Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
Public Member Functions | Static Public Member Functions | Static Public Attributes | List of all members
Nektar::Utilities::ProcessWSS Class Reference

This processing module calculates the wall shear stress and adds it as an extra-field to the output file, and writes it to a surface output file. More...

#include <ProcessWSS.h>

Inheritance diagram for Nektar::Utilities::ProcessWSS:
Inheritance graph
[legend]
Collaboration diagram for Nektar::Utilities::ProcessWSS:
Collaboration graph
[legend]

Public Member Functions

 ProcessWSS (FieldSharedPtr f)
 
virtual ~ProcessWSS ()
 
virtual void Process (po::variables_map &vm)
 Write mesh to output file. More...
 
- Public Member Functions inherited from Nektar::Utilities::ProcessModule
 ProcessModule ()
 
 ProcessModule (FieldSharedPtr p_f)
 
 ProcessModule (MeshSharedPtr p_m)
 
- Public Member Functions inherited from Nektar::Utilities::Module
 Module (FieldSharedPtr p_f)
 
void RegisterConfig (string key, string value)
 Register a configuration option with a module. More...
 
void PrintConfig ()
 Print out all configuration options for a module. More...
 
void SetDefaults ()
 Sets default configuration options for those which have not been set. More...
 
bool GetRequireEquiSpaced (void)
 
void SetRequireEquiSpaced (bool pVal)
 
void EvaluateTriFieldAtEquiSpacedPts (LocalRegions::ExpansionSharedPtr &exp, const Array< OneD, const NekDouble > &infield, Array< OneD, NekDouble > &outfield)
 
 Module (MeshSharedPtr p_m)
 
virtual void Process ()=0
 
void RegisterConfig (string key, string value)
 
void PrintConfig ()
 
void SetDefaults ()
 
MeshSharedPtr GetMesh ()
 
virtual void ProcessVertices ()
 Extract element vertices. More...
 
virtual void ProcessEdges (bool ReprocessEdges=true)
 Extract element edges. More...
 
virtual void ProcessFaces (bool ReprocessFaces=true)
 Extract element faces. More...
 
virtual void ProcessElements ()
 Generate element IDs. More...
 
virtual void ProcessComposites ()
 Generate composites. More...
 
virtual void ClearElementLinks ()
 

Static Public Member Functions

static boost::shared_ptr< Modulecreate (FieldSharedPtr f)
 Creates an instance of this class. More...
 

Static Public Attributes

static ModuleKey className
 

Additional Inherited Members

- Protected Member Functions inherited from Nektar::Utilities::Module
 Module ()
 
void ReorderPrisms (PerMap &perFaces)
 Reorder node IDs so that prisms and tetrahedra are aligned correctly. More...
 
void PrismLines (int prism, PerMap &perFaces, set< int > &prismsDone, vector< ElementSharedPtr > &line)
 
- Protected Attributes inherited from Nektar::Utilities::Module
FieldSharedPtr m_f
 Field object. More...
 
map< string, ConfigOptionm_config
 List of configuration values. More...
 
bool m_requireEquiSpaced
 
MeshSharedPtr m_mesh
 Mesh object. More...
 

Detailed Description

This processing module calculates the wall shear stress and adds it as an extra-field to the output file, and writes it to a surface output file.

Definition at line 50 of file ProcessWSS.h.

Constructor & Destructor Documentation

Nektar::Utilities::ProcessWSS::ProcessWSS ( FieldSharedPtr  f)

Definition at line 56 of file ProcessWSS.cpp.

References Nektar::Utilities::Module::m_config, and Nektar::Utilities::Module::m_f.

56  : ProcessModule(f)
57 {
58  m_config["bnd"] = ConfigOption(false,"All","Boundary to be extracted");
59  m_config["addnormals"] = ConfigOption(true,"NotSet","Add normals to output");
60  f->m_writeBndFld = true;
61  f->m_declareExpansionAsContField = true;
62  m_f->m_fldToBnd = false;
63 
64  f->m_declareAsNewField = true;
65 }
map< string, ConfigOption > m_config
List of configuration values.
FieldSharedPtr m_f
Field object.
Nektar::Utilities::ProcessWSS::~ProcessWSS ( )
virtual

Definition at line 67 of file ProcessWSS.cpp.

68 {
69 }

Member Function Documentation

static boost::shared_ptr<Module> Nektar::Utilities::ProcessWSS::create ( FieldSharedPtr  f)
inlinestatic

Creates an instance of this class.

Definition at line 54 of file ProcessWSS.h.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr().

54  {
56  }
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
void Nektar::Utilities::ProcessWSS::Process ( po::variables_map &  vm)
virtual

Write mesh to output file.

Implements Nektar::Utilities::Module.

Definition at line 71 of file ProcessWSS.cpp.

