Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
Public Member Functions | Static Public Member Functions | Static Public Attributes | Protected Member Functions | Friends | List of all members
Nektar::NavierStokesCFE Class Reference

#include <NavierStokesCFE.h>

Inheritance diagram for Nektar::NavierStokesCFE:
Inheritance graph
[legend]
Collaboration diagram for Nektar::NavierStokesCFE:
Collaboration graph
[legend]

Public Member Functions

virtual ~NavierStokesCFE ()
 
- Public Member Functions inherited from Nektar::CompressibleFlowSystem
virtual ~CompressibleFlowSystem ()
 Destructor for CompressibleFlowSystem class. More...
 
NekDouble GetStabilityLimit (int n)
 Function to calculate the stability limit for DG/CG. More...
 
Array< OneD, NekDoubleGetStabilityLimitVector (const Array< OneD, int > &ExpOrder)
 Function to calculate the stability limit for DG/CG (a vector of them). More...
 
- Public Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
virtual SOLVER_UTILS_EXPORT ~UnsteadySystem ()
 Destructor. More...
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Calculate the larger time-step mantaining the problem stable. More...
 
- Public Member Functions inherited from Nektar::SolverUtils::EquationSystem
virtual SOLVER_UTILS_EXPORT ~EquationSystem ()
 Destructor. More...
 
SOLVER_UTILS_EXPORT void SetUpTraceNormals (void)
 
SOLVER_UTILS_EXPORT void InitObject ()
 Initialises the members of this object. More...
 
SOLVER_UTILS_EXPORT void DoInitialise ()
 Perform any initialisation necessary before solving the problem. More...
 
SOLVER_UTILS_EXPORT void DoSolve ()
 Solve the problem. More...
 
SOLVER_UTILS_EXPORT void TransCoeffToPhys ()
 Transform from coefficient to physical space. More...
 
SOLVER_UTILS_EXPORT void TransPhysToCoeff ()
 Transform from physical to coefficient space. More...
 
SOLVER_UTILS_EXPORT void Output ()
 Perform output operations after solve. More...
 
SOLVER_UTILS_EXPORT NekDouble LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Linf error computation. More...
 
SOLVER_UTILS_EXPORT std::string GetSessionName ()
 Get Session name. More...
 
template<class T >
boost::shared_ptr< T > as ()
 
SOLVER_UTILS_EXPORT void ResetSessionName (std::string newname)
 Reset Session name. More...
 
SOLVER_UTILS_EXPORT
LibUtilities::SessionReaderSharedPtr 
GetSession ()
 Get Session name. More...
 
SOLVER_UTILS_EXPORT
MultiRegions::ExpListSharedPtr 
GetPressure ()
 Get pressure field if available. More...
 
SOLVER_UTILS_EXPORT void PrintSummary (std::ostream &out)
 Print a summary of parameters and solver characteristics. More...
 
SOLVER_UTILS_EXPORT void SetLambda (NekDouble lambda)
 Set parameter m_lambda. More...
 
SOLVER_UTILS_EXPORT void EvaluateFunction (Array< OneD, Array< OneD, NekDouble > > &pArray, std::string pFunctionName, const NekDouble pTime=0.0, const int domain=0)
 Evaluates a function as specified in the session file. More...
 
SOLVER_UTILS_EXPORT void EvaluateFunction (std::vector< std::string > pFieldNames, Array< OneD, Array< OneD, NekDouble > > &pFields, const std::string &pName, const NekDouble &pTime=0.0, const int domain=0)
 Populate given fields with the function from session. More...
 
SOLVER_UTILS_EXPORT void EvaluateFunction (std::vector< std::string > pFieldNames, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const std::string &pName, const NekDouble &pTime=0.0, const int domain=0)
 Populate given fields with the function from session. More...
 
SOLVER_UTILS_EXPORT void EvaluateFunction (std::string pFieldName, Array< OneD, NekDouble > &pArray, const std::string &pFunctionName, const NekDouble &pTime=0.0, const int domain=0)
 
SOLVER_UTILS_EXPORT std::string DescribeFunction (std::string pFieldName, const std::string &pFunctionName, const int domain)
 Provide a description of a function for a given field name. More...
 
SOLVER_UTILS_EXPORT void InitialiseBaseFlow (Array< OneD, Array< OneD, NekDouble > > &base)
 Perform initialisation of the base flow. More...
 
SOLVER_UTILS_EXPORT void SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 Initialise the data in the dependent fields. More...
 
SOLVER_UTILS_EXPORT void EvaluateExactSolution (int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 Evaluates an exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln, bool Normalised=false)
 Compute the L2 error between fields and a given exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, bool Normalised=false)
 Compute the L2 error of the fields. More...
 
SOLVER_UTILS_EXPORT Array
< OneD, NekDouble
ErrorExtraPoints (unsigned int field)
 Compute error (L2 and L_inf) over an larger set of quadrature points return [L2 Linf]. More...
 
SOLVER_UTILS_EXPORT void WeakAdvectionGreensDivergenceForm (const Array< OneD, Array< OneD, NekDouble > > &F, Array< OneD, NekDouble > &outarray)
 Compute the inner product $ (\nabla \phi \cdot F) $. More...
 
SOLVER_UTILS_EXPORT void WeakAdvectionDivergenceForm (const Array< OneD, Array< OneD, NekDouble > > &F, Array< OneD, NekDouble > &outarray)
 Compute the inner product $ (\phi, \nabla \cdot F) $. More...
 
