Nektar++
Public Member Functions | Protected Member Functions | Private Member Functions | List of all members
Nektar::StdRegions::StdTetExp Class Reference

#include <StdTetExp.h>

Inheritance diagram for Nektar::StdRegions::StdTetExp:
[legend]

Public Member Functions

 StdTetExp (const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc)
 
 StdTetExp (const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc, NekDouble *coeffs, NekDouble *phys)
 
 StdTetExp (const StdTetExp &T)=default
 
 ~StdTetExp () override=default
 
LibUtilities::ShapeType DetShapeType () const
 
NekDouble PhysEvaluate3D (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 Single Point Evaluation. More...
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion3D
 StdExpansion3D (int numcoeffs, const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc)
 
 StdExpansion3D ()=default
 
 StdExpansion3D (const StdExpansion3D &T)=default
 
 ~StdExpansion3D () override=default
 
void PhysTensorDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray_d1, Array< OneD, NekDouble > &outarray_d2, Array< OneD, NekDouble > &outarray_d3)
 Calculate the 3D derivative in the local tensor/collapsed coordinate at the physical points. More...
 
void BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
void IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
int GetNedges () const
 return the number of edges in 3D expansion More...
 
int GetEdgeNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th edge. More...
 
void GetEdgeInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards)
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion
 StdExpansion ()
 Default Constructor. More...
 
 StdExpansion (const int numcoeffs, const int numbases, const LibUtilities::BasisKey &Ba=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bb=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bc=LibUtilities::NullBasisKey)
 Constructor. More...
 
 StdExpansion (const StdExpansion &T)
 Copy Constructor. More...
 
virtual ~StdExpansion ()
 Destructor. More...
 
int GetNumBases () const
 This function returns the number of 1D bases used in the expansion. More...
 
const Array< OneD, const LibUtilities::BasisSharedPtr > & GetBase () const
 This function gets the shared point to basis. More...
 
const LibUtilities::BasisSharedPtrGetBasis (int dir) const
 This function gets the shared point to basis in the dir direction. More...
 
int GetNcoeffs (void) const
 This function returns the total number of coefficients used in the expansion. More...
 
int GetTotPoints () const
 This function returns the total number of quadrature points used in the element. More...
 
LibUtilities::BasisType GetBasisType (const int dir) const
 This function returns the type of basis used in the dir direction. More...
 
int GetBasisNumModes (const int dir) const
 This function returns the number of expansion modes in the dir direction. More...
 
int EvalBasisNumModesMax (void) const
 This function returns the maximum number of expansion modes over all local directions. More...
 
LibUtilities::PointsType GetPointsType (const int dir) const
 This function returns the type of quadrature points used in the dir direction. More...
 
int GetNumPoints (const int dir) const
 This function returns the number of quadrature points in the dir direction. More...
 
const Array< OneD, const NekDouble > & GetPoints (const int dir) const
 This function returns a pointer to the array containing the quadrature points in dir direction. More...
 
int GetNverts () const
 This function returns the number of vertices of the expansion domain. More...
 
int GetTraceNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th trace. More...
 
int GetTraceIntNcoeffs (const int i) const
 
int GetTraceNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th trace. More...
 
const LibUtilities::BasisKey GetTraceBasisKey (const int i, int k=-1) const
 This function returns the basis key belonging to the i-th trace. More...
 
LibUtilities::PointsKey GetTracePointsKey (const int i, int k=-1) const
 This function returns the basis key belonging to the i-th trace. More...
 
int NumBndryCoeffs (void) const
 
int NumDGBndryCoeffs (void) const
 
const LibUtilities::PointsKey GetNodalPointsKey () const
 This function returns the type of expansion Nodal point type if defined. More...
 
int GetNtraces () const
 Returns the number of trace elements connected to this element. More...
 
LibUtilities::ShapeType DetShapeType () const
 This function returns the shape of the expansion domain. More...
 
std::shared_ptr< StdExpansionGetStdExp () const
 
std::shared_ptr< StdExpansionGetLinStdExp (void) const
 
int GetShapeDimension () const
 
bool IsBoundaryInteriorExpansion () const
 
bool IsNodalNonTensorialExp ()
 
void BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Backward transformation from coefficient space to physical space. More...
 
void FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Forward transformation from physical space to coefficient space. More...
 
void FwdTransBndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble Integral (const Array< OneD, const NekDouble > &inarray)
 This function integrates the specified function over the domain. More...
 
void FillMode (const int mode, Array< OneD, NekDouble > &outarray)
 This function fills the array outarray with the mode-th mode of the expansion. More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 this function calculates the inner product of a given function f with the different modes of the expansion More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &base, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int coll_check)
 
void IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDirectionalDerivBase (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
int GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void SetElmtId (const int id)
 Set the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2=NullNekDouble1DArray, Array< OneD, NekDouble > &coords_3=NullNekDouble1DArray)
 this function returns the physical coordinates of the quadrature points of the expansion More...
 
void GetCoord (const Array< OneD, const NekDouble > &Lcoord, Array< OneD, NekDouble > &coord)
 given the coordinates of a point of the element in the local collapsed coordinate system, this function calculates the physical coordinates of the point More...
 
DNekMatSharedPtr GetStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr GetStdStaticCondMatrix (const StdMatrixKey &mkey)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
DNekScalBlkMatSharedPtr GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
void DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
int CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
NekDouble StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
int GetCoordim ()
 
void GetBoundaryMap (Array< OneD, unsigned int > &outarray)
 
void GetInteriorMap (Array< OneD, unsigned int > &outarray)
 
int GetVertexMap (const int localVertexId, bool useCoeffPacking=false)
 
void GetTraceToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards, int P=-1, int Q=-1)
 
void GetTraceCoeffMap (const unsigned int traceid, Array< OneD, unsigned int > &maparray)
 
void GetElmtTraceToTraceMap (const unsigned int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards, int P=-1, int Q=-1)
 
void GetTraceInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, const Orientation traceOrient=eForwards)
 
void GetTraceNumModes (const int tid, int &numModes0, int &numModes1, const Orientation traceOrient=eDir1FwdDir1_Dir2FwdDir2)
 
void MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
DNekMatSharedPtr CreateGeneralMatrix (const StdMatrixKey &mkey)
 this function generates the mass matrix \(\mathbf{M}[i][j] = \int \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x}\) More...
 
void GeneralMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdMatrixKey &mkey)
 
void ExponentialFilter (Array< OneD, NekDouble > &array, const NekDouble alpha, const NekDouble exponent, const NekDouble cutoff)
 
void LaplacianMatrixOp (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
DNekMatSharedPtr GenMatrix (const StdMatrixKey &mkey)
 
void PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void PhysDeriv_s (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_ds)
 
void PhysDeriv_n (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_dn)
 
void PhysDirectionalDeriv (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &direction, Array< OneD, NekDouble > &outarray)
 
void StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs)
 This function evaluates the first derivative of the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs, std::array< NekDouble, 6 > &secondOrderDerivs)
 
NekDouble PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluateBasis (const Array< OneD, const NekDouble > &coords, int mode)
 This function evaluates the basis function mode mode at a point coords of the domain. More...
 
void LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
 Convert local cartesian coordinate xi into local collapsed coordinates eta. More...
 
void LocCollapsedToLocCoord (const Array< OneD, const NekDouble > &eta, Array< OneD, NekDouble > &xi)
 Convert local collapsed coordinates eta into local cartesian coordinate xi. More...
 
virtual int v_CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
virtual DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
virtual void v_DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
NekDouble Linf (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( L_\infty\) error \( |\epsilon|_\infty = \max |u - u_{exact}|\) where \( u_{exact}\) is given by the array sol. More...
 
NekDouble L2 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( L_2\) error, \( | \epsilon |_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 dx \right]^{1/2} d\xi_1 \) where \( u_{exact}\) is given by the array sol. More...
 
NekDouble H1 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( H^1\) error, \( | \epsilon |^1_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 + \nabla(u - u_{exact})\cdot\nabla(u - u_{exact})\cdot dx \right]^{1/2} d\xi_1 \) where \( u_{exact}\) is given by the array sol. More...
 
const LibUtilities::PointsKeyVector GetPointsKeys () const
 
DNekMatSharedPtr BuildInverseTransformationMatrix (const DNekScalMatSharedPtr &m_transformationmatrix)
 
void PhysInterpToSimplexEquiSpaced (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int npset=-1)
 This function performs an interpolation from the physical space points provided at input into an array of equispaced points which are not the collapsed coordinate. So for a tetrahedron you will only get a tetrahedral number of values. More...
 
void GetSimplexEquiSpacedConnectivity (Array< OneD, int > &conn, bool standard=true)
 This function provides the connectivity of local simplices (triangles or tets) to connect the equispaced data points provided by PhysInterpToSimplexEquiSpaced. More...
 
void EquiSpacedToCoeffs (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs a projection/interpolation from the equispaced points sometimes used in post-processing onto the coefficient space. More...
 
template<class T >
std::shared_ptr< T > as ()
 
void IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
 
void GenStdMatBwdDeriv (const int dir, DNekMatSharedPtr &mat)
 

Protected Member Functions

void v_PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_dx, Array< OneD, NekDouble > &out_dy, Array< OneD, NekDouble > &out_dz) override
 Calculate the derivative of the physical points. More...
 
void v_PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2) override
 
void v_StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2) override
 
void v_FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true) override
 
void v_IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2) override
 
void v_IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta) override
 
void v_LocCollapsedToLocCoord (const Array< OneD, const NekDouble > &eta, Array< OneD, NekDouble > &xi) override
 
void v_GetCoords (Array< OneD, NekDouble > &coords_x, Array< OneD, NekDouble > &coords_y, Array< OneD, NekDouble > &coords_z) override
 
void v_FillMode (const int mode, Array< OneD, NekDouble > &outarray) override
 
NekDouble v_PhysEvaluateBasis (const Array< OneD, const NekDouble > &coords, int mode) final
 
NekDouble v_PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs) override
 
void v_GetTraceNumModes (const int fid, int &numModes0, int &numModes1, Orientation traceOrient=eDir1FwdDir1_Dir2FwdDir2) override
 
int v_GetNverts () const override
 
int v_GetNedges () const override
 
int v_GetNtraces () const override
 
LibUtilities::ShapeType v_DetShapeType () const override
 
int v_NumBndryCoeffs () const override
 
int v_NumDGBndryCoeffs () const override
 
int v_GetTraceNcoeffs (const int i) const override
 
int v_GetTraceIntNcoeffs (const int i) const override
 
int v_GetTraceNumPoints (const int i) const override
 
int v_GetEdgeNcoeffs (const int i) const override
 
LibUtilities::PointsKey v_GetTracePointsKey (const int i, const int j) const override
 
int v_CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset) override
 
const LibUtilities::BasisKey v_GetTraceBasisKey (const int i, const int k) const override
 
bool v_IsBoundaryInteriorExpansion () const override
 
int v_GetVertexMap (int localVertexId, bool useCoeffPacking=false) override
 
void v_GetInteriorMap (Array< OneD, unsigned int > &outarray) override
 
void v_GetBoundaryMap (Array< OneD, unsigned int > &outarray) override
 
void v_GetTraceCoeffMap (const unsigned int fid, Array< OneD, unsigned int > &maparray) override
 
void v_GetElmtTraceToTraceMap (const unsigned int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards, int P=-1, int Q=-1) override
 
void v_GetEdgeInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, const Orientation traceOrient=eDir1FwdDir1_Dir2FwdDir2) override
 
void v_GetTraceInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, const Orientation traceOrient=eDir1FwdDir1_Dir2FwdDir2) override
 
DNekMatSharedPtr v_GenMatrix (const StdMatrixKey &mkey) override
 
DNekMatSharedPtr v_CreateStdMatrix (const StdMatrixKey &mkey) override
 
void v_MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdMatrixKey &mkey) override
 
void v_ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_GetSimplexEquiSpacedConnectivity (Array< OneD, int > &conn, bool standard=true) override
 
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion3D
NekDouble v_PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals) override
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble v_PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals) override
 
NekDouble v_PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs) override
 
virtual void v_BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)=0
 
virtual void v_IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)=0
 
void v_LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
 
void v_HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
 
NekDouble v_Integral (const Array< OneD, const NekDouble > &inarray) override
 Integrates the specified function over the domain. More...
 
virtual int v_GetNedges (void) const
 
virtual int v_GetEdgeNcoeffs (const int i) const
 
NekDouble BaryTensorDeriv (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs)
 
virtual void v_GetEdgeInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards)
 
void v_GetTraceToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient, int P, int Q) override
 
void v_GenStdMatBwdDeriv (const int dir, DNekMatSharedPtr &mat) override
 
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion
DNekMatSharedPtr CreateStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr CreateStdStaticCondMatrix (const StdMatrixKey &mkey)
 Create the static condensation of a matrix when using a boundary interior decomposition. More...
 
void BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDirectionalDerivBase_SumFac (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GeneralMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree_Kernel (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
 
void LaplacianMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp_MatFree (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void HelmholtzMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
virtual void v_SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_SetCoeffsToOrientation (Array< OneD, NekDouble > &coeffs, StdRegions::Orientation dir)
 
virtual NekDouble v_StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
virtual void v_GenStdMatBwdDeriv (const int dir, DNekMatSharedPtr &mat)
 
virtual void v_MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
template<int DIR, bool DERIV = false, bool DERIV2 = false>
NekDouble BaryEvaluate (const NekDouble &coord, const NekDouble *physvals, NekDouble &deriv, NekDouble &deriv2)
 This function performs the barycentric interpolation of the polynomial stored in coord at a point physvals using barycentric interpolation weights in direction. More...
 
template<int DIR>
NekDouble BaryEvaluateBasis (const NekDouble &coord, const int &mode)
 
template<int DIR, bool DERIV = false, bool DERIV2 = false>
NekDouble BaryEvaluate (const NekDouble &coord, const NekDouble *physvals)
 Helper function to pass an unused value by reference into BaryEvaluate. More...
 
template<int DIR, bool DERIV = false, bool DERIV2 = false>
NekDouble BaryEvaluate (const NekDouble &coord, const NekDouble *physvals, NekDouble &deriv)
 

Private Member Functions

int GetMode (const int i, const int j, const int k)
 Compute the mode number in the expansion for a particular tensorial combination. More...
 

Additional Inherited Members

- Protected Attributes inherited from Nektar::StdRegions::StdExpansion
Array< OneD, LibUtilities::BasisSharedPtrm_base
 
int m_elmt_id
 
int m_ncoeffs
 
LibUtilities::NekManager< StdMatrixKey, DNekMat, StdMatrixKey::opLessm_stdMatrixManager
 
LibUtilities::NekManager< StdMatrixKey, DNekBlkMat, StdMatrixKey::opLessm_stdStaticCondMatrixManager
 

Detailed Description

Definition at line 43 of file StdTetExp.h.

Constructor & Destructor Documentation

◆ StdTetExp() [1/3]

Nektar::StdRegions::StdTetExp::StdTetExp ( const LibUtilities::BasisKey Ba,
const LibUtilities::BasisKey Bb,
const LibUtilities::BasisKey Bc 
)

Definition at line 42 of file StdTetExp.cpp.

46 Ba.GetNumModes(), Bb.GetNumModes(), Bc.GetNumModes()),
47 3, Ba, Bb, Bc),
49 Ba.GetNumModes(), Bb.GetNumModes(), Bc.GetNumModes()),
50 Ba, Bb, Bc)
51{
52 ASSERTL0(Ba.GetNumModes() <= Bb.GetNumModes(),
53 "order in 'a' direction is higher than order "
54 "in 'b' direction");
55 ASSERTL0(Ba.GetNumModes() <= Bc.GetNumModes(),
56 "order in 'a' direction is higher than order "
57 "in 'c' direction");
58 ASSERTL0(Bb.GetNumModes() <= Bc.GetNumModes(),
59 "order in 'b' direction is higher than order "
60 "in 'c' direction");
61}
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:208
StdExpansion()
Default Constructor.
int getNumberOfCoefficients(int Na, int Nb, int Nc)
Definition: ShapeType.hpp:187

References ASSERTL0, and Nektar::LibUtilities::BasisKey::GetNumModes().

◆ StdTetExp() [2/3]

Nektar::StdRegions::StdTetExp::StdTetExp ( const LibUtilities::BasisKey Ba,
const LibUtilities::BasisKey Bb,
const LibUtilities::BasisKey Bc,
NekDouble coeffs,
NekDouble phys 
)

◆ StdTetExp() [3/3]

Nektar::StdRegions::StdTetExp::StdTetExp ( const StdTetExp T)
default

◆ ~StdTetExp()

Nektar::StdRegions::StdTetExp::~StdTetExp ( )
overridedefault

Member Function Documentation

◆ DetShapeType()

LibUtilities::ShapeType Nektar::StdRegions::StdTetExp::DetShapeType ( ) const
inline

◆ GetMode()

int Nektar::StdRegions::StdTetExp::GetMode ( const int  I,
const int  J,
const int  K 
)
private

Compute the mode number in the expansion for a particular tensorial combination.

Modes are numbered with the r index travelling fastest, followed by q and then p, and each q-r plane is of size (Q+1)*(Q+2)/2+max(0,R-Q-p)*Q. For example, when P=2, Q=3 and R=4 the indexing inside each q-r plane (with r increasing upwards and q to the right) is:

p = 0: p = 1: p = 2:

4 3 8 17 2 7 11 16 20 26 1 6 10 13 15 19 22 25 28 0 5 9 12 14 18 21 23 24 27 29

Note that in this element, we must have that \( P \leq Q \leq R\).

Definition at line 1907 of file StdTetExp.cpp.

1908{
1909 const int Q = m_base[1]->GetNumModes();
1910 const int R = m_base[2]->GetNumModes();
1911
1912 int i, j, q_hat, k_hat;
1913 int cnt = 0;
1914
1915 // Traverse to q-r plane number I
1916 for (i = 0; i < I; ++i)
1917 {
1918 // Size of triangle part
1919 q_hat = min(Q, R - i);
1920 // Size of rectangle part
1921 k_hat = max(R - Q - i, 0);
1922 cnt += q_hat * (q_hat + 1) / 2 + k_hat * Q;
1923 }
1924
1925 // Traverse to q column J
1926 q_hat = R - I;
1927 for (j = 0; j < J; ++j)
1928 {
1929 cnt += q_hat;
1930 q_hat--;
1931 }
1932
1933 // Traverse up stacks to K
1934 cnt += K;
1935
1936 return cnt;
1937}
Array< OneD, LibUtilities::BasisSharedPtr > m_base

References Nektar::StdRegions::StdExpansion::m_base.

Referenced by v_GetBoundaryMap(), v_GetEdgeInteriorToElementMap(), v_GetInteriorMap(), v_GetTraceCoeffMap(), v_GetTraceInteriorToElementMap(), and v_GetVertexMap().

◆ PhysEvaluate3D()

NekDouble Nektar::StdRegions::StdTetExp::PhysEvaluate3D ( const Array< OneD, const NekDouble > &  coords,
const Array< OneD, const NekDouble > &  physvals 
)

Single Point Evaluation.