References ASSERTL0, Nektar::ParseUtils::GenerateOrderedVector(), Nektar::Utilities::Module::m_config, Nektar::Utilities::Module::m_f, Vmath::Neg(), Vmath::Smul(), Vmath::Vadd(), Vmath::Vsqrt(), Vmath::Vvtvp(), and Vmath::Zero().

72 {
73  if (m_f->m_verbose)
74  {
75  cout << "ProcessWSS: Calculating wall shear stress..." << endl;
76  }
77 
78  m_f->m_addNormals = m_config["addnormals"].m_beenSet;
79 
80  // Set up Field options to output boundary fld
81  string bvalues = m_config["bnd"].as<string>();
82 
83  if(bvalues.compare("All") == 0)
84  {
86  BndExp = m_f->m_exp[0]->GetBndCondExpansions();
87 
88  for(int i = 0; i < BndExp.num_elements(); ++i)
89  {
90  m_f->m_bndRegionsToWrite.push_back(i);
91  }
92  }
93  else
94  {
96  m_f->m_bndRegionsToWrite),"Failed to interpret range string");
97  }
98 
99  NekDouble kinvis = m_f->m_session->GetParameter("Kinvis");
100 
101  int i, j;
102  int spacedim = m_f->m_graph->GetSpaceDimension();
103  if ((m_f->m_fielddef[0]->m_numHomogeneousDir) == 1 ||
104  (m_f->m_fielddef[0]->m_numHomogeneousDir) == 2)
105  {
106  spacedim += m_f->m_fielddef[0]->m_numHomogeneousDir;
107  }
108 
109  int nfields = m_f->m_fielddef[0]->m_fields.size();
110  ASSERTL0(m_f->m_fielddef[0]->m_fields[0] == "u","Implicit assumption that input is in incompressible format of (u,v,p) or (u,v,w,p)");
111 
112  if (spacedim == 1)
113  {
114  ASSERTL0(false, "Error: wss for a 1D problem cannot "
115  "be computed");
116  }
117 
118  int newfields = spacedim + 1;
119  int nshear = spacedim + 1;
120  int nstress = spacedim*spacedim;
121  int ngrad = spacedim*spacedim;
122 
123  Array<OneD, Array<OneD, NekDouble> > velocity(nfields), grad(ngrad), fgrad(ngrad);
124  Array<OneD, Array<OneD, NekDouble> > stress(nstress), fstress(nstress);
125  Array<OneD, Array<OneD, NekDouble> > fshear(nshear);
126 
129 
130  // Extract original fields to boundary (for output)
131  for (int i = 0; i < m_f->m_exp.size(); ++i)
132  {
133  m_f->m_exp[i]->FillBndCondFromField();
134  }
135 
136  m_f->m_exp.resize(nfields + newfields);
137  string var = "u";
138  for(i = 0; i < newfields; ++i)
139  {
140  m_f->m_exp[nfields + i] = m_f->AppendExpList(m_f->m_fielddef[0]->m_numHomogeneousDir, var);
141  }
142 
143  if(spacedim == 2)
144  {
145  m_f->m_fielddef[0]->m_fields.push_back("Shear_x");
146  m_f->m_fielddef[0]->m_fields.push_back("Shear_y");
147  m_f->m_fielddef[0]->m_fields.push_back("Shear_mag");
148  }
149  else
150  {
151  m_f->m_fielddef[0]->m_fields.push_back("Shear_x");
152  m_f->m_fielddef[0]->m_fields.push_back("Shear_y");
153  m_f->m_fielddef[0]->m_fields.push_back("Shear_z");
154  m_f->m_fielddef[0]->m_fields.push_back("Shear_mag");
155  }
156 
157  // Loop over boundaries to Write
158  for(int b = 0; b < m_f->m_bndRegionsToWrite.size(); ++b)
159  {
160  int bnd = m_f->m_bndRegionsToWrite[b];
161  // Get expansion list for boundary and for elements containing this bnd
162  for(i = 0; i < newfields; i++)
163  {
164  BndExp[i] = m_f->m_exp[nfields + i]->UpdateBndCondExpansion(bnd);
165  }
166  for(i = 0; i < spacedim; i++)
167  {
168  m_f->m_exp[i]->GetBndElmtExpansion(bnd, BndElmtExp[i]);
169  }
170 
171  // Get number of points in expansions
172  int nqb = BndExp[0]->GetTotPoints();
173  int nqe = BndElmtExp[0]->GetTotPoints();
174 
175  // Initialise local arrays for the velocity gradients, and stress components
176  // size of total number of quadrature points for elements in this bnd
177  for(i = 0; i < ngrad; ++i)
178  {
179  grad[i] = Array<OneD, NekDouble>(nqe);
180  }
181 
182  for(i = 0; i < nstress; ++i)
183  {
