Nektar++
Static Public Member Functions | Static Public Attributes | Protected Member Functions | Private Member Functions | Private Attributes | Friends | List of all members
Nektar::RinglebFlowBC Class Reference

Wall boundary conditions for compressible flow problems. More...

#include <RinglebFlowBC.h>

Inheritance diagram for Nektar::RinglebFlowBC:
[legend]

Static Public Member Functions

static CFSBndCondSharedPtr create (const LibUtilities::SessionReaderSharedPtr &pSession, const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const Array< OneD, Array< OneD, NekDouble > > &pTraceNormals, const int pSpaceDim, const int bcRegion, const int cnt)
 Creates an instance of this class. More...
 

Static Public Attributes

static std::string className
 Name of the class. More...
 

Protected Member Functions

void v_Apply (Array< OneD, Array< OneD, NekDouble > > &Fwd, Array< OneD, Array< OneD, NekDouble > > &physarray, const NekDouble &time) override
 
- Protected Member Functions inherited from Nektar::CFSBndCond
 CFSBndCond (const LibUtilities::SessionReaderSharedPtr &pSession, const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const Array< OneD, Array< OneD, NekDouble > > &pTraceNormals, const int pSpaceDim, const int bcRegion, const int cnt)
 Constructor. More...
 
virtual void v_Apply (Array< OneD, Array< OneD, NekDouble > > &Fwd, Array< OneD, Array< OneD, NekDouble > > &physarray, const NekDouble &time)=0
 
virtual void v_ApplyBwdWeight ()
 

Private Member Functions

 RinglebFlowBC (const LibUtilities::SessionReaderSharedPtr &pSession, const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const Array< OneD, Array< OneD, NekDouble > > &pTraceNormals, const int pSpaceDim, const int bcRegion, const int cnt)
 
 ~RinglebFlowBC (void) override
 

Private Attributes

int m_expdim
 
bool m_homo1D
 

Friends

class MemoryManager< RinglebFlowBC >
 

Additional Inherited Members

- Public Member Functions inherited from Nektar::CFSBndCond
virtual ~CFSBndCond ()
 
void Apply (Array< OneD, Array< OneD, NekDouble > > &Fwd, Array< OneD, Array< OneD, NekDouble > > &physarray, const NekDouble &time=0)
 Apply the boundary condition. More...
 
void ApplyBwdWeight ()
 Apply the Weight of boundary condition. More...
 
- Protected Attributes inherited from Nektar::CFSBndCond
LibUtilities::SessionReaderSharedPtr m_session
 Session reader. More...
 
Array< OneD, MultiRegions::ExpListSharedPtrm_fields
 Array of fields. More...
 
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
 Trace normals. More...
 
int m_spacedim
 Space dimension. More...
 
VariableConverterSharedPtr m_varConv
 Auxiliary object to convert variables. More...
 
NekDouble m_diffusionAveWeight
 Weight for average calculation of diffusion term. More...
 
NekDouble m_gamma
 Parameters of the flow. More...
 
NekDouble m_rhoInf
 
NekDouble m_pInf
 
NekDouble m_pOut
 
Array< OneD, NekDoublem_velInf
 
int m_bcRegion
 Id of the boundary region. More...
 
int m_offset
 Offset. More...
 

Detailed Description

Wall boundary conditions for compressible flow problems.

Definition at line 46 of file RinglebFlowBC.h.

Constructor & Destructor Documentation

◆ RinglebFlowBC()

Nektar::RinglebFlowBC::RinglebFlowBC ( const LibUtilities::SessionReaderSharedPtr pSession,
const Array< OneD, MultiRegions::ExpListSharedPtr > &  pFields,
const Array< OneD, Array< OneD, NekDouble > > &  pTraceNormals,
const int  pSpaceDim,
const int  bcRegion,
const int  cnt 
)
private

Definition at line 48 of file RinglebFlowBC.cpp.

53 : CFSBndCond(pSession, pFields, pTraceNormals, pSpaceDim, bcRegion, cnt)
54{
55 m_expdim = pFields[0]->GetGraph()->GetMeshDimension();
56
57 m_homo1D = false;
58 if (m_session->DefinesSolverInfo("HOMOGENEOUS"))
59 {
60 std::string HomoStr = m_session->GetSolverInfo("HOMOGENEOUS");
61 if ((HomoStr == "HOMOGENEOUS1D") || (HomoStr == "Homogeneous1D") ||
62 (HomoStr == "1D") || (HomoStr == "Homo1D"))
63 {
64 m_homo1D = true;
65 }
66 }
67}
CFSBndCond(const LibUtilities::SessionReaderSharedPtr &pSession, const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const Array< OneD, Array< OneD, NekDouble > > &pTraceNormals, const int pSpaceDim, const int bcRegion, const int cnt)
Constructor.
Definition: CFSBndCond.cpp:47
LibUtilities::SessionReaderSharedPtr m_session
Session reader.
Definition: CFSBndCond.h:89

References m_expdim, m_homo1D, and Nektar::CFSBndCond::m_session.