◆ v_BwdTrans()

void Nektar::StdRegions::StdTetExp::v_BwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual
Note
'r' (base[2]) runs fastest in this element

\( u^{\delta} (\xi_{1i}, \xi_{2j}, \xi_{3k}) = \sum_{m(pqr)} \hat u_{pqr} \phi_{pqr} (\xi_{1i}, \xi_{2j}, \xi_{3k})\)

Backward transformation is three dimensional tensorial expansion \( u (\xi_{1i}, \xi_{2j}, \xi_{3k}) = \sum_{p=0}^{Q_x} \psi_p^a (\xi_{1i}) \lbrace { \sum_{q=0}^{Q_y} \psi_{pq}^b (\xi_{2j}) \lbrace { \sum_{r=0}^{Q_z} \hat u_{pqr} \psi_{pqr}^c (\xi_{3k}) \rbrace} \rbrace}. \) And sumfactorizing step of the form is as:\

\( f_{pq} (\xi_{3k}) = \sum_{r=0}^{Q_z} \hat u_{pqr} \psi_{pqr}^c (\xi_{3k}),\\ g_{p} (\xi_{2j}, \xi_{3k}) = \sum_{r=0}^{Q_y} \psi_{pq}^b (\xi_{2j}) f_{pq} (\xi_{3k}),\\ u(\xi_{1i}, \xi_{2j}, \xi_{3k}) = \sum_{p=0}^{Q_x} \psi_{p}^a (\xi_{1i}) g_{p} (\xi_{2j}, \xi_{3k}). \)

Implements Nektar::StdRegions::StdExpansion.

Definition at line 266 of file StdTetExp.cpp.

268{
271 "Basis[1] is not a general tensor type");
272
275 "Basis[2] is not a general tensor type");
276
277 if (m_base[0]->Collocation() && m_base[1]->Collocation() &&
278 m_base[2]->Collocation())
279 {
281 m_base[2]->GetNumPoints(),
282 inarray, 1, outarray, 1);
283 }
284 else
285 {
286 StdTetExp::v_BwdTrans_SumFac(inarray, outarray);
287 }
288}
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:242
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:156
int GetNumPoints(const int dir) const
This function returns the number of quadrature points in the dir direction.
Definition: StdExpansion.h:218
void v_BwdTrans_SumFac(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Definition: StdTetExp.cpp:293
@ eModified_B
Principle Modified Functions .
Definition: BasisType.h:49
@ eModified_C
Principle Modified Functions .
Definition: BasisType.h:50
@ eOrtho_C
Principle Orthogonal Functions .
Definition: BasisType.h:46
@ eOrtho_B
Principle Orthogonal Functions .
Definition: BasisType.h:44
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.hpp:825

References ASSERTL1, Nektar::LibUtilities::eModified_B, Nektar::LibUtilities::eModified_C, Nektar::LibUtilities::eOrtho_B, Nektar::LibUtilities::eOrtho_C, Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::StdRegions::StdExpansion::GetNumPoints(), Nektar::StdRegions::StdExpansion::m_base, v_BwdTrans_SumFac(), and Vmath::Vcopy().

Referenced by v_FillMode().

◆ v_BwdTrans_SumFac()

void Nektar::StdRegions::StdTetExp::v_BwdTrans_SumFac ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual

Sum-factorisation implementation of the BwdTrans operation.

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 293 of file StdTetExp.cpp.

295{
296 int nquad1 = m_base[1]->GetNumPoints();
297 int nquad2 = m_base[2]->GetNumPoints();
298 int order0 = m_base[0]->GetNumModes();
299 int order1 = m_base[1]->GetNumModes();
300
301 Array<OneD, NekDouble> wsp(nquad2 * order0 * (2 * order1 - order0 + 1) / 2 +
302 nquad2 * nquad1 * order0);
303
304 BwdTrans_SumFacKernel(m_base[0]->GetBdata(), m_base[1]->GetBdata(),
305 m_base[2]->GetBdata(), inarray, outarray, wsp, true,
306 true, true);
307}
void BwdTrans_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)

References Nektar::StdRegions::StdExpansion3D::BwdTrans_SumFacKernel(), and Nektar::StdRegions::StdExpansion::m_base.

Referenced by v_BwdTrans(), and Nektar::StdRegions::StdNodalTetExp::v_BwdTrans_SumFac().

◆ v_BwdTrans_SumFacKernel()

void Nektar::StdRegions::StdTetExp::v_BwdTrans_SumFacKernel ( const Array< OneD, const NekDouble > &  base0,
const Array< OneD, const NekDouble > &  base1,
const Array< OneD, const NekDouble > &  base2,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp,
bool  doCheckCollDir0,
bool  doCheckCollDir1,
bool  doCheckCollDir2 
)
overrideprotectedvirtual
Parameters
base0x-dirn basis matrix
base1y-dirn basis matrix
base2z-dirn basis matrix
inarrayInput vector of modes.
outarrayOutput vector of physical space data.
wspWorkspace of size Q_x*P_z*(P_y+Q_y)
doCheckCollDir0Check for collocation of basis.
doCheckCollDir1Check for collocation of basis.
doCheckCollDir2Check for collocation of basis.
Todo:
Account for some directions being collocated. See StdQuadExp as an example.

Implements Nektar::StdRegions::StdExpansion3D.

Definition at line 322 of file StdTetExp.cpp.

