Nektar++
ProcessJacobianEnergy.cpp
Go to the documentation of this file.
1////////////////////////////////////////////////////////////////////////////////
2//
3// File: ProcessJacobianEnergy.cpp
4//
5// For more information, please see: http://www.nektar.info/
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Compute energy of Jacobian.
32//
33////////////////////////////////////////////////////////////////////////////////
34
35#include <iostream>
36#include <string>
37using namespace std;
38
40
42
43namespace Nektar::FieldUtils
44{
45
48 ModuleKey(eProcessModule, "jacobianenergy"),
50 "Show high frequency energy of Jacobian.");
51
53 : ProcessModule(f)
54{
55 m_config["topmodes"] =
56 ConfigOption(false, "1", "how many top modes to keep ");
57}
58
60{
61}
62
63void ProcessJacobianEnergy::v_Process(po::variables_map &vm)
64{
65 m_f->SetUpExp(vm);
66
67 int nfields = m_f->m_variables.size();
68 m_f->m_variables.push_back("jacenergy");
69 // Skip in case of empty partition
70 if (m_f->m_exp[0]->GetNumElmts() == 0)
71 {
72 return;
73 }
74
75 int NumHomogeneousDir = m_f->m_numHomogeneousDir;
77
78 if (nfields)
79 {
80 m_f->m_exp.resize(nfields + 1);
81 exp = m_f->AppendExpList(NumHomogeneousDir);
82 m_f->m_exp[nfields] = exp;
83 }
84 else
85 {
86 exp = m_f->m_exp[0];
87 }
88
89 Array<OneD, NekDouble> phys = exp->UpdatePhys();
90 Array<OneD, NekDouble> coeffs = exp->UpdateCoeffs();
92
93 for (int i = 0; i < exp->GetExpSize(); ++i)
94 {
95 // copy Jacobian into field
96 StdRegions::StdExpansionSharedPtr Elmt = exp->GetExp(i);
97
98 const StdRegions::StdExpansion *sep = &(*Elmt);
99 const LocalRegions::Expansion *lep =
100 dynamic_cast<const LocalRegions::Expansion *>(sep);
101
102 int nquad = Elmt->GetTotPoints();
103 int coeffoffset = exp->GetCoeff_Offset(i);
105 lep->GetMetricInfo()->GetJac(Elmt->GetPointsKeys());
106 if (lep->GetMetricInfo()->GetGtype() == SpatialDomains::eRegular)
107 {
108 Vmath::Fill(nquad, Jac[0], phys, 1);
109 }
110 else
111 {
112 Vmath::Vcopy(nquad, Jac, 1, phys, 1);
113 }
114
115 if (lep->GetMetricInfo()->GetGtype() == SpatialDomains::eDeformed)
116 {
117 NekDouble jacmax = Vmath::Vmax(nquad, Jac, 1);
118 NekDouble jacmin = Vmath::Vmin(nquad, Jac, 1);
119
120 NekDouble jacmeasure = jacmax / jacmin - 1.0;
121 Vmath::Fill(nquad, jacmeasure, phys, 1);
122 }
123 else
124 {
125 Vmath::Fill(nquad, 0.0, phys, 1);
126 }
127
128 Elmt->FwdTrans(phys, tmp = coeffs + coeffoffset);
129 }
130 exp->BwdTrans(coeffs, phys);
131}
132} // namespace Nektar::FieldUtils
FieldSharedPtr m_f
Field object.
Definition: Module.h:239
std::map< std::string, ConfigOption > m_config
List of configuration values.
Definition: Module.h:272
static std::shared_ptr< Module > create(FieldSharedPtr f)
Creates an instance of this class.
void v_Process(po::variables_map &vm) override
Write mesh to output file.
Abstract base class for processing modules.
Definition: Module.h:301
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:197
const SpatialDomains::GeomFactorsSharedPtr & GetMetricInfo() const
Definition: Expansion.cpp:246
The base class for all shapes.
Definition: StdExpansion.h:65
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:134
std::shared_ptr< Field > FieldSharedPtr
Definition: Field.hpp:990
std::pair< ModuleType, std::string > ModuleKey
Definition: Module.h:180
ModuleFactory & GetModuleFactory()
Definition: Module.cpp:47
std::shared_ptr< ExpList > ExpListSharedPtr
Shared pointer to an ExpList object.
@ eRegular
Geometry is straight-sided with constant geometric factors.
@ eDeformed
Geometry is curved or has non-constant factors.
std::shared_ptr< StdExpansion > StdExpansionSharedPtr
double NekDouble
T Vmin(int n, const T *x, const int incx)
Return the minimum element in x - called vmin to avoid conflict with min.
Definition: Vmath.hpp:725
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.hpp:54
T Vmax(int n, const T *x, const int incx)
Return the maximum element in x – called vmax to avoid conflict with max.
Definition: Vmath.hpp:644
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.hpp:825
Represents a command-line configuration option.
Definition: Module.h:129