SOLVER_UTILS_EXPORT void WeakAdvectionNonConservativeForm (const Array< OneD, Array< OneD, NekDouble > > &V, const Array< OneD, const NekDouble > &u, Array< OneD, NekDouble > &outarray, bool UseContCoeffs=false)
 Compute the inner product $ (\phi, V\cdot \nabla u) $. More...
 
f SOLVER_UTILS_EXPORT void AdvectionNonConservativeForm (const Array< OneD, Array< OneD, NekDouble > > &V, const Array< OneD, const NekDouble > &u, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wk=NullNekDouble1DArray)
 Compute the non-conservative advection. More...
 
SOLVER_UTILS_EXPORT void WeakDGAdvection (const Array< OneD, Array< OneD, NekDouble > > &InField, Array< OneD, Array< OneD, NekDouble > > &OutField, bool NumericalFluxIncludesNormal=true, bool InFieldIsInPhysSpace=false, int nvariables=0)
 Calculate the weak discontinuous Galerkin advection. More...
 
SOLVER_UTILS_EXPORT void WeakDGDiffusion (const Array< OneD, Array< OneD, NekDouble > > &InField, Array< OneD, Array< OneD, NekDouble > > &OutField, bool NumericalFluxIncludesNormal=true, bool InFieldIsInPhysSpace=false)
 Calculate weak DG Diffusion in the LDG form. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n)
 Write checkpoint file of m_fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write checkpoint file of custom data fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_BaseFlow (const int n)
 Write base flow file of m_fields. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname)
 Write field data to the given filename. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write input fields to the given filename. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields)
 Input field data from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFldToMultiDomains (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const int ndomains)
 Input field data from the given file to multiple domains. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, std::vector< std::string > &fieldStr, Array< OneD, Array< OneD, NekDouble > > &coeffs)
 Output a field. Input field data into array from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, MultiRegions::ExpListSharedPtr &pField, std::string &pFieldName)
 Output a field. Input field data into ExpList from the given file. More...
 
SOLVER_UTILS_EXPORT void ScanForHistoryPoints ()
 Builds map of which element holds each history point. More...
 
SOLVER_UTILS_EXPORT void WriteHistoryData (std::ostream &out)
 Probe each history point and write to file. More...
 
SOLVER_UTILS_EXPORT void SessionSummary (SummaryList &vSummary)
 Write out a session summary. More...
 
SOLVER_UTILS_EXPORT Array
< OneD,
MultiRegions::ExpListSharedPtr > & 
UpdateFields ()
 
SOLVER_UTILS_EXPORT
LibUtilities::FieldMetaDataMap
UpdateFieldMetaDataMap ()
 Get hold of FieldInfoMap so it can be updated. More...
 
SOLVER_UTILS_EXPORT NekDouble GetFinalTime ()
 Return final time. More...
 
SOLVER_UTILS_EXPORT int GetNcoeffs ()
 
SOLVER_UTILS_EXPORT int GetNcoeffs (const int eid)
 
SOLVER_UTILS_EXPORT int GetNumExpModes ()
 
SOLVER_UTILS_EXPORT const
Array< OneD, int > 
GetNumExpModesPerExp ()
 
SOLVER_UTILS_EXPORT int GetNvariables ()
 
SOLVER_UTILS_EXPORT const
std::string 
GetVariable (unsigned int i)
 
SOLVER_UTILS_EXPORT int GetTraceTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTraceNpoints ()
 
SOLVER_UTILS_EXPORT int GetExpSize ()
 
SOLVER_UTILS_EXPORT int GetPhys_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetCoeff_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTotPoints (int n)
 
SOLVER_UTILS_EXPORT int GetNpoints ()
 
SOLVER_UTILS_EXPORT int GetNumElmVelocity ()
 
SOLVER_UTILS_EXPORT int GetSteps ()
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep ()
 
SOLVER_UTILS_EXPORT void CopyFromPhysField (const int i, Array< OneD, NekDouble > &output)
 
SOLVER_UTILS_EXPORT void CopyToPhysField (const int i, Array< OneD, NekDouble > &output)
 
SOLVER_UTILS_EXPORT void SetSteps (const int steps)
 
SOLVER_UTILS_EXPORT void ZeroPhysFields ()
 
SOLVER_UTILS_EXPORT void FwdTransFields ()
 
SOLVER_UTILS_EXPORT void GetFluxVector (const int i, Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &flux)
 
SOLVER_UTILS_EXPORT void GetFluxVector (const int i, Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &fluxX, Array< OneD, Array< OneD, NekDouble > > &fluxY)
 
SOLVER_UTILS_EXPORT void GetFluxVector (const int i, const int j, Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &flux)
 
SOLVER_UTILS_EXPORT void NumericalFlux (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numflux)
 
SOLVER_UTILS_EXPORT void NumericalFlux (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numfluxX, Array< OneD, Array< OneD, NekDouble > > &numfluxY)
 
SOLVER_UTILS_EXPORT void NumFluxforScalar (const Array< OneD, Array< OneD, NekDouble > > &ufield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &uflux)
 
SOLVER_UTILS_EXPORT void NumFluxforVector (const Array< OneD, Array< OneD, NekDouble > > &ufield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &qfield, Array< OneD, Array< OneD, NekDouble > > &qflux)
 
SOLVER_UTILS_EXPORT void SetModifiedBasis (const bool modbasis)
 
SOLVER_UTILS_EXPORT int NoCaseStringCompare (const std::string &s1, const std::string &s2)
 Perform a case-insensitive string comparison. More...
 