331{
332 int nquad0 = m_base[0]->GetNumPoints();
333 int nquad1 = m_base[1]->GetNumPoints();
334 int nquad2 = m_base[2]->GetNumPoints();
335
336 int order0 = m_base[0]->GetNumModes();
337 int order1 = m_base[1]->GetNumModes();
338 int order2 = m_base[2]->GetNumModes();
339
340 Array<OneD, NekDouble> tmp = wsp;
341 Array<OneD, NekDouble> tmp1 =
342 tmp + nquad2 * order0 * (2 * order1 - order0 + 1) / 2;
343
344 int i, j, mode, mode1, cnt;
345
346 // Perform summation over '2' direction
347 mode = mode1 = cnt = 0;
348 for (i = 0; i < order0; ++i)
349 {
350 for (j = 0; j < order1 - i; ++j, ++cnt)
351 {
352 Blas::Dgemv('N', nquad2, order2 - i - j, 1.0,
353 base2.get() + mode * nquad2, nquad2,
354 inarray.get() + mode1, 1, 0.0, tmp.get() + cnt * nquad2,
355 1);
356 mode += order2 - i - j;
357 mode1 += order2 - i - j;
358 }
359 // increment mode in case order1!=order2
360 for (j = order1 - i; j < order2 - i; ++j)
361 {
362 mode += order2 - i - j;
363 }
364 }
365
366 // fix for modified basis by adding split of top singular
367 // vertex mode - currently (1+c)/2 x (1-b)/2 x (1-a)/2
368 // component is evaluated
370 {
371 // top singular vertex - (1+c)/2 x (1+b)/2 x (1-a)/2 component
372 Blas::Daxpy(nquad2, inarray[1], base2.get() + nquad2, 1,
373 &tmp[0] + nquad2, 1);
374
375 // top singular vertex - (1+c)/2 x (1-b)/2 x (1+a)/2 component
376 Blas::Daxpy(nquad2, inarray[1], base2.get() + nquad2, 1,
377 &tmp[0] + order1 * nquad2, 1);
378 }
379
380 // Perform summation over '1' direction
381 mode = 0;
382 for (i = 0; i < order0; ++i)
383 {
384 Blas::Dgemm('N', 'T', nquad1, nquad2, order1 - i, 1.0,
385 base1.get() + mode * nquad1, nquad1,
386 tmp.get() + mode * nquad2, nquad2, 0.0,
387 tmp1.get() + i * nquad1 * nquad2, nquad1);
388 mode += order1 - i;
389 }
390
391 // fix for modified basis by adding additional split of
392 // top and base singular vertex modes as well as singular
393 // edge
395 {
396 // use tmp to sort out singular vertices and
397 // singular edge components with (1+b)/2 (1+a)/2 form
398 for (i = 0; i < nquad2; ++i)
399 {
400 Blas::Daxpy(nquad1, tmp[nquad2 + i], base1.get() + nquad1, 1,
401 &tmp1[nquad1 * nquad2] + i * nquad1, 1);
402 }
403 }
404
405 // Perform summation over '0' direction
406 Blas::Dgemm('N', 'T', nquad0, nquad1 * nquad2, order0, 1.0, base0.get(),
407 nquad0, tmp1.get(), nquad1 * nquad2, 0.0, outarray.get(),
408 nquad0);
409}
static void Dgemv(const char &trans, const int &m, const int &n, const double &alpha, const double *a, const int &lda, const double *x, const int &incx, const double &beta, double *y, const int &incy)
BLAS level 2: Matrix vector multiply y = alpha A x plus beta y where A[m x n].
Definition: Blas.hpp:211
static void Dgemm(const char &transa, const char &transb, const int &m, const int &n, const int &k, const double &alpha, const double *a, const int &lda, const double *b, const int &ldb, const double &beta, double *c, const int &ldc)
BLAS level 3: Matrix-matrix multiply C = A x B where op(A)[m x k], op(B)[k x n], C[m x n] DGEMM perfo...
Definition: Blas.hpp:383
static void Daxpy(const int &n, const double &alpha, const double *x, const int &incx, const double *y, const int &incy)
BLAS level 1: y = alpha x plus y.
Definition: Blas.hpp:135
@ eModified_A
Principle Modified Functions .
Definition: BasisType.h:48

References Blas::Daxpy(), Blas::Dgemm(), Blas::Dgemv(), Nektar::LibUtilities::eModified_A, Nektar::StdRegions::StdExpansion::GetBasisType(), and Nektar::StdRegions::StdExpansion::m_base.

◆ v_CalcNumberOfCoefficients()

int Nektar::StdRegions::StdTetExp::v_CalcNumberOfCoefficients ( const std::vector< unsigned int > &  nummodes,
int &  modes_offset 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1121 of file StdTetExp.cpp.

1123{
1125 nummodes[modes_offset], nummodes[modes_offset + 1],
1126 nummodes[modes_offset + 2]);
1127 modes_offset += 3;
1128
1129 return nmodes;
1130}

References Nektar::LibUtilities::StdTetData::getNumberOfCoefficients().

◆ v_CreateStdMatrix()

DNekMatSharedPtr Nektar::StdRegions::StdTetExp::v_CreateStdMatrix ( const StdMatrixKey mkey)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::TetExp.

Definition at line 1877 of file StdTetExp.cpp.

1878{
1879 return v_GenMatrix(mkey);
1880}
DNekMatSharedPtr v_GenMatrix(const StdMatrixKey &mkey) override
Definition: StdTetExp.cpp:1789

References v_GenMatrix().

◆ v_DetShapeType()

LibUtilities::ShapeType Nektar::StdRegions::StdTetExp::v_DetShapeType ( ) const
overrideprotectedvirtual

Implements Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::TetExp.

Definition at line 970 of file StdTetExp.cpp.

971{
973}

References Nektar::LibUtilities::eTetrahedron.

◆ v_FillMode()

void Nektar::StdRegions::StdTetExp::v_FillMode ( const int  mode,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 808 of file StdTetExp.cpp.

809{
810 Array<OneD, NekDouble> tmp(m_ncoeffs, 0.0);
811 tmp[mode] = 1.0;
812 StdTetExp::v_BwdTrans(tmp, outarray);
813}
void v_BwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Definition: StdTetExp.cpp:266

References Nektar::StdRegions::StdExpansion::m_ncoeffs, and v_BwdTrans().

Referenced by Nektar::StdRegions::StdNodalTetExp::GenNBasisTransMatrix().

◆ v_FwdTrans()

void Nektar::StdRegions::StdTetExp::v_FwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual
Parameters
inarrayarray of physical quadrature points to be transformed.
outarrayupdated array of expansion coefficients.

Implements Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::TetExp.

Definition at line 416 of file StdTetExp.cpp.

418{ // int numMax = nmodes0;
419 v_IProductWRTBase(inarray, outarray);
420
421 // get Mass matrix inverse
422 StdMatrixKey masskey(eInvMass, DetShapeType(), *this);
423 DNekMatSharedPtr matsys = GetStdMatrix(masskey);
424
425 // copy inarray in case inarray == outarray
426 DNekVec in(m_ncoeffs, outarray);
427 DNekVec out(m_ncoeffs, outarray, eWrapper);
428
429 out = (*matsys) * in;
430}
DNekMatSharedPtr GetStdMatrix(const StdMatrixKey &mkey)
Definition: StdExpansion.h:603
void v_IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Definition: StdTetExp.cpp:466
LibUtilities::ShapeType DetShapeType() const
Definition: StdTetExp.h:56
NekVector< NekDouble > DNekVec
Definition: NekTypeDefs.hpp:48
std::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:75

References DetShapeType(), Nektar::StdRegions::eInvMass, Nektar::eWrapper, Nektar::StdRegions::StdExpansion::GetStdMatrix(), Nektar::StdRegions::StdExpansion::m_ncoeffs, and v_IProductWRTBase().

◆ v_GenMatrix()

DNekMatSharedPtr Nektar::StdRegions::StdTetExp::v_GenMatrix ( const StdMatrixKey mkey)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::TetExp.

