Nektar++
CollectionOptimisation.cpp
Go to the documentation of this file.
1///////////////////////////////////////////////////////////////////////////////
2//
3// File: CollectionOptimisation.cpp
4//
5// For more information, please see: http://www.nektar.info
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Collection optimization definition
32//
33///////////////////////////////////////////////////////////////////////////////
34
35#include <boost/algorithm/string/predicate.hpp>
36
40
41#include <boost/algorithm/string/classification.hpp>
42#include <boost/algorithm/string/split.hpp>
43
44#include <tinyxml.h>
45
46using namespace std;
47
48namespace Nektar::Collections
49{
50
51// static manager for Operator ImplementationMap
52std::map<size_t, map<OpImpTimingKey, OperatorImpMap>>
54
56 LibUtilities::SessionReaderSharedPtr pSession, const int shapedim,
57 ImplementationType defaultType)
58 : m_shapeDim(shapedim)
59{
60 map<ElmtOrder, ImplementationType> defaults, defaultsPhysDeriv,
61 defaultsHelmholtz, defaultsPhysInterp1DScaled;
62 bool verbose = (pSession.get()) &&
63 (pSession->DefinesCmdLineArgument("verbose")) &&
64 (pSession->GetComm()->GetRank() == 0);
65
66 m_autotune = false;
67 m_maxCollSize = 0;
68 m_timeLevel = pSession.get() ? pSession->GetTimeLevel() : 0;
69 m_defaultType = defaultType == eNoImpType ? eIterPerExp : defaultType;
70
71 map<string, LibUtilities::ShapeType> elTypes;
72 elTypes["S"] = LibUtilities::eSegment;
73 elTypes["T"] = LibUtilities::eTriangle;
74 elTypes["Q"] = LibUtilities::eQuadrilateral;
75 elTypes["A"] = LibUtilities::eTetrahedron;
76 elTypes["P"] = LibUtilities::ePyramid;
77 elTypes["R"] = LibUtilities::ePrism;
78 elTypes["H"] = LibUtilities::eHexahedron;
79
80 // Set defaults for all element types.
81 for (auto &it2 : elTypes)
82 {
83 defaults[ElmtOrder(it2.second, -1)] = m_defaultType;
84 defaultsPhysDeriv[ElmtOrder(it2.second, -1)] = m_defaultType;
85 defaultsHelmholtz[ElmtOrder(it2.second, -1)] = m_defaultType;
86 defaultsPhysInterp1DScaled[ElmtOrder(it2.second, -1)] = m_defaultType;
87 }
88
89 if (defaultType == eNoImpType)
90 {
91 for (auto &it2 : elTypes)
92 {
93 // use Nocollection for Phys Deriv
94 defaultsPhysDeriv[ElmtOrder(it2.second, -1)] = eNoCollection;
95
96 // Use IterPerExp
97 defaultsHelmholtz[ElmtOrder(it2.second, -1)] = eMatrixFree;
98
99 // Use NoCollection for PhysInterp1DScaled
100 defaultsPhysInterp1DScaled[ElmtOrder(it2.second, -1)] =
102 }
103 }
104
105 map<string, OperatorType> opTypes;
106 for (int i = 0; i < SIZE_OperatorType; ++i)
107 {
108 opTypes[OperatorTypeMap[i]] = (OperatorType)i;
109 switch ((OperatorType)i)
110 {
111 case eHelmholtz:
112 m_global[(OperatorType)i] = defaultsHelmholtz;
113 break;
114 case ePhysDeriv:
115 m_global[(OperatorType)i] = defaultsPhysDeriv;
116 break;
118 m_global[(OperatorType)i] = defaultsPhysInterp1DScaled;
119 break;
120 default:
121 m_global[(OperatorType)i] = defaults;
122 }
123 }
124
125 map<string, ImplementationType> impTypes;
126 for (int i = 0; i < SIZE_ImplementationType; ++i)
127 {
129 }
130
131 // turn off file reader if dummy pointer is given or if default
132 // option is passed and by default calling argument.