SOLVER_UTILS_EXPORT int GetCheckpointNumber ()
 
SOLVER_UTILS_EXPORT void SetCheckpointNumber (int num)
 
SOLVER_UTILS_EXPORT int GetCheckpointSteps ()
 
SOLVER_UTILS_EXPORT void SetCheckpointSteps (int num)
 
SOLVER_UTILS_EXPORT void SetTime (const NekDouble time)
 
SOLVER_UTILS_EXPORT void SetInitialStep (const int step)
 
SOLVER_UTILS_EXPORT void SetBoundaryConditions (NekDouble time)
 Evaluates the boundary conditions at the given time. More...
 
virtual SOLVER_UTILS_EXPORT bool v_NegatedOp ()
 Virtual function to identify if operator is negated in DoSolve. More...
 

Static Public Member Functions

static
SolverUtils::EquationSystemSharedPtr 
create (const LibUtilities::SessionReaderSharedPtr &pSession)
 

Static Public Attributes

static std::string className
 

Protected Member Functions

 NavierStokesCFE (const LibUtilities::SessionReaderSharedPtr &pSession)
 
virtual void v_InitObject ()
 Initialization object for CompressibleFlowSystem class. More...
 
virtual void v_DoDiffusion (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const Array< OneD, Array< OneD, NekDouble > > &pFwd, const Array< OneD, Array< OneD, NekDouble > > &pBwd)
 
void GetViscousFluxVector (const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &derivatives, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &viscousTensor)
 Return the flux vector for the LDG diffusion problem. More...
 
void GetViscousFluxVectorDeAlias (const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &derivatives, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &viscousTensor)
 Return the flux vector for the LDG diffusion problem. More...
 
- Protected Member Functions inherited from Nektar::CompressibleFlowSystem
 CompressibleFlowSystem (const LibUtilities::SessionReaderSharedPtr &pSession)
 
void InitialiseParameters ()
 Load CFS parameters from the session file. More...
 
void InitAdvection ()
 Create advection and diffusion objects for CFS. More...
 
void DoOdeRhs (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 Compute the right-hand side. More...
 
void DoOdeProjection (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 Compute the projection and call the method for imposing the boundary conditions in case of discontinuous projection. More...
 
void DoAdvection (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time, const Array< OneD, Array< OneD, NekDouble > > &pFwd, const Array< OneD, Array< OneD, NekDouble > > &pBwd)
 Compute the advection terms for the right-hand side. More...
 
void DoDiffusion (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const Array< OneD, Array< OneD, NekDouble > > &pFwd, const Array< OneD, Array< OneD, NekDouble > > &pBwd)
 Add the diffusions terms to the right-hand side. More...
 
void GetFluxVector (const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &flux)
 Return the flux vector for the compressible Euler equations. More...
 
void GetFluxVectorDeAlias (const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &flux)
 Return the flux vector for the compressible Euler equations by using the de-aliasing technique. More...
 
void InitializeSteadyState ()
 
void SetBoundaryConditions (Array< OneD, Array< OneD, NekDouble > > &physarray, NekDouble time)
 
void GetStdVelocity (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, NekDouble > &stdV)
 Compute the advection velocity in the standard space for each element of the expansion. More...
 
virtual bool v_PostIntegrate (int step)
 Perform post-integration checks, presently just to check steady state behaviour. More...
 
bool CalcSteadyState (bool output)
 Calculate whether the system has reached a steady state by observing residuals to a user-defined tolerance. More...
 
virtual NekDouble v_GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Calculate the maximum timestep subject to CFL restrictions. More...
 
virtual void v_SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 Set up logic for residual calculation. More...
 
NekDouble GetGamma ()
 
const Array< OneD, const Array
< OneD, NekDouble > > & 
GetVecLocs ()
 
const Array< OneD, const Array
< OneD, NekDouble > > & 
GetNormals ()
 
virtual void v_ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 
- Protected Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
SOLVER_UTILS_EXPORT UnsteadySystem (const LibUtilities::SessionReaderSharedPtr &pSession)
 Initialises UnsteadySystem class members. More...
 
SOLVER_UTILS_EXPORT NekDouble MaxTimeStepEstimator ()
 Get the maximum timestep estimator for cfl control. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoSolve ()
 Solves an unsteady problem. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoInitialise ()
 Sets up initial conditions. More...
 
virtual SOLVER_UTILS_EXPORT void v_GenerateSummary (SummaryList &s)
 Print a summary of time stepping parameters. More...
 
virtual SOLVER_UTILS_EXPORT void v_AppendOutput1D (Array< OneD, Array< OneD, NekDouble > > &solution1D)
 Print the solution at each solution point in a txt file. More...
 
virtual SOLVER_UTILS_EXPORT void v_NumericalFlux (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numflux)
 
virtual SOLVER_UTILS_EXPORT void v_NumericalFlux (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numfluxX, Array< OneD, Array< OneD, NekDouble > > &numfluxY)
 
virtual SOLVER_UTILS_EXPORT void v_NumFluxforScalar (const Array< OneD, Array< OneD, NekDouble > > &ufield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &uflux)
 
virtual SOLVER_UTILS_EXPORT void v_NumFluxforVector (const Array< OneD, Array< OneD, NekDouble > > &ufield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &qfield, Array< OneD, Array< OneD, NekDouble > > &qflux)
 
virtual SOLVER_UTILS_EXPORT bool v_PreIntegrate (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_SteadyStateCheck (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_RequireFwdTrans ()
 
SOLVER_UTILS_EXPORT void CheckForRestartTime (NekDouble &time, int &nchk)
 
SOLVER_UTILS_EXPORT void SVVVarDiffCoeff (const Array< OneD, Array< OneD, NekDouble > > vel, StdRegions::VarCoeffMap &varCoeffMap)
 Evaluate the SVV diffusion coefficient according to Moura's paper where it should proportional to h time velocity. More...
 