Definition at line 1789 of file StdTetExp.cpp.

1790{
1791
1792 MatrixType mtype = mkey.GetMatrixType();
1793
1794 DNekMatSharedPtr Mat;
1795
1796 switch (mtype)
1797 {
1799 {
1800 int nq0 = m_base[0]->GetNumPoints();
1801 int nq1 = m_base[1]->GetNumPoints();
1802 int nq2 = m_base[2]->GetNumPoints();
1803 int nq;
1804
1805 // take definition from key
1806 if (mkey.ConstFactorExists(eFactorConst))
1807 {
1808 nq = (int)mkey.GetConstFactor(eFactorConst);
1809 }
1810 else
1811 {
1812 nq = max(nq0, max(nq1, nq2));
1813 }
1814
1815 int neq =
1817 Array<OneD, Array<OneD, NekDouble>> coords(neq);
1818 Array<OneD, NekDouble> coll(3);
1819 Array<OneD, DNekMatSharedPtr> I(3);
1820 Array<OneD, NekDouble> tmp(nq0);
1821
1822 Mat =
1823 MemoryManager<DNekMat>::AllocateSharedPtr(neq, nq0 * nq1 * nq2);
1824 int cnt = 0;
1825
1826 for (int i = 0; i < nq; ++i)
1827 {
1828 for (int j = 0; j < nq - i; ++j)
1829 {
1830 for (int k = 0; k < nq - i - j; ++k, ++cnt)
1831 {
1832 coords[cnt] = Array<OneD, NekDouble>(3);
1833 coords[cnt][0] = -1.0 + 2 * k / (NekDouble)(nq - 1);
1834 coords[cnt][1] = -1.0 + 2 * j / (NekDouble)(nq - 1);
1835 coords[cnt][2] = -1.0 + 2 * i / (NekDouble)(nq - 1);
1836 }
1837 }
1838 }
1839
1840 for (int i = 0; i < neq; ++i)
1841 {
1842 LocCoordToLocCollapsed(coords[i], coll);
1843
1844 I[0] = m_base[0]->GetI(coll);
1845 I[1] = m_base[1]->GetI(coll + 1);
1846 I[2] = m_base[2]->GetI(coll + 2);
1847
1848 // interpolate first coordinate direction
1849 NekDouble fac;
1850 for (int k = 0; k < nq2; ++k)
1851 {
1852 for (int j = 0; j < nq1; ++j)
1853 {
1854
1855 fac = (I[1]->GetPtr())[j] * (I[2]->GetPtr())[k];
1856 Vmath::Smul(nq0, fac, I[0]->GetPtr(), 1, tmp, 1);
1857
1858 Vmath::Vcopy(nq0, &tmp[0], 1,
1859 Mat->GetRawPtr() + k * nq0 * nq1 * neq +
1860 j * nq0 * neq + i,
1861 neq);
1862 }
1863 }
1864 }
1865 }
1866 break;
1867 default:
1868 {
1870 }
1871 break;
1872 }
1873
1874 return Mat;
1875}
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
void LocCoordToLocCollapsed(const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
Convert local cartesian coordinate xi into local collapsed coordinates eta.
DNekMatSharedPtr CreateGeneralMatrix(const StdMatrixKey &mkey)
this function generates the mass matrix
double NekDouble
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.hpp:100

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), Nektar::StdRegions::StdMatrixKey::ConstFactorExists(), Nektar::StdRegions::StdExpansion::CreateGeneralMatrix(), Nektar::StdRegions::eFactorConst, Nektar::StdRegions::ePhysInterpToEquiSpaced, Nektar::StdRegions::StdMatrixKey::GetConstFactor(), Nektar::StdRegions::StdMatrixKey::GetMatrixType(), Nektar::LibUtilities::StdTetData::getNumberOfCoefficients(), Nektar::StdRegions::StdExpansion::LocCoordToLocCollapsed(), Nektar::StdRegions::StdExpansion::m_base, Vmath::Smul(), and Vmath::Vcopy().

Referenced by v_CreateStdMatrix().

◆ v_GetBoundaryMap()

void Nektar::StdRegions::StdTetExp::v_GetBoundaryMap ( Array< OneD, unsigned int > &  outarray)
overrideprotectedvirtual

List of all boundary modes in the the expansion.

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1321 of file StdTetExp.cpp.

1322{
1325 "BasisType is not a boundary interior form");
1328 "BasisType is not a boundary interior form");
1331 "BasisType is not a boundary interior form");
1332
1333 int P = m_base[0]->GetNumModes();
1334 int Q = m_base[1]->GetNumModes();
1335 int R = m_base[2]->GetNumModes();
1336
1337 int i, j, k;
1338 int idx = 0;
1339
1340 int nBnd = NumBndryCoeffs();
1341
1342 if (outarray.size() != nBnd)
1343 {
1344 outarray = Array<OneD, unsigned int>(nBnd);
1345 }
1346
1347 for (i = 0; i < P; ++i)
1348 {
1349 // First two Q-R planes are entirely boundary modes
1350 if (i < 2)
1351 {
1352 for (j = 0; j < Q - i; j++)
1353 {
1354 for (k = 0; k < R - i - j; ++k)
1355 {
1356 outarray[idx++] = GetMode(i, j, k);
1357 }
1358 }
1359 }
1360 // Remaining Q-R planes contain boundary modes on bottom and
1361 // left edge.
1362 else
1363 {
1364 for (k = 0; k < R - i; ++k)
1365 {
1366 outarray[idx++] = GetMode(i, 0, k);
1367 }
1368 for (j = 1; j < Q - i; ++j)
1369 {
1370 outarray[idx++] = GetMode(i, j, 0);
1371 }
1372 }
1373 }
1374}
int GetMode(const int i, const int j, const int k)
Compute the mode number in the expansion for a particular tensorial combination.
Definition: StdTetExp.cpp:1907
@ P
Monomial polynomials .
Definition: BasisType.h:62
@ eGLL_Lagrange
Lagrange for SEM basis .
Definition: BasisType.h:56

References ASSERTL1, Nektar::LibUtilities::eGLL_Lagrange, Nektar::LibUtilities::eModified_A, Nektar::LibUtilities::eModified_B, Nektar::LibUtilities::eModified_C, Nektar::StdRegions::StdExpansion::GetBasisType(), GetMode(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::NumBndryCoeffs(), and Nektar::LibUtilities::P.

