalfModeRe, Nektar::MultiRegions::eGlobal, Nektar::MultiRegions::eLocal, Nektar::eUseGlobal, Nektar::MultiRegions::ExpListHomogeneous1D::GetSpecVanVisc(), Nektar::MultiRegions::ExpListHomogeneous1D::HomogeneousFwdTrans(), Nektar::FlagList::isSet(), Nektar::MultiRegions::ExpListHomogeneous1D::m_homogeneousBasis, Nektar::MultiRegions::ExpListHomogeneous1D::m_lhom, Nektar::MultiRegions::ExpListHomogeneous1D::m_planes, Nektar::MultiRegions::ExpListHomogeneous1D::m_transposition, and Nektar::MultiRegions::ExpList::m_WaveSpace.

{
int n;
int cnt = 0;
int cnt1 = 0;
NekDouble beta;
Array<OneD, NekDouble> e_out;
Array<OneD, NekDouble> fce(inarray.num_elements());
// Fourier transform forcing function
{
fce = inarray;
}
else
{
HomogeneousFwdTrans(inarray, fce,
}
bool smode = false;
if (m_homogeneousBasis->GetBasisType() ==
m_homogeneousBasis->GetBasisType() ==
{
smode = true;
}
for(n = 0; n < m_planes.num_elements(); ++n)
{
if(n != 1 || m_transposition->GetK(n) != 0 || smode)
{
beta = 2*M_PI*(m_transposition->GetK(n))/m_lhom;
new_factors = factors;
// add in Homogeneous Fourier direction and SVV if turned on
new_factors[StdRegions::eFactorLambda] +=
beta*beta*(1+GetSpecVanVisc(n));
m_planes[n]->HelmSolve(fce + cnt,
e_out = outarray + cnt1,
flags, new_factors, varcoeff,
dirForcing);
}
cnt += m_planes[n]->GetTotPoints();
cnt1 += m_planes[n]->GetNcoeffs();
}
}
void Nektar::MultiRegions::ContField3DHomogeneous1D::v_ImposeDirichletConditions ( Array< OneD, NekDouble > &  outarray)
privatevirtual

Definition at line 147 of file ContField3DHomogeneous1D.cpp.

References Nektar::MultiRegions::ExpListHomogeneous1D::m_planes.

{
Array<OneD, NekDouble> tmp;
int ncoeffs = m_planes[0]->GetNcoeffs();
for(int n = 0; n < m_planes.num_elements(); ++n)
{
m_planes[n]->ImposeDirichletConditions(tmp = outarray +
n*ncoeffs);
}
}
void Nektar::MultiRegions::ContField3DHomogeneous1D::v_LocalToGlobal ( void  )
privatevirtual

Template method virtual forwarded for LocalToGlobal()

Definition at line 163 of file ContField3DHomogeneous1D.cpp.

References Nektar::MultiRegions::ExpListHomogeneous1D::m_planes.

{
for(int n = 0; n < m_planes.num_elements(); ++n)
{
m_planes[n]->LocalToGlobal();
}
};
void Nektar::MultiRegions::ContField3DHomogeneous1D::v_SmoothField ( Array< OneD, NekDouble > &  field)
virtual

This function smooth a field after some calculaitons which have been done elementally.

Parameters
fieldAn array containing the field in physical space

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 187 of file ContField3DHomogeneous1D.cpp.

References Nektar::MultiRegions::ExpListHomogeneous1D::m_planes.

{
int cnt = 0;
Array<OneD, NekDouble> tmp;
for(int n = 0; n < m_planes.num_elements(); ++n)
{
m_planes[n]->SmoothField(tmp = field + cnt);
cnt += m_planes[n]->GetTotPoints();
}
}