- Protected Member Functions inherited from Nektar::SolverUtils::EquationSystem
SOLVER_UTILS_EXPORT EquationSystem (const LibUtilities::SessionReaderSharedPtr &pSession)
 Initialises EquationSystem class members. More...
 
int nocase_cmp (const std::string &s1, const std::string &s2)
 
virtual SOLVER_UTILS_EXPORT
NekDouble 
v_LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Virtual function for the L_inf error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT
NekDouble 
v_L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray, bool Normalised=false)
 Virtual function for the L_2 error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransCoeffToPhys ()
 Virtual function for transformation to physical space. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransPhysToCoeff ()
 Virtual function for transformation to coefficient space. More...
 
virtual SOLVER_UTILS_EXPORT void v_EvaluateExactSolution (unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 
SOLVER_UTILS_EXPORT void EvaluateFunctionExp (std::string pFieldName, Array< OneD, NekDouble > &pArray, const std::string &pFunctionName, const NekDouble &pTime=0.0, const int domain=0)
 
SOLVER_UTILS_EXPORT void EvaluateFunctionFld (std::string pFieldName, Array< OneD, NekDouble > &pArray, const std::string &pFunctionName, const NekDouble &pTime=0.0, const int domain=0)
 
SOLVER_UTILS_EXPORT void EvaluateFunctionPts (std::string pFieldName, Array< OneD, NekDouble > &pArray, const std::string &pFunctionName, const NekDouble &pTime=0.0, const int domain=0)
 
SOLVER_UTILS_EXPORT void LoadPts (std::string funcFilename, std::string filename, Nektar::LibUtilities::PtsFieldSharedPtr &outPts)
 
SOLVER_UTILS_EXPORT void SetUpBaseFields (SpatialDomains::MeshGraphSharedPtr &mesh)
 
SOLVER_UTILS_EXPORT void ImportFldBase (std::string pInfile, SpatialDomains::MeshGraphSharedPtr pGraph)
 
virtual SOLVER_UTILS_EXPORT void v_Output (void)
 
virtual SOLVER_UTILS_EXPORT
MultiRegions::ExpListSharedPtr 
v_GetPressure (void)
 

Friends

class MemoryManager< NavierStokesCFE >
 

Additional Inherited Members

- Public Attributes inherited from Nektar::SolverUtils::UnsteadySystem
NekDouble m_cflSafetyFactor
 CFL safety factor (comprise between 0 to 1). More...
 
- Protected Types inherited from Nektar::SolverUtils::EquationSystem
enum  HomogeneousType { eHomogeneous1D, eHomogeneous2D, eHomogeneous3D, eNotHomogeneous }
 Parameter for homogeneous expansions. More...
 
- Protected Attributes inherited from Nektar::CompressibleFlowSystem
SolverUtils::AdvectionSharedPtr m_advection
 
SolverUtils::DiffusionSharedPtr m_diffusion
 
ArtificialDiffusionSharedPtr m_artificialDiffusion
 
Array< OneD, Array< OneD,
NekDouble > > 
m_vecLocs
 
NekDouble m_gamma
 
NekDouble m_pInf
 
NekDouble m_rhoInf
 
NekDouble m_UInf
 
std::string m_ViscosityType
 
std::string m_shockCaptureType
 
NekDouble m_mu
 
NekDouble m_thermalConductivity
 
NekDouble m_Cp
 
NekDouble m_Prandtl
 
VariableConverterSharedPtr m_varConv
 
std::vector< CFSBndCondSharedPtrm_bndConds
 
std::ofstream m_errFile
 
NekDouble m_steadyStateTol
 
std::vector
< SolverUtils::ForcingSharedPtr
m_forcing
 
Array< OneD, Array< OneD,
NekDouble > > 
m_un
 
- Protected Attributes inherited from Nektar::SolverUtils::UnsteadySystem
int m_infosteps
 Number of time steps between outputting status information. More...
 
int m_nanSteps
 
LibUtilities::TimeIntegrationWrapperSharedPtr m_intScheme
 Wrapper to the time integration scheme. More...
 
LibUtilities::TimeIntegrationSchemeOperators m_ode
 The time integration scheme operators to use. More...
 
LibUtilities::TimeIntegrationSolutionSharedPtr m_intSoln
 
NekDouble m_epsilon
 
bool m_explicitDiffusion
 Indicates if explicit or implicit treatment of diffusion is used. More...
 
bool m_explicitAdvection
 Indicates if explicit or implicit treatment of advection is used. More...
 
bool m_explicitReaction
 Indicates if explicit or implicit treatment of reaction is used. More...
 
bool m_homoInitialFwd
 Flag to determine if simulation should start in homogeneous forward transformed state. More...
 
std::vector< int > m_intVariables
 
std::vector< FilterSharedPtrm_filters
 
- Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
LibUtilities::CommSharedPtr m_comm
 Communicator. More...
 
LibUtilities::SessionReaderSharedPtr m_session
 The session reader. More...
 
LibUtilities::FieldIOSharedPtr m_fld
 Field input/output. More...
 
std::map< std::string,
FieldUtils::Interpolator
m_interpolators
 Map of interpolator objects. More...
 
std::map< std::string,
std::pair< std::string,
LibUtilities::PtsFieldSharedPtr > > 
m_loadedPtsFields
 pts fields we already read from disk: {funcFilename: (filename, ptsfield)} More...
 
std::map< std::string,
std::pair< std::string,
loadedFldField > > 
m_loadedFldFields
 
Array< OneD,
MultiRegions::ExpListSharedPtr
m_fields
 Array holding all dependent variables. More...
 