◆ ~RinglebFlowBC()

Nektar::RinglebFlowBC::~RinglebFlowBC ( void  )
inlineoverrideprivate

Definition at line 77 of file RinglebFlowBC.h.

77{};

Member Function Documentation

◆ create()

static CFSBndCondSharedPtr Nektar::RinglebFlowBC::create ( const LibUtilities::SessionReaderSharedPtr pSession,
const Array< OneD, MultiRegions::ExpListSharedPtr > &  pFields,
const Array< OneD, Array< OneD, NekDouble > > &  pTraceNormals,
const int  pSpaceDim,
const int  bcRegion,
const int  cnt 
)
inlinestatic

Creates an instance of this class.

Definition at line 52 of file RinglebFlowBC.h.

57 {
59 pSession, pFields, pTraceNormals, pSpaceDim, bcRegion, cnt);
60 return p;
61 }
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
std::shared_ptr< CFSBndCond > CFSBndCondSharedPtr
A shared pointer to a boundary condition object.
Definition: CFSBndCond.h:51

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and CellMLToNektar.cellml_metadata::p.

◆ v_Apply()

void Nektar::RinglebFlowBC::v_Apply ( Array< OneD, Array< OneD, NekDouble > > &  Fwd,
Array< OneD, Array< OneD, NekDouble > > &  physarray,
const NekDouble time 
)
overrideprotectedvirtual

Implements Nektar::CFSBndCond.

Definition at line 69 of file RinglebFlowBC.cpp.