133 if ((defaultType == eNoImpType) && (pSession.get()))
134 {
135 TiXmlDocument &doc = pSession->GetDocument();
136 TiXmlHandle docHandle(&doc);
137 TiXmlElement *master = docHandle.FirstChildElement("NEKTAR").Element();
138 ASSERTL0(master, "Unable to find NEKTAR tag in file.");
139 bool WriteFullCollections = false;
140
141 TiXmlElement *xmlCol = master->FirstChildElement("COLLECTIONS");
144
145 // Check if user has specified some options
146 if (xmlCol)
147 {
148 // Set the maxsize and default implementation type if provided
149 const char *maxSize = xmlCol->Attribute("MAXSIZE");
150 m_maxCollSize = (maxSize ? atoi(maxSize) : 0);
151
152 const char *defaultImpl = xmlCol->Attribute("DEFAULT");
153 m_defaultType = defaultType;
154
155 // If user has specified a default impl type or autotuning
156 // and set this default across all operators.
157 if (defaultImpl)
158 {
159 const std::string collinfo = string(defaultImpl);
160 m_autotune = boost::iequals(collinfo, "auto");
161
162 if (!m_autotune)
163 {
164 bool collectionFound{false};
165 for (int i = 1; i < Collections::SIZE_ImplementationType;
166 ++i)
167 {
168 if (boost::iequals(
169 collinfo,
171 {
173 collectionFound = true;
174 break;
175 }
176 }
177
178 ASSERTL0(collectionFound,
179 "Unknown default collection scheme: " + collinfo);
180
181 defaults.clear();
182 // Override default types
183 for (auto &it2 : elTypes)
184 {
185 defaults[ElmtOrder(it2.second, -1)] = m_defaultType;
186 }
187
188 for (int i = 0; i < SIZE_OperatorType; ++i)
189 {
190 m_global[(OperatorType)i] = defaults;
191 }
192 }
193 }
194 const char *write = xmlCol->Attribute("WRITE");
195 if (write && boost::iequals(write, "true"))
196 {
197 WriteFullCollections = true;
198 }
199
200 // Now process operator-specific implementation selections
201 ReadCollOps(xmlCol, m_global, verbose);
202
203 // Print out operator map
204 if (verbose)
205 {
206 if (WriteFullCollections)
207 {
208 for (auto &mIt : m_global)
209 {
210 cout << "Operator " << OperatorTypeMap[mIt.first] << ":"
211 << endl;
212
213 for (auto &eIt : mIt.second)
214 {
215 cout << "- "
216 << LibUtilities::ShapeTypeMap[eIt.first.first]
217 << " order " << eIt.first.second << " -> "
218 << ImplementationTypeMap[eIt.second] << endl;
219 }
220 }
221 }
222 }
223 }
224 }
225}
226
227void CollectionOptimisation::ReadCollOps(TiXmlElement *xmlCol,
228 GlobalOpMap &global, bool verbose)
229{
230 bool verboseHeader = true;
231 map<string, LibUtilities::ShapeType> elTypes;
232 elTypes["S"] = LibUtilities::eSegment;
233 elTypes["T"] = LibUtilities::eTriangle;
234 elTypes["Q"] = LibUtilities::eQuadrilateral;
235 elTypes["A"] = LibUtilities::eTetrahedron;
236 elTypes["P"] = LibUtilities::ePyramid;
237 elTypes["R"] = LibUtilities::ePrism;
238 elTypes["H"] = LibUtilities::eHexahedron;
239
240 map<string, OperatorType> opTypes;
241 for (int i = 0; i < SIZE_OperatorType; ++i)
242 {
243 opTypes[OperatorTypeMap[i]] = (OperatorType)i;
244 }
245
246 map<string, ImplementationType> impTypes;
247 for (int i = 0; i < SIZE_ImplementationType; ++i)
248 {
250 }
251
252 TiXmlElement *elmt = xmlCol->FirstChildElement();
253 while (elmt)
254 {
255 string tagname = elmt->ValueStr();
256
257 ASSERTL0(boost::iequals(tagname, "OPERATOR"),
258 "Only OPERATOR tags are supported inside the "
259 "COLLECTIONS tag.");
260
261 const char *attr = elmt->Attribute("TYPE");
262 ASSERTL0(attr, "Missing TYPE in OPERATOR tag.");
263 string opType(attr);
264
265 ASSERTL0(opTypes.count(opType) > 0,
266 "Unknown OPERATOR type " + opType + ".");
267
268 OperatorType ot = opTypes[opType];
269
270 TiXmlElement *elmt2 = elmt->FirstChildElement();
271
272 map<int, pair<int, std::string>> verboseWrite;
273 while (elmt2)
274 {
275 string tagname = elmt2->ValueStr();
276 ASSERTL0(boost::iequals(tagname, "ELEMENT"),
277 "Only ELEMENT tags are supported inside the "
278 "OPERATOR tag.");
279
280 const char *attr = elmt2->Attribute("TYPE");
281 ASSERTL0(attr, "Missing TYPE in ELEMENT tag.");
282
283 string elType(attr);
284 auto it2 = elTypes.find(elType);
285 ASSERTL0(it2 != elTypes.end(), "Unknown element type " + elType +
286 " in ELEMENT "
287 "tag");
288
289 const char *attr2 = elmt2->Attribute("IMPTYPE");
290 ASSERTL0(attr2, "Missing IMPTYPE in ELEMENT tag.");
291 string impType(attr2);
292 ASSERTL0(impTypes.count(impType) > 0,
293 "Unknown IMPTYPE type " + impType + ".");
294
295 const char *attr3 = elmt2->Attribute("ORDER");
296 ASSERTL0(attr3, "Missing ORDER in ELEMENT tag.");
297 string order(attr3);
298
299 // load details relevant to this shape dimension.