Array< OneD,
MultiRegions::ExpListSharedPtr
m_base
 Base fields. More...
 
Array< OneD,
MultiRegions::ExpListSharedPtr
m_derivedfields
 Array holding all dependent variables. More...
 
SpatialDomains::BoundaryConditionsSharedPtr m_boundaryConditions
 Pointer to boundary conditions object. More...
 
SpatialDomains::MeshGraphSharedPtr m_graph
 Pointer to graph defining mesh. More...
 
std::string m_sessionName
 Name of the session. More...
 
NekDouble m_time
 Current time of simulation. More...
 
int m_initialStep
 Number of the step where the simulation should begin. More...
 
NekDouble m_fintime
 Finish time of the simulation. More...
 
NekDouble m_timestep
 Time step size. More...
 
NekDouble m_lambda
 Lambda constant in real system if one required. More...
 
NekDouble m_checktime
 Time between checkpoints. More...
 
int m_nchk
 Number of checkpoints written so far. More...
 
int m_steps
 Number of steps to take. More...
 
int m_checksteps
 Number of steps between checkpoints. More...
 
int m_spacedim
 Spatial dimension (>= expansion dim). More...
 
int m_expdim
 Expansion dimension. More...
 
bool m_singleMode
 Flag to determine if single homogeneous mode is used. More...
 
bool m_halfMode
 Flag to determine if half homogeneous mode is used. More...
 
bool m_multipleModes
 Flag to determine if use multiple homogenenous modes are used. More...
 
bool m_useFFT
 Flag to determine if FFT is used for homogeneous transform. More...
 
bool m_homogen_dealiasing
 Flag to determine if dealiasing is used for homogeneous simulations. More...
 
bool m_specHP_dealiasing
 Flag to determine if dealisising is usde for the Spectral/hp element discretisation. More...
 
enum MultiRegions::ProjectionType m_projectionType
 Type of projection; e.g continuous or discontinuous. More...
 
Array< OneD, Array< OneD,
NekDouble > > 
m_traceNormals
 Array holding trace normals for DG simulations in the forwards direction. More...
 
Array< OneD, Array< OneD,
Array< OneD, NekDouble > > > 
m_gradtan
 1 x nvariable x nq More...
 
Array< OneD, Array< OneD,
Array< OneD, NekDouble > > > 
m_tanbasis
 2 x m_spacedim x nq More...
 
Array< OneD, bool > m_checkIfSystemSingular
 Flag to indicate if the fields should be checked for singularity. More...
 
LibUtilities::FieldMetaDataMap m_fieldMetaDataMap
 Map to identify relevant solver info to dump in output fields. More...
 
int m_NumQuadPointsError
 Number of Quadrature points used to work out the error. More...
 
enum HomogeneousType m_HomogeneousType
 
NekDouble m_LhomX
 physical length in X direction (if homogeneous) More...
 
NekDouble m_LhomY
 physical length in Y direction (if homogeneous) More...
 
NekDouble m_LhomZ
 physical length in Z direction (if homogeneous) More...
 
int m_npointsX
 number of points in X direction (if homogeneous) More...
 
int m_npointsY
 number of points in Y direction (if homogeneous) More...
 
int m_npointsZ
 number of points in Z direction (if homogeneous) More...
 
int m_HomoDirec
 number of homogenous directions More...
 

Detailed Description

Definition at line 47 of file NavierStokesCFE.h.

Constructor & Destructor Documentation

Nektar::NavierStokesCFE::~NavierStokesCFE ( )
virtual

Definition at line 53 of file NavierStokesCFE.cpp.

54  {
55 
56  }
Nektar::NavierStokesCFE::NavierStokesCFE ( const LibUtilities::SessionReaderSharedPtr pSession)
protected

Definition at line 47 of file NavierStokesCFE.cpp.

49  : CompressibleFlowSystem(pSession)
50  {
51  }
CompressibleFlowSystem(const LibUtilities::SessionReaderSharedPtr &pSession)

Member Function Documentation

static SolverUtils::EquationSystemSharedPtr Nektar::NavierStokesCFE::create ( const LibUtilities::SessionReaderSharedPtr pSession)
inlinestatic

Definition at line 53 of file NavierStokesCFE.h.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and CellMLToNektar.cellml_metadata::p.

55  {
58  p->InitObject();
59  return p;
60  }
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
boost::shared_ptr< EquationSystem > EquationSystemSharedPtr
A shared pointer to an EquationSystem object.
void Nektar::NavierStokesCFE::GetViscousFluxVector ( const Array< OneD, Array< OneD, NekDouble > > &  physfield,
Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &  derivativesO1,
Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &  viscousTensor 
)
protected

Return the flux vector for the LDG diffusion problem.

Todo:
Complete the viscous flux vector

Definition at line 165 of file NavierStokesCFE.cpp.

References Vmath::Fill(), Nektar::CompressibleFlowSystem::m_Cp, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::CompressibleFlowSystem::m_mu, Nektar::CompressibleFlowSystem::m_Prandtl, Nektar::SolverUtils::EquationSystem::m_spacedim, Nektar::CompressibleFlowSystem::m_thermalConductivity, Nektar::CompressibleFlowSystem::m_varConv, Nektar::CompressibleFlowSystem::m_ViscosityType, Vmath::Smul(), Vmath::Vadd(), Vmath::Vcopy(), Vmath::Vmul(), Vmath::Vvtvp(), and Vmath::Zero().