184  stress[i] = Array<OneD, NekDouble>(nqe);
185  }
186 
187  // initialise arrays in the boundary
188  for(i = 0; i < nstress; ++i)
189  {
190  fstress[i] = Array<OneD, NekDouble>(nqb);
191  }
192 
193  for(i = 0; i < ngrad; ++i)
194  {
195  fgrad[i] = Array<OneD, NekDouble>(nqb);
196  }
197 
198  for(i = 0; i < nshear; ++i)
199  {
200  fshear[i] = Array<OneD, NekDouble>(nqb, 0.0);
201  }
202 
203  //Extract Velocities
204  for(i = 0; i < spacedim; ++i)
205  {
206  velocity[i] = BndElmtExp[i]->GetPhys();
207  }
208 
209  //Compute gradients (velocity correction scheme method)
210  for(i = 0; i < spacedim; ++i)
211  {
212  if (spacedim == 2)
213  {
214  BndElmtExp[i]->PhysDeriv(velocity[i],grad[i*spacedim+0],
215  grad[i*spacedim+1]);
216  }
217  else
218  {
219  BndElmtExp[i]->PhysDeriv(velocity[i],grad[i*spacedim+0],
220  grad[i*spacedim+1],
221  grad[i*spacedim+2]);
222  }
223  }
224 
225  //Compute stress component terms tau_ij = mu*(u_i,j + u_j,i)
226  for(i = 0; i < spacedim; ++i)
227  {
228  for(j = 0; j < spacedim; ++j)
229  {
230  Vmath::Vadd(nqe, grad[i*spacedim+j], 1,
231  grad[j*spacedim+i], 1,
232  stress[i*spacedim+j], 1);
233 
234  Vmath::Smul(nqe, kinvis, stress[i*spacedim+j], 1,
235  stress[i*spacedim+j], 1);
236  }
237  }
238 
239  // Get boundary stress values.
240  for(j = 0; j < nstress; ++j)
241  {
242  m_f->m_exp[0]->ExtractElmtToBndPhys(bnd, stress[j],fstress[j]);
243  }
244 
245  //Get normals
247  m_f->m_exp[0]->GetBoundaryNormals(bnd, normals);
248  // Reverse normals, to get correct orientation for the body
249  for(i = 0; i < spacedim; ++i)
250  {
251  Vmath::Neg(nqb, normals[i], 1);
252  }
253 
254  //calculate wss, and update coeffs in the boundary expansion
255  // S = tau_ij * n_j
256  for(i = 0; i < spacedim; ++i)
257  {
258  for(j = 0; j < spacedim; ++j)
259  {
260  Vmath::Vvtvp(nqb,normals[j],1,fstress[i*spacedim+j],1,
261  fshear[i],1,
262  fshear[i],1);
263  }
264  }
265 
266  // T = S - (S.n)n
267  for(i = 0; i < spacedim; ++i)
268  {
269  Vmath::Vvtvp(nqb,normals[i],1,fshear[i],1,
270  fshear[nshear-1],1,
271  fshear[nshear-1],1);
272  }
273  Vmath::Smul(nqb, -1.0, fshear[nshear-1], 1, fshear[nshear-1], 1);
274 
275  for (i = 0; i < spacedim; i++)
276  {
277  Vmath::Vvtvp(nqb,normals[i], 1, fshear[nshear-1], 1,
278  fshear[i], 1,
279  fshear[i], 1);
280  BndExp[i]->FwdTrans(fshear[i],
281  BndExp[i]->UpdateCoeffs());
282  }
283 
284  // Tw
285  Vmath::Zero(nqb, fshear[nshear-1], 1);
286  for(i = 0; i < spacedim; ++i)
287  {
288  Vmath::Vvtvp(nqb,fshear[i],1,fshear[i],1,
289  fshear[nshear-1],1,
290  fshear[nshear-1],1);
291  }
292  Vmath::Vsqrt(nqb, fshear[nshear-1], 1, fshear[nshear-1], 1);
293  BndExp[nshear-1]->FwdTrans(fshear[nshear-1],
294  BndExp[nshear-1]->UpdateCoeffs());
295  }
296 
297 }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
static bool GenerateOrderedVector(const char *const str, std::vector< unsigned int > &vec)
Definition: ParseUtils.hpp:97
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
Definition: Vmath.cpp:394
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:428
map< string, ConfigOption > m_config
List of configuration values.
FieldSharedPtr m_f
Field object.
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:382
double NekDouble
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:359
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:285

Member Data Documentation

ModuleKey Nektar::Utilities::ProcessWSS::className
static
Initial value:
=
ProcessWSS::create, "Computes wall shear stress field.")

Definition at line 57 of file ProcessWSS.h.