300 if (LibUtilities::ShapeTypeDimMap[it2->second] == m_shapeDim)
301 {
302 if (order == "*")
303 {
304 global[ot][ElmtOrder(it2->second, -1)] = impTypes[impType];
305
306 if (verbose)
307 {
308 verboseWrite[it2->second] =
309 pair<int, std::string>(-1, impType);
310 }
311 }
312 else
313 {
314 vector<unsigned int> orders;
315 ParseUtils::GenerateSeqVector(order, orders);
316
317 for (int i = 0; i < orders.size(); ++i)
318 {
319 global[ot][ElmtOrder(it2->second, orders[i])] =
320 impTypes[impType];
321
322 if (verbose)
323 {
324 verboseWrite[it2->second] =
325 pair<int, std::string>(orders[i], impType);
326 }
327 }
328 }
329 }
330
331 elmt2 = elmt2->NextSiblingElement();
332 }
333
334 if (verboseWrite.size())
335 {
336 if (verboseHeader)
337 {
338 cout << "Collection settings from file: " << endl;
339 verboseHeader = false;
340 }
341
342 cout << "\t Operator " << OperatorTypeMap[ot] << ":" << endl;
343
344 for (auto &it : verboseWrite)
345 {
346 cout << "\t - " << LibUtilities::ShapeTypeMap[it.first]
347 << " order " << it.second.first << " -> "
348 << it.second.second << endl;
349 }
350 }
351
352 elmt = elmt->NextSiblingElement();
353 }
354}
355
358{
359 OperatorImpMap ret;
360 ElmtOrder searchKey(pExp->DetShapeType(), pExp->GetBasisNumModes(0));
361 ElmtOrder defSearch(pExp->DetShapeType(), -1);
362
363 for (auto &it : m_global)
364 {
365 ImplementationType impType;
366
367 auto it2 = it.second.find(searchKey);
368
369 if (it2 == it.second.end())
370 {
371 it2 = it.second.find(defSearch);
372 if (it2 == it.second.end())
373 {
374 // Shouldn't be able to reach here.
375 impType = eNoCollection;
376 }
377 else
378 {
379 impType = it2->second;
380 }
381 }
382 else
383 {
384 impType = it2->second;
385 }
386
387 ret[it.first] = impType;
388 }
389
390 return ret;
391}
392
394 vector<StdRegions::StdExpansionSharedPtr> pCollExp,
395 [[maybe_unused]] OperatorImpMap &impTypes, bool verbose)
396{
397 OperatorImpMap ret;
398
399 StdRegions::StdExpansionSharedPtr pExp = pCollExp[0];
400
401 // check to see if already defined for this expansion
402 OpImpTimingKey OpKey(pExp, pCollExp.size(), pExp->GetNumBases());
403 if (m_opImpMap.count(m_timeLevel) != 0 &&
404 m_opImpMap[m_timeLevel].count(OpKey) != 0)
405 {
406 ret = m_opImpMap[m_timeLevel][OpKey];
407 return ret;
408 }
409
411
412 if (verbose)
413 {
414 cout << "Collection Implementation for "
415 << LibUtilities::ShapeTypeMap[pExp->DetShapeType()] << " ( ";
416 for (int i = 0; i < pExp->GetNumBases(); ++i)
417 {
418 cout << pExp->GetBasis(i)->GetNumModes() << " ";
419 }
420 cout << ")"
421 << " for ngeoms = " << pCollExp.size() << endl;
422 }
423 // set up an array of collections
424 CollectionVector coll;
425
426 StdRegions::ConstFactorMap factors; // required for helmholtz operator
428
429 // do we need to dynamically update the value of this eFactorconst based on
430 // the solver that is called?