◆ v_GetCoords()

void Nektar::StdRegions::StdTetExp::v_GetCoords ( Array< OneD, NekDouble > &  coords_x,
Array< OneD, NekDouble > &  coords_y,
Array< OneD, NekDouble > &  coords_z 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::TetExp.

Definition at line 1161 of file StdTetExp.cpp.

1164{
1165 Array<OneD, const NekDouble> eta_x = m_base[0]->GetZ();
1166 Array<OneD, const NekDouble> eta_y = m_base[1]->GetZ();
1167 Array<OneD, const NekDouble> eta_z = m_base[2]->GetZ();
1168 int Qx = GetNumPoints(0);
1169 int Qy = GetNumPoints(1);
1170 int Qz = GetNumPoints(2);
1171
1172 // Convert collapsed coordinates into cartesian coordinates: eta
1173 // --> xi
1174 for (int k = 0; k < Qz; ++k)
1175 {
1176 for (int j = 0; j < Qy; ++j)
1177 {
1178 for (int i = 0; i < Qx; ++i)
1179 {
1180 int s = i + Qx * (j + Qy * k);
1181 xi_x[s] =
1182 (eta_x[i] + 1.0) * (1.0 - eta_y[j]) * (1.0 - eta_z[k]) / 4 -
1183 1.0;
1184 xi_y[s] = (eta_y[j] + 1.0) * (1.0 - eta_z[k]) / 2 - 1.0;
1185 xi_z[s] = eta_z[k];
1186 }
1187 }
1188 }
1189}

References Nektar::StdRegions::StdExpansion::GetNumPoints(), and Nektar::StdRegions::StdExpansion::m_base.

◆ v_GetEdgeInteriorToElementMap()

void Nektar::StdRegions::StdTetExp::v_GetEdgeInteriorToElementMap ( const int  eid,
Array< OneD, unsigned int > &  maparray,
Array< OneD, int > &  signarray,
const Orientation  edgeOrient = eDir1FwdDir1_Dir2FwdDir2 
)
overrideprotectedvirtual

Maps interior modes of an edge to the elemental modes.

Reimplemented from Nektar::StdRegions::StdExpansion3D.

Definition at line 1583 of file StdTetExp.cpp.

1586{
1587 int i;
1588 const int P = m_base[0]->GetNumModes();
1589 const int Q = m_base[1]->GetNumModes();
1590 const int R = m_base[2]->GetNumModes();
1591
1592 const int nEdgeIntCoeffs = v_GetEdgeNcoeffs(eid) - 2;
1593
1594 if (maparray.size() != nEdgeIntCoeffs)
1595 {
1596 maparray = Array<OneD, unsigned int>(nEdgeIntCoeffs);
1597 }
1598 else
1599 {
1600 fill(maparray.get(), maparray.get() + nEdgeIntCoeffs, 0);
1601 }
1602
1603 if (signarray.size() != nEdgeIntCoeffs)
1604 {
1605 signarray = Array<OneD, int>(nEdgeIntCoeffs, 1);
1606 }
1607 else
1608 {
1609 fill(signarray.get(), signarray.get() + nEdgeIntCoeffs, 1);
1610 }
1611
1612 switch (eid)
1613 {
1614 case 0:
1615 for (i = 0; i < P - 2; ++i)
1616 {
1617 maparray[i] = GetMode(i + 2, 0, 0);
1618 }
1619 if (edgeOrient == eBackwards)
1620 {
1621 for (i = 1; i < nEdgeIntCoeffs; i += 2)
1622 {
1623 signarray[i] = -1;
1624 }
1625 }
1626 break;
1627 case 1:
1628 for (i = 0; i < Q - 2; ++i)
1629 {
1630 maparray[i] = GetMode(1, i + 1, 0);
1631 }
1632 if (edgeOrient == eBackwards)
1633 {
1634 for (i = 1; i < nEdgeIntCoeffs; i += 2)
1635 {
1636 signarray[i] = -1;
1637 }
1638 }
1639 break;
1640 case 2:
1641 for (i = 0; i < Q - 2; ++i)
1642 {
1643 maparray[i] = GetMode(0, i + 2, 0);
1644 }
1645 if (edgeOrient == eBackwards)
1646 {
1647 for (i = 1; i < nEdgeIntCoeffs; i += 2)
1648 {
1649 signarray[i] = -1;
1650 }
1651 }
1652 break;
1653 case 3:
1654 for (i = 0; i < R - 2; ++i)
1655 {
1656 maparray[i] = GetMode(0, 0, i + 2);
1657 }
1658 if (edgeOrient == eBackwards)
1659 {
1660 for (i = 1; i < nEdgeIntCoeffs; i += 2)
1661 {
1662 signarray[i] = -1;
1663 }
1664 }
1665 break;
1666 case 4:
1667 for (i = 0; i < R - 2; ++i)
1668 {
1669 maparray[i] = GetMode(1, 0, i + 1);
1670 }
1671 if (edgeOrient == eBackwards)
1672 {
1673 for (i = 1; i < nEdgeIntCoeffs; i += 2)
1674 {
1675 signarray[i] = -1;
1676 }
1677 }
1678 break;
1679 case 5:
1680 for (i = 0; i < R - 2; ++i)
1681 {
1682 maparray[i] = GetMode(0, 1, i + 1);
1683 }
1684 if (edgeOrient == eBackwards)
1685 {
1686 for (i = 1; i < nEdgeIntCoeffs; i += 2)
1687 {
1688 signarray[i] = -1;
1689 }
1690 }
1691 break;
1692 default:
1693 ASSERTL0(false, "Edge not defined.");
1694 break;
1695 }
1696}
int v_GetEdgeNcoeffs(const int i) const override
Definition: StdTetExp.cpp:1080

References ASSERTL0, Nektar::StdRegions::eBackwards, GetMode(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LibUtilities::P, and v_GetEdgeNcoeffs().

◆ v_GetEdgeNcoeffs()

int Nektar::StdRegions::StdTetExp::v_GetEdgeNcoeffs ( const int  i) const
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion3D.

Definition at line 1080 of file StdTetExp.cpp.

1081{
1082 ASSERTL2((i >= 0) && (i <= 5), "edge id is out of range");
1083 int P = m_base[0]->GetNumModes();
1084 int Q = m_base[1]->GetNumModes();
1085 int R = m_base[2]->GetNumModes();
1086
1087 if (i == 0)
1088 {
1089 return P;
1090 }
1091 else if (i == 1 || i == 2)
1092 {
1093 return Q;
1094 }
1095 else
1096 {
1097 return R;
1098 }
1099}
#define ASSERTL2(condition, msg)
Assert Level 2 – Debugging which is used FULLDEBUG compilation mode. This level assert is designed to...
Definition: ErrorUtil.hpp:265

References ASSERTL2, Nektar::StdRegions::StdExpansion::m_base, and Nektar::LibUtilities::P.