Referenced by v_InitObject().

169  {
170  int i, j;
171  int nVariables = m_fields.num_elements();
172  int nPts = physfield[0].num_elements();
173 
174  // Stokes hypothesis
175  const NekDouble lambda = -2.0/3.0;
176 
177  // Auxiliary variables
178  Array<OneD, NekDouble > mu (nPts, 0.0);
179  Array<OneD, NekDouble > thermalConductivity(nPts, 0.0);
180  Array<OneD, NekDouble > divVel (nPts, 0.0);
181 
182  // Variable viscosity through the Sutherland's law
183  if (m_ViscosityType == "Variable")
184  {
185  m_varConv->GetDynamicViscosity(physfield[nVariables-2], mu);
186  NekDouble tRa = m_Cp / m_Prandtl;
187  Vmath::Smul(nPts, tRa, mu, 1, thermalConductivity, 1);
188  }
189  else
190  {
191  Vmath::Fill(nPts, m_mu, mu, 1);
193  thermalConductivity, 1);
194  }
195 
196  // Velocity divergence
197  for (j = 0; j < m_spacedim; ++j)
198  {
199  Vmath::Vadd(nPts, divVel, 1, derivativesO1[j][j], 1,
200  divVel, 1);
201  }
202 
203  // Velocity divergence scaled by lambda * mu
204  Vmath::Smul(nPts, lambda, divVel, 1, divVel, 1);
205  Vmath::Vmul(nPts, mu, 1, divVel, 1, divVel, 1);
206 
207  // Viscous flux vector for the rho equation = 0
208  for (i = 0; i < m_spacedim; ++i)
209  {
210  Vmath::Zero(nPts, viscousTensor[i][0], 1);
211  }
212 
213  // Viscous stress tensor (for the momentum equations)
214  for (i = 0; i < m_spacedim; ++i)
215  {
216  for (j = i; j < m_spacedim; ++j)
217  {
218  Vmath::Vadd(nPts, derivativesO1[i][j], 1,
219  derivativesO1[j][i], 1,
220  viscousTensor[i][j+1], 1);
221 
222  Vmath::Vmul(nPts, mu, 1,
223  viscousTensor[i][j+1], 1,
224  viscousTensor[i][j+1], 1);
225 
226  if (i == j)
227  {
228  // Add divergence term to diagonal
229  Vmath::Vadd(nPts, viscousTensor[i][j+1], 1,
230  divVel, 1,
231  viscousTensor[i][j+1], 1);
232  }
233  else
234  {
235  // Copy to make symmetric
236  Vmath::Vcopy(nPts, viscousTensor[i][j+1], 1,
237  viscousTensor[j][i+1], 1);
238  }
239  }
240  }
241 
242  // Terms for the energy equation
243  for (i = 0; i < m_spacedim; ++i)
244  {
245  Vmath::Zero(nPts, viscousTensor[i][m_spacedim+1], 1);
246  // u_j * tau_ij
247  for (j = 0; j < m_spacedim; ++j)
248  {
249  Vmath::Vvtvp(nPts, physfield[j], 1,
250  viscousTensor[i][j+1], 1,
251  viscousTensor[i][m_spacedim+1], 1,
252  viscousTensor[i][m_spacedim+1], 1);
253  }
254  // Add k*T_i
255  Vmath::Vvtvp(nPts, thermalConductivity, 1,
256  derivativesO1[i][m_spacedim], 1,
257  viscousTensor[i][m_spacedim+1], 1,
258  viscousTensor[i][m_spacedim+1], 1);
259  }
260  }
VariableConverterSharedPtr m_varConv
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:46
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:442
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:213
int m_spacedim
Spatial dimension (>= expansion dim).
double NekDouble
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:373
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1061
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:299
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:183
void Nektar::NavierStokesCFE::GetViscousFluxVectorDeAlias ( const Array< OneD, Array< OneD, NekDouble > > &  physfield,
Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &  derivativesO1,
Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &  viscousTensor 
)
protected

Return the flux vector for the LDG diffusion problem.

Todo:
Complete the viscous flux vector

Definition at line 266 of file NavierStokesCFE.cpp.

References Vmath::Fill(), Nektar::CompressibleFlowSystem::m_Cp, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::CompressibleFlowSystem::m_mu, Nektar::CompressibleFlowSystem::m_Prandtl, Nektar::SolverUtils::EquationSystem::m_spacedim, Nektar::CompressibleFlowSystem::m_thermalConductivity, Nektar::CompressibleFlowSystem::m_varConv, Nektar::CompressibleFlowSystem::m_ViscosityType, Vmath::Smul(), Vmath::Vadd(), Vmath::Vmul(), Vmath::Vvtvp(), and Vmath::Zero().

Referenced by v_InitObject().