72{
73 int nvariables = physarray.size();
74
75 // For 3DHomogenoeus1D
76 int n_planes = 1;
77 if (m_expdim == 2 && m_homo1D)
78 {
79 int nPointsTot = m_fields[0]->GetTotPoints();
80 int nPointsTot_plane = m_fields[0]->GetPlane(0)->GetTotPoints();
81 n_planes = nPointsTot / nPointsTot_plane;
82 }
83
84 int id2, id2_plane, e_max;
85
86 e_max = m_fields[0]->GetBndCondExpansions()[m_bcRegion]->GetExpSize();
87
88 for (int e = 0; e < e_max; ++e)
89 {
90 int npoints = m_fields[0]
91 ->GetBndCondExpansions()[m_bcRegion]
92 ->GetExp(e)
93 ->GetTotPoints();
94 int id1 =
95 m_fields[0]->GetBndCondExpansions()[m_bcRegion]->GetPhys_Offset(e);
96
97 // For 3DHomogenoeus1D
98 if (m_expdim == 2 && m_homo1D)
99 {
100 int m_offset_plane = m_offset / n_planes;
101 int e_plane;
102 int e_max_plane = e_max / n_planes;
103 int nTracePts_plane = m_fields[0]->GetTrace()->GetNpoints();
104
105 int planeID = floor((e + 0.5) / e_max_plane);
106 e_plane = e - e_max_plane * planeID;
107
108 id2_plane = m_fields[0]->GetTrace()->GetPhys_Offset(
109 m_fields[0]->GetTraceMap()->GetBndCondIDToGlobalTraceID(
110 m_offset_plane + e_plane));
111 id2 = id2_plane + planeID * nTracePts_plane;
112 }
113 else // For general case
114 {
115 id2 = m_fields[0]->GetTrace()->GetPhys_Offset(
116 m_fields[0]->GetTraceMap()->GetBndCondIDToGlobalTraceID(
117 m_offset + e));
118 }
119
120 Array<OneD, NekDouble> x0(npoints, 0.0);
121 Array<OneD, NekDouble> x1(npoints, 0.0);
122 Array<OneD, NekDouble> x2(npoints, 0.0);
123
124 m_fields[0]->GetBndCondExpansions()[m_bcRegion]->GetExp(e)->GetCoords(
125 x0, x1, x2);
126
127 // Flow parameters
128 NekDouble c, k, phi, r, J, VV, pp, sint, P, ss;
129 NekDouble J11, J12, J21, J22, det;
130 NekDouble Fx, Fy;
131 NekDouble xi, yi;
132 NekDouble dV;
133 NekDouble dtheta;
134 NekDouble par1;
135 NekDouble theta = M_PI / 4.0;
136 NekDouble kExt = 0.7;
137 NekDouble V = kExt * sin(theta);
138 NekDouble toll = 1.0e-8;
139 NekDouble errV = 1.0;
140 NekDouble errTheta = 1.0;
141 NekDouble gamma = m_gamma;
142 NekDouble gamma_1_2 = (gamma - 1.0) / 2.0;
143
144 // Loop on all the points of that edge
145 for (int j = 0; j < npoints; j++)
146 {
147
148 while ((abs(errV) > toll) || (abs(errTheta) > toll))
149 {
150 VV = V * V;
151 sint = sin(theta);
152 c = sqrt(1.0 - gamma_1_2 * VV);
153 k = V / sint;
154 phi = 1.0 / k;
155 pp = phi * phi;
156 J = 1.0 / c + 1.0 / (3.0 * c * c * c) +
157 1.0 / (5.0 * c * c * c * c * c) -
158 0.5 * log((1.0 + c) / (1.0 - c));
159
160 r = pow(c, 1.0 / gamma_1_2);
161 xi = 1.0 / (2.0 * r) * (1.0 / VV - 2.0 * pp) + J / 2.0;
162 yi = phi / (r * V) * sqrt(1.0 - VV * pp);
163 par1 = 25.0 - 5.0 * VV;
164 ss = sint * sint;
165
166 Fx = xi - x0[j];
167 Fy = yi - x1[j];
168
169 J11 =
170 39062.5 / pow(par1, 3.5) * (1.0 / VV - 2.0 / VV * ss) * V +
171 1562.5 / pow(par1, 2.5) *
172 (-2.0 / (VV * V) + 4.0 / (VV * V) * ss) +
173 12.5 / pow(par1, 1.5) * V + 312.5 / pow(par1, 2.5) * V +
174 7812.5 / pow(par1, 3.5) * V -
175 0.25 *
176 (-1.0 / pow(par1, 0.5) * V /
177 (1.0 - 0.2 * pow(par1, 0.5)) -
178 (1.0 + 0.2 * pow(par1, 0.5)) /
179 pow((1.0 - 0.2 * pow(par1, 0.5)), 2.0) /
180 pow(par1, 0.5) * V) /
181 (1.0 + 0.2 * pow(par1, 0.5)) *
182 (1.0 - 0.2 * pow(par1, 0.5));
183
184 J12 = -6250.0 / pow(par1, 2.5) / VV * sint * cos(theta);
185 J21 =
186 -6250.0 / (VV * V) * sint / pow(par1, 2.5) *
187 pow((1.0 - ss), 0.5) +
188 78125.0 / V * sint / pow(par1, 3.5) * pow((1.0 - ss), 0.5);
189
190 // the matrix is singular when theta = pi/2
191 if (abs(x1[j]) < toll && abs(cos(theta)) < toll)
192 {
193 J22 = -39062.5 / pow(par1, 3.5) / V +
194 3125 / pow(par1, 2.5) / (VV * V) +
195 12.5 / pow(par1, 1.5) * V +
196 312.5 / pow(par1, 2.5) * V +
197 7812.5 / pow(par1, 3.5) * V -
198 0.25 *
199 (-1.0 / pow(par1, 0.5) * V /
200 (1.0 - 0.2 * pow(par1, 0.5)) -
201 (1.0 + 0.2 * pow(par1, 0.5)) /
202 pow((1.0 - 0.2 * pow(par1, 0.5)), 2.0) /
203 pow(par1, 0.5) * V) /
204 (1.0 + 0.2 * pow(par1, 0.5)) *
205 (1.0 - 0.2 * pow(par1, 0.5));
206
207 // dV = -dV/dx * Fx
208 dV = -1.0 / J22 * Fx;
209 dtheta = 0.0;
210 theta = M_PI / 2.0;
211 }
212 else
213 {
214 J22 = 3125.0 / VV * cos(theta) / pow(par1, 2.5) *
215 pow((1.0 - ss), 0.5) -
216 3125.0 / VV * ss / pow(par1, 2.5) /
217 pow((1.0 - ss), 0.5) * cos(theta);
218
219 det = -1.0 / (J11 * J22 - J12 * J21);
220
221 // [dV dtheta]' = -[invJ]*[Fx Fy]'
222 dV = det * (J22 * Fx - J12 * Fy);
223 dtheta = det * (-J21 * Fx + J11 * Fy);
224 }
225
226 V = V + dV;
227 theta = theta + dtheta;
228
229 errV = abs(dV);
230 errTheta = abs(dtheta);
231 }
232
233 c = sqrt(1.0 - gamma_1_2 * VV);
234 int kk = id2 + j;
235 NekDouble timeramp = 200.0;
236 ;
237 if (time < timeramp &&
238 !(m_session->DefinesFunction("InitialConditions") &&
239 m_session->GetFunctionType("InitialConditions", 0) ==
241 {
242 Fwd[0][kk] =
243 pow(c, 1.0 / gamma_1_2) * exp(-1.0 + time / timeramp);
244
245 Fwd[1][kk] =
246 Fwd[0][kk] * V * cos(theta) * exp(-1 + time / timeramp);
247
248 Fwd[2][kk] =
249 Fwd[0][kk] * V * sin(theta) * exp(-1 + time / timeramp);
250 }
251 else
252 {
253 Fwd[0][kk] = pow(c, 1.0 / gamma_1_2);
254 Fwd[1][kk] = Fwd[0][kk] * V * cos(theta);
255 Fwd[2][kk] = Fwd[0][kk] * V * sin(theta);
256 }
257
258 P = (c * c) * Fwd[0][kk] / gamma;
259 Fwd[3][kk] = P / (gamma - 1.0) +
260 0.5 * (Fwd[1][kk] * Fwd[1][kk] / Fwd[0][kk] +
261 Fwd[2][kk] * Fwd[2][kk] / Fwd[0][kk]);
262
263 errV = 1.0;
264 errTheta = 1.0;
265 theta = M_PI / 4.0;
266 V = kExt * sin(theta);
267 }
268
269 for (int i = 0; i < nvariables; ++i)
270 {
271 Vmath::Vcopy(npoints, &Fwd[i][id2], 1,
272 &(m_fields[i]
273 ->GetBndCondExpansions()[m_bcRegion]
274 ->UpdatePhys())[id1],
275 1);
276 }
277 }
278}
NekDouble m_gamma
Parameters of the flow.
Definition: CFSBndCond.h:102
int m_bcRegion
Id of the boundary region.
Definition: CFSBndCond.h:109
int m_offset
Offset.
Definition: CFSBndCond.h:111
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array of fields.
Definition: CFSBndCond.h:91
@ P
Monomial polynomials .
Definition: BasisType.h:62
double NekDouble
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.hpp:825
scalarT< T > abs(scalarT< T > in)
Definition: scalar.hpp:298
scalarT< T > log(scalarT< T > in)
Definition: scalar.hpp:303
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294