Referenced by v_GetEdgeInteriorToElementMap().

◆ v_GetElmtTraceToTraceMap()

void Nektar::StdRegions::StdTetExp::v_GetElmtTraceToTraceMap ( const unsigned int  tid,
Array< OneD, unsigned int > &  maparray,
Array< OneD, int > &  signarray,
Orientation  traceOrient = eForwards,
int  P = -1,
int  Q = -1 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1468 of file StdTetExp.cpp.

1472{
1473 int nummodesA = 0, nummodesB = 0, i, j, k, idx;
1474
1476 "Method only implemented for Modified_A BasisType (x "
1477 "direction), Modified_B BasisType (y direction), and "
1478 "Modified_C BasisType(z direction)");
1479
1480 int nFaceCoeffs = 0;
1481
1482 switch (fid)
1483 {
1484 case 0:
1485 nummodesA = m_base[0]->GetNumModes();
1486 nummodesB = m_base[1]->GetNumModes();
1487 break;
1488 case 1:
1489 nummodesA = m_base[0]->GetNumModes();
1490 nummodesB = m_base[2]->GetNumModes();
1491 break;
1492 case 2:
1493 case 3:
1494 nummodesA = m_base[1]->GetNumModes();
1495 nummodesB = m_base[2]->GetNumModes();
1496 break;
1497 default:
1498 ASSERTL0(false, "fid must be between 0 and 3");
1499 }
1500
1501 if (P == -1)
1502 {
1503 P = nummodesA;
1504 Q = nummodesB;
1505 }
1506
1507 nFaceCoeffs = P * (2 * Q - P + 1) / 2;
1508
1509 // Allocate the map array and sign array; set sign array to ones (+)
1510 if (maparray.size() != nFaceCoeffs)
1511 {
1512 maparray = Array<OneD, unsigned int>(nFaceCoeffs, 1);
1513 }
1514
1515 if (signarray.size() != nFaceCoeffs)
1516 {
1517 signarray = Array<OneD, int>(nFaceCoeffs, 1);
1518 }
1519 else
1520 {
1521 fill(signarray.get(), signarray.get() + nFaceCoeffs, 1);
1522 }
1523
1524 // zero signmap and set maparray to zero if elemental
1525 // modes are not as large as face modesl
1526 idx = 0;
1527 int cnt = 0;
1528 int minPA = min(nummodesA, P);
1529 int minQB = min(nummodesB, Q);
1530
1531 for (j = 0; j < minPA; ++j)
1532 {
1533 // set maparray
1534 for (k = 0; k < minQB - j; ++k, ++cnt)
1535 {
1536 maparray[idx++] = cnt;
1537 }
1538
1539 cnt += nummodesB - minQB;
1540
1541 for (k = nummodesB - j; k < Q - j; ++k)
1542 {
1543 signarray[idx] = 0.0;
1544 maparray[idx++] = maparray[0];
1545 }
1546 }
1547
1548 for (j = nummodesA; j < P; ++j)
1549 {
1550 for (k = 0; k < Q - j; ++k)
1551 {
1552 signarray[idx] = 0.0;
1553 maparray[idx++] = maparray[0];
1554 }
1555 }
1556
1557 if (faceOrient == eDir1BwdDir1_Dir2FwdDir2)
1558 {
1559 idx = 0;
1560 for (i = 0; i < P; ++i)
1561 {
1562 for (j = 0; j < Q - i; ++j, idx++)
1563 {
1564 if (i > 1)
1565 {
1566 signarray[idx] = (i % 2 ? -1 : 1);
1567 }
1568 }
1569 }
1570
1571 swap(maparray[0], maparray[Q]);
1572
1573 for (i = 1; i < Q - 1; ++i)
1574 {
1575 swap(maparray[i + 1], maparray[Q + i]);
1576 }
1577 }
1578}
bool v_IsBoundaryInteriorExpansion() const override
Definition: StdTetExp.cpp:1191

References ASSERTL0, ASSERTL1, Nektar::StdRegions::eDir1BwdDir1_Dir2FwdDir2, Nektar::StdRegions::StdExpansion::m_base, Nektar::LibUtilities::P, and v_IsBoundaryInteriorExpansion().

◆ v_GetInteriorMap()

void Nektar::StdRegions::StdTetExp::v_GetInteriorMap ( Array< OneD, unsigned int > &  outarray)
overrideprotectedvirtual

Maps interior modes of an edge to the elemental modes. List of all interior modes in the expansion.

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1282 of file StdTetExp.cpp.

1283{
1286 "BasisType is not a boundary interior form");
1289 "BasisType is not a boundary interior form");
1292 "BasisType is not a boundary interior form");
1293
1294 int P = m_base[0]->GetNumModes();
1295 int Q = m_base[1]->GetNumModes();
1296 int R = m_base[2]->GetNumModes();
1297
1298 int nIntCoeffs = m_ncoeffs - NumBndryCoeffs();
1299
1300 if (outarray.size() != nIntCoeffs)
1301 {
1302 outarray = Array<OneD, unsigned int>(nIntCoeffs);
1303 }
1304
1305 int idx = 0;
1306 for (int i = 2; i < P - 2; ++i)
1307 {
1308 for (int j = 1; j < Q - i - 1; ++j)
1309 {
1310 for (int k = 1; k < R - i - j; ++k)
1311 {
1312 outarray[idx++] = GetMode(i, j, k);
1313 }
1314 }
1315 }
1316}

References ASSERTL1, Nektar::LibUtilities::eGLL_Lagrange, Nektar::LibUtilities::eModified_A, Nektar::LibUtilities::eModified_B, Nektar::LibUtilities::eModified_C, Nektar::StdRegions::StdExpansion::GetBasisType(), GetMode(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, Nektar::StdRegions::StdExpansion::NumBndryCoeffs(), and Nektar::LibUtilities::P.

◆ v_GetNedges()

int Nektar::StdRegions::StdTetExp::v_GetNedges ( void  ) const
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion3D.

Definition at line 960 of file StdTetExp.cpp.

961{
962 return 6;
963}

◆ v_GetNtraces()

int Nektar::StdRegions::StdTetExp::v_GetNtraces ( ) const
overrideprotectedvirtual

Implements Nektar::StdRegions::StdExpansion.

Definition at line 965 of file StdTetExp.cpp.

966{
967 return 4;
968}

◆ v_GetNverts()

int Nektar::StdRegions::StdTetExp::