432 int qpInsideElmt_idir; // declaration for the total number of points towards
433 // the i-th direction
434 int newQpInsideElmt_idir; // declaration for the scaled total number of
435 // points towards the i-th direction
436 int newTotQpInsideElmt{1}; // initialization for the total number of scaled
437 // quadrature points inside an element
438 for (int i = 0; i < pExp->GetShapeDimension(); ++i)
439 {
440 qpInsideElmt_idir = pExp->GetNumPoints(i);
441 newQpInsideElmt_idir =
442 (int)qpInsideElmt_idir * factors[StdRegions::eFactorConst];
443 newTotQpInsideElmt *= newQpInsideElmt_idir;
444 }
445 int maxsize = pCollExp.size() * max(pExp->GetNcoeffs(), newTotQpInsideElmt);
446 Array<OneD, NekDouble> inarray(maxsize, 1.0);
447 Array<OneD, NekDouble> outarray1(maxsize);
448 Array<OneD, NekDouble> outarray2(maxsize);
449 Array<OneD, NekDouble> outarray3(maxsize);
450
451 for (int imp = 1; imp < SIZE_ImplementationType; ++imp)
452 {
454 OperatorImpMap impTypes;
455 for (int i = 0; i < SIZE_OperatorType; ++i)
456 {
457 OperatorType opType = (OperatorType)i;
458 OperatorKey opKey(pCollExp[0]->DetShapeType(), opType, impType,
459 pCollExp[0]->IsNodalNonTensorialExp());
460
461 if (GetOperatorFactory().ModuleExists(opKey))
462 {
463 impTypes[opType] = impType;
464 }
465 }
466
467 Collection collLoc(pCollExp, impTypes);
468 for (int i = 0; i < SIZE_OperatorType; ++i)
469 {
470 collLoc.Initialise((OperatorType)i, factors);
471 }
472 coll.push_back(collLoc);
473 }
474
475 // Determine the number of tests to do in one second
477 for (int i = 0; i < SIZE_OperatorType; ++i)
478 {
479 OperatorType OpType = (OperatorType)i;
480
481 t.Start();
482
483 coll[0].ApplyOperator(OpType, inarray, outarray1, outarray2, outarray3);
484 t.Stop();
485
486 NekDouble oneTest = t.TimePerTest(1);
487
488 Ntest[i] = max((int)(0.25 / oneTest), 1);
489 }
490
492
493 if (verbose)
494 {
495 cout << "\t "
496 << " Op. "
497 << ":\t"
498 << "opt. Impl."
499 << "\t (IterLocExp, IterStdExp, "
500 "StdMat, SumFac, MatrixFree)"
501 << endl;
502 }
503
504 // loop over all operators and determine fastest implementation
505 for (int i = 0; i < SIZE_OperatorType; ++i)
506 {
507 OperatorType OpType = (OperatorType)i;
508
509 // call collection implementation in thorugh ExpList.
510 for (int imp = 0; imp < coll.size(); ++imp)
511 {
512 if (coll[imp].HasOperator(OpType))
513 {
514 t.Start();
515 for (int n = 0; n < Ntest[i]; ++n)
516 {
517 coll[imp].ApplyOperator(OpType, inarray, outarray1,
518 outarray2, outarray3);
519 }
520 t.Stop();
521 timing[imp] = t.TimePerTest(Ntest[i]);
522 }
523 else
524 {
525 timing[imp] = 1000.0;
526 }
527 }
528 // determine optimal implementation. Note +1 to
529 // remove NoImplementationType flag
530 int minImp = Vmath::Imin(coll.size(), timing, 1) + 1;
531
532 if (verbose)
533 {
534 cout << "\t " << OperatorTypeMap1[i] << ": \t"
535 << ImplementationTypeMap1[minImp] << "\t (";
536 for (int j = 0; j < coll.size(); ++j)
537 {
538 if (timing[j] > 999.0)
539 {
540 cout << " -- ";
541 }
542 else
543 {
544 cout << timing[j];
545 }
546 if (j != coll.size() - 1)
547 {
548 cout << ", ";
549 }
550 }
551 cout << ")" << endl;
552 }
553
554 // set up new map
555 ret[OpType] = (ImplementationType)minImp;
556 }
557
558 // store map for use by another expansion.