270  {
271  int i, j;
272  int nVariables = m_fields.num_elements();
273  // Factor to rescale 1d points in dealiasing.
274  NekDouble OneDptscale = 2;
275  // Get number of points to dealias a cubic non-linearity
276  int nPts = m_fields[0]->Get1DScaledTotPoints(OneDptscale);
277  int nPts_orig = physfield[0].num_elements();
278 
279  // Stokes hypothesis
280  const NekDouble lambda = -2.0/3.0;
281 
282  // Auxiliary variables
283  Array<OneD, NekDouble > mu (nPts, 0.0);
284  Array<OneD, NekDouble > thermalConductivity(nPts, 0.0);
285  Array<OneD, NekDouble > divVel (nPts, 0.0);
286 
287  // Variable viscosity through the Sutherland's law
288  if (m_ViscosityType == "Variable")
289  {
290  m_varConv->GetDynamicViscosity(physfield[nVariables-2], mu);
291  NekDouble tRa = m_Cp / m_Prandtl;
292  Vmath::Smul(nPts, tRa, mu, 1, thermalConductivity, 1);
293  }
294  else
295  {
296  Vmath::Fill(nPts, m_mu, mu, 1);
298  thermalConductivity, 1);
299  }
300 
301  // Interpolate inputs and initialise interpolated output
302  Array<OneD, Array<OneD, NekDouble> > vel_interp(m_spacedim);
303  Array<OneD, Array<OneD, Array<OneD, NekDouble> > >
304  deriv_interp(m_spacedim);
305  Array<OneD, Array<OneD, Array<OneD, NekDouble> > >
306  out_interp(m_spacedim);
307  for (i = 0; i < m_spacedim; ++i)
308  {
309  // Interpolate velocity
310  vel_interp[i] = Array<OneD, NekDouble> (nPts);
311  m_fields[0]->PhysInterp1DScaled(
312  OneDptscale, physfield[i], vel_interp[i]);
313 
314  // Interpolate derivatives
315  deriv_interp[i] = Array<OneD,Array<OneD,NekDouble> > (m_spacedim+1);
316  for (j = 0; j < m_spacedim+1; ++j)
317  {
318  deriv_interp[i][j] = Array<OneD, NekDouble> (nPts);
319  m_fields[0]->PhysInterp1DScaled(
320  OneDptscale, derivativesO1[i][j], deriv_interp[i][j]);
321  }
322 
323  // Output (start from j=1 since flux is zero for rho)
324  out_interp[i] = Array<OneD,Array<OneD,NekDouble> > (m_spacedim+2);
325  for (j = 1; j < m_spacedim+2; ++j)
326  {
327  out_interp[i][j] = Array<OneD, NekDouble> (nPts);
328  }
329  }
330 
331  // Velocity divergence
332  for (j = 0; j < m_spacedim; ++j)
333  {
334  Vmath::Vadd(nPts, divVel, 1, deriv_interp[j][j], 1,
335  divVel, 1);
336  }
337 
338  // Velocity divergence scaled by lambda * mu
339  Vmath::Smul(nPts, lambda, divVel, 1, divVel, 1);
340  Vmath::Vmul(nPts, mu, 1, divVel, 1, divVel, 1);
341 
342  // Viscous flux vector for the rho equation = 0 (no need to dealias)
343  for (i = 0; i < m_spacedim; ++i)
344  {
345  Vmath::Zero(nPts_orig, viscousTensor[i][0], 1);
346  }
347 
348  // Viscous stress tensor (for the momentum equations)
349  for (i = 0; i < m_spacedim; ++i)
350  {
351  for (j = i; j < m_spacedim; ++j)
352  {
353  Vmath::Vadd(nPts, deriv_interp[i][j], 1,
354  deriv_interp[j][i], 1,
355  out_interp[i][j+1], 1);
356 
357  Vmath::Vmul(nPts, mu, 1,
358  out_interp[i][j+1], 1,
359  out_interp[i][j+1], 1);
360 
361  if (i == j)
362  {
363  // Add divergence term to diagonal
364  Vmath::Vadd(nPts, out_interp[i][j+1], 1,
365  divVel, 1,
366  out_interp[i][j+1], 1);
367  }
368  else
369  {
370  // Make symmetric
371  out_interp[j][i+1] = out_interp[i][j+1];
372  }
373  }
374  }
375 
376  // Terms for the energy equation
377  for (i = 0; i < m_spacedim; ++i)
378  {
379  Vmath::Zero(nPts, out_interp[i][m_spacedim+1], 1);
380  // u_j * tau_ij
381  for (j = 0; j < m_spacedim; ++j)
382  {
383  Vmath::Vvtvp(nPts, vel_interp[j], 1,
384  out_interp[i][j+1], 1,
385  out_interp[i][m_spacedim+1], 1,
386  out_interp[i][m_spacedim+1], 1);
387  }
388  // Add k*T_i
389  Vmath::Vvtvp(nPts, thermalConductivity, 1,
390  deriv_interp[i][m_spacedim], 1,
391  out_interp[i][m_spacedim+1], 1,
392  out_interp[i][m_spacedim+1], 1);
393  }
394 
395  // Project to original space
396  for (i = 0; i < m_spacedim; ++i)
397  {
398  for (j = 1; j < m_spacedim+2; ++j)
399  {
400  m_fields[0]->PhysGalerkinProjection1DScaled(
401  OneDptscale,
402  out_interp[i][j],
403  viscousTensor[i][j]);
404  }
405  }
406  }
VariableConverterSharedPtr m_varConv
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:46
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:442
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:213
int m_spacedim
Spatial dimension (>= expansion dim).
double NekDouble
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:373
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:299
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:183
void Nektar::NavierStokesCFE::v_DoDiffusion ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const Array< OneD, Array< OneD, NekDouble > > &  pFwd,
const Array< OneD, Array< OneD, NekDouble > > &  pBwd 
)
protectedvirtual

Reimplemented from Nektar::CompressibleFlowSystem.

Definition at line 87 of file NavierStokesCFE.cpp.

References Nektar::SolverUtils::EquationSystem::GetNpoints(), Nektar::SolverUtils::EquationSystem::GetTraceTotPoints(), Nektar::CompressibleFlowSystem::m_diffusion, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::CompressibleFlowSystem::m_varConv, Nektar::NullNekDoubleArrayofArray, and Vmath::Vadd().

92  {
93  int i;
94  int nvariables = inarray.num_elements();
95  int npoints = GetNpoints();
96  int nTracePts = GetTraceTotPoints();
97 
98  Array<OneD, Array<OneD, NekDouble> > outarrayDiff(nvariables);
99 
100  Array<OneD, Array<OneD, NekDouble> > inarrayDiff(nvariables-1);
101  Array<OneD, Array<OneD, NekDouble> > inFwd(nvariables-1);
102  Array<OneD, Array<OneD, NekDouble> > inBwd(nvariables-1);
103 
104  for (i = 0; i < nvariables; ++i)
105  {
106  outarrayDiff[i] = Array<OneD, NekDouble>(npoints);
107  }
108 
109  for (i = 0; i < nvariables-1; ++i)
110  {
111  inarrayDiff[i] = Array<OneD, NekDouble>(npoints);
112  inFwd[i] = Array<OneD, NekDouble>(nTracePts);
113  inBwd[i] = Array<OneD, NekDouble>(nTracePts);
114  }
115 
116  // Extract pressure
117  // (use inarrayDiff[0] as a temporary storage for the pressure)
118  m_varConv->GetPressure(inarray, inarrayDiff[0]);
119 
120  // Extract temperature
121  m_varConv->GetTemperature(inarray, inarrayDiff[0],
122  inarrayDiff[nvariables-2]);
123 
124  // Extract velocities
125  m_varConv->GetVelocityVector(inarray, inarrayDiff);
126 
127  // Repeat calculation for trace space
128  if (pFwd == NullNekDoubleArrayofArray ||
130  {
133  }
134  else
135  {
136  m_varConv->GetPressure(pFwd, inFwd[0]);
137  m_varConv->GetPressure(pBwd, inBwd[0]);
138 
139  m_varConv->GetTemperature(pFwd, inFwd[0],
140  inFwd[nvariables-2]);
141  m_varConv->GetTemperature(pBwd, inBwd[0],
142  inBwd[nvariables-2]);
143 
144  m_varConv->GetVelocityVector(pFwd, inFwd);
145  m_varConv->GetVelocityVector(pBwd, inBwd);
146  }
147 
148  // Diffusion term in physical rhs form
149  m_diffusion->Diffuse(nvariables, m_fields, inarrayDiff, outarrayDiff,
150  inFwd, inBwd);
151 
152  for (i = 0; i < nvariables; ++i)
153  {
154  Vmath::Vadd(npoints,
155  outarrayDiff[i], 1,
156  outarray[i], 1,
157  outarray[i], 1);
158  }
159  }
VariableConverterSharedPtr m_varConv
SolverUtils::DiffusionSharedPtr m_diffusion
SOLVER_UTILS_EXPORT int GetTraceTotPoints()
SOLVER_UTILS_EXPORT int GetNpoints()
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
static Array< OneD, Array< OneD, NekDouble > > NullNekDoubleArrayofArray
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:299
void Nektar::NavierStokesCFE::v_InitObject ( )
protectedvirtual

Initialization object for CompressibleFlowSystem class.

Reimplemented from Nektar::CompressibleFlowSystem.

Definition at line 61 of file NavierStokesCFE.cpp.

References Nektar::LibUtilities::NekFactory< tKey, tBase, >::CreateInstance(), Nektar::SolverUtils::GetDiffusionFactory(), GetViscousFluxVector(), GetViscousFluxVectorDeAlias(), Nektar::CompressibleFlowSystem::m_diffusion, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_session, Nektar::SolverUtils::EquationSystem::m_specHP_dealiasing, and Nektar::CompressibleFlowSystem::v_InitObject().

62  {
64 
65  string diffName;
66  m_session->LoadSolverInfo("DiffusionType", diffName, "LDGNS");
67 
69  .CreateInstance(diffName, diffName);
70 
72  {
73  m_diffusion->SetFluxVectorNS(
75  this);
76  }
77  else
78  {
79  m_diffusion->SetFluxVectorNS(&NavierStokesCFE::
80  GetViscousFluxVector, this);
81  }
82 
83  // Concluding initialisation of diffusion operator
84  m_diffusion->InitObject (m_session, m_fields);
85  }
virtual void v_InitObject()
Initialization object for CompressibleFlowSystem class.
tBaseSharedPtr CreateInstance(tKey idKey BOOST_PP_COMMA_IF(MAX_PARAM) BOOST_PP_ENUM_BINARY_PARAMS(MAX_PARAM, tParam, x))
Create an instance of the class referred to by idKey.
Definition: NekFactory.hpp:162
DiffusionFactory & GetDiffusionFactory()
Definition: Diffusion.cpp:42
bool m_specHP_dealiasing
Flag to determine if dealisising is usde for the Spectral/hp element discretisation.
void GetViscousFluxVector(const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &derivatives, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &viscousTensor)
Return the flux vector for the LDG diffusion problem.
void GetViscousFluxVectorDeAlias(const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &derivatives, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &viscousTensor)
Return the flux vector for the LDG diffusion problem.
SolverUtils::DiffusionSharedPtr m_diffusion
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
NavierStokesCFE(const LibUtilities::SessionReaderSharedPtr &pSession)

Friends And Related Function Documentation

friend class MemoryManager< NavierStokesCFE >
friend

Definition at line 50 of file NavierStokesCFE.h.

Member Data Documentation

string Nektar::NavierStokesCFE::className
static
Initial value:
=
"NavierStokesCFE", NavierStokesCFE::create,
"NavierStokes equations in conservative variables.")

Definition at line 62 of file NavierStokesCFE.h.