References tinysimd::abs(), Nektar::LibUtilities::eFunctionTypeFile, tinysimd::log(), Nektar::CFSBndCond::m_bcRegion, m_expdim, Nektar::CFSBndCond::m_fields, Nektar::CFSBndCond::m_gamma, m_homo1D, Nektar::CFSBndCond::m_offset, Nektar::CFSBndCond::m_session, Nektar::LibUtilities::P, tinysimd::sqrt(), and Vmath::Vcopy().

Friends And Related Function Documentation

◆ MemoryManager< RinglebFlowBC >

friend class MemoryManager< RinglebFlowBC >
friend

Definition at line 1 of file RinglebFlowBC.h.

Member Data Documentation

◆ className

std::string Nektar::RinglebFlowBC::className
static
Initial value:
=
"RinglebFlow", RinglebFlowBC::create,
"Ringleb flow boundary condition.")
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:197
static CFSBndCondSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession, const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const Array< OneD, Array< OneD, NekDouble > > &pTraceNormals, const int pSpaceDim, const int bcRegion, const int cnt)
Creates an instance of this class.
Definition: RinglebFlowBC.h:52
CFSBndCondFactory & GetCFSBndCondFactory()
Declaration of the boundary condition factory singleton.
Definition: CFSBndCond.cpp:41

Name of the class.

Definition at line 64 of file RinglebFlowBC.h.

◆ m_expdim

int Nektar::RinglebFlowBC::m_expdim
private

Definition at line 79 of file RinglebFlowBC.h.

Referenced by RinglebFlowBC(), and v_Apply().

◆ m_homo1D

bool Nektar::RinglebFlowBC::m_homo1D
private

Definition at line 80 of file RinglebFlowBC.h.

Referenced by RinglebFlowBC(), and v_Apply().