559 if (m_opImpMap.count(m_timeLevel) == 0)
560 {
561 m_opImpMap[m_timeLevel] = map<OpImpTimingKey, OperatorImpMap>();
562 }
563 m_opImpMap[m_timeLevel][OpKey] = ret;
564 return ret;
565}
566
569{
570 if (comm->IsParallelInTime() && comm->GetTimeComm()->GetRank() > 0)
571 {
572 // No need to repeatly update the optfile for each time chunk.
573 return;
574 }
575
576 std::string outname = sessName.substr(0, sessName.find("_xml/")) + ".opt";
577
578 TiXmlDocument doc;
579 TiXmlElement *root;
580 TiXmlElement *xmlCol = new TiXmlElement("COLLECTIONS");
581 GlobalOpMap global;
582 int rank = comm->GetSpaceComm()->GetRank();
583 if (rank == 0)
584 {
585 if (!doc.LoadFile(outname)) // set up new file
586 {
587 TiXmlDeclaration *decl = new TiXmlDeclaration("1.0", "utf-8", "");
588 doc.LinkEndChild(decl);
589 root = new TiXmlElement("NEKTAR");
590 doc.LinkEndChild(root);
591 root->LinkEndChild(xmlCol);
592 if (comm->IsParallelInTime())
593 {
594 // Add timelevel tag
595 xmlCol = new TiXmlElement("TIMELEVEL");
596 xmlCol->SetAttribute("VALUE", 0);
597 root->FirstChildElement("COLLECTIONS")->LinkEndChild(xmlCol);
598 }
599 }
600 else // load file and read operator information
601 {
602 root = doc.FirstChildElement("NEKTAR");
603 xmlCol = root->FirstChildElement("COLLECTIONS");
605 xmlCol, m_timeLevel, false);
606 if (xmlCol)
607 {
608 // Read existing data
609 bool verbose = false;
610 ReadCollOps(xmlCol, global, verbose);
611 }
612 else
613 {
614 // Add timelevel tag
615 xmlCol = new TiXmlElement("TIMELEVEL");
616 xmlCol->SetAttribute("VALUE", m_timeLevel);
617 root->FirstChildElement("COLLECTIONS")->LinkEndChild(xmlCol);
618 }
619 }
620 }
621
622 // update global with m_opImpMap info
623 map<LibUtilities::ShapeType, int> ShapeMaxSize;
624 for (auto &opimp : m_opImpMap[m_timeLevel])
625 {
626 bool updateShape = true;
627 LibUtilities::ShapeType shape = opimp.first.GetShapeType();
628
629 // check to see if already added this shapes details but with
630 // a larger collection and if so do not update.
631 if (ShapeMaxSize.count(shape))
632 {
633 int ngeoms = opimp.first.GetNGeoms();
634 if (ngeoms > ShapeMaxSize[shape])
635 {
636 ShapeMaxSize[shape] = ngeoms;
637 }
638 else
639 {
640 updateShape = false;
641 }
642 }
643
644 if (updateShape)
645 {
646 for (auto &op : opimp.second)
647 {
648 global[op.first][ElmtOrder(shape, -1)] = op.second;
649 }
650 }
651 }
652
653 // loop over operators
654 for (auto &op : global)
655 {
656 // check to see which shapes are defined in this proc
659 for (auto &el : op.second)
660 {
661 ElmtImp[el.first.first] = el.second;
662 ElmtDef[el.first.first] = true;
663 }
664
665 comm->GetSpaceComm()->AllReduce(ElmtImp, LibUtilities::ReduceMax);
666
667 // loop over elements and update if not already defined
668 if (rank == 0)
669 {
670 for (int i = 1; i < LibUtilities::SIZE_ShapeType; ++i)
671 {
672 if ((ElmtImp[i] != -1) && (ElmtDef[i] == false))
673 {
674 global[op.first]
676 (ImplementationType)ElmtImp[i];
677 }
678 }
679 }
680 }
681
682 // Update Collection section with global data on root
683 if (rank == 0)
684 {
685 xmlCol->Clear();
686
687 map<LibUtilities::ShapeType, string> ShapeLetMap = {
695
696 for (auto &op : global)
697 {
698 TiXmlElement *ColOp = new TiXmlElement("OPERATOR");
699 xmlCol->LinkEndChild(ColOp);
700 ColOp->SetAttribute("TYPE", OperatorTypeMap[op.first]);
701
702 for (auto &el : op.second)
703 {
704 TiXmlElement *ElmtOp = new TiXmlElement("ELEMENT");
705 ColOp->LinkEndChild(ElmtOp);
706
707 ElmtOp->SetAttribute("TYPE", ShapeLetMap[el.first.first]);
708 ElmtOp->SetAttribute("ORDER", "*");
709 ElmtOp->SetAttribute("IMPTYPE",
710 ImplementationTypeMap[el.second]);
711 }
712 }
713
714 doc.SaveFile(outname);
715 }
716}
717
718} // namespace Nektar::Collections
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:208
COLLECTIONS_EXPORT void Initialise(const OperatorType opType, StdRegions::FactorMap factors=StdRegions::NullFactorMap)
Definition: Collection.cpp:61
COLLECTIONS_EXPORT OperatorImpMap SetWithTimings(std::vector< StdRegions::StdExpansionSharedPtr > pGeom, OperatorImpMap &impTypes, bool verbose=true)
COLLECTIONS_EXPORT void UpdateOptFile(std::string sessName, LibUtilities::CommSharedPtr &comm)
static std::map< size_t, std::map< OpImpTimingKey, OperatorImpMap > > m_opImpMap
COLLECTIONS_EXPORT CollectionOptimisation(LibUtilities::SessionReaderSharedPtr pSession, const int shapedim, ImplementationType defaultType=eStdMat)
COLLECTIONS_EXPORT OperatorImpMap GetOperatorImpMap(StdRegions::StdExpansionSharedPtr pExp)
Get Operator Implementation Map from XMl or using default;.
std::map< OperatorType, std::map< ElmtOrder, ImplementationType > > GlobalOpMap
std::pair< LibUtilities::ShapeType, int > ElmtOrder
void ReadCollOps(TiXmlElement *xmlCol, GlobalOpMap &global, bool verbose)
static void GetXMLElementTimeLevel(TiXmlElement *&element, const size_t timeLevel, const bool enableCheck=true)
Get XML elment time level (Parallel-in-Time)
NekDouble TimePerTest(unsigned int n)
Returns amount of seconds per iteration in a test with n iterations.
Definition: Timer.cpp:65
static bool GenerateSeqVector(const std::string &str, std::vector< unsigned int > &out)
Takes a comma-separated compressed string and converts it to entries in a vector.
Definition: ParseUtils.cpp:104
std::map< OperatorType, ImplementationType > OperatorImpMap
Definition: Operator.h:126
const char *const ImplementationTypeMap[]
Definition: Operator.h:92
const char *const ImplementationTypeMap1[]
Definition: Operator.h:99
const char *const OperatorTypeMap[]
Definition: Operator.h:73
std::tuple< LibUtilities::ShapeType, OperatorType, ImplementationType, ExpansionIsNodal > OperatorKey
Key for describing an Operator.
Definition: Operator.h:115
OperatorFactory & GetOperatorFactory()
Returns the singleton Operator factory object.
Definition: Operator.cpp:44
const char *const OperatorTypeMap1[]
Definition: Operator.h:77
std::vector< Collection > CollectionVector
Definition: Collection.h:118
const char *const ShapeTypeMap[SIZE_ShapeType]
Definition: ShapeType.hpp:75
std::shared_ptr< SessionReader > SessionReaderSharedPtr
std::shared_ptr< Comm > CommSharedPtr
Pointer to a Communicator object.
Definition: Comm.h:55
constexpr unsigned int ShapeTypeDimMap[SIZE_ShapeType]
Definition: ShapeType.hpp:81
std::shared_ptr< StdExpansion > StdExpansionSharedPtr
std::map< ConstFactorType, NekDouble > ConstFactorMap
Definition: StdRegions.hpp:402
StdRegions::ConstFactorMap factors
double NekDouble
int Imin(int n, const T *x, const int incx)
Return the index of the minimum element in x.
Definition: Vmath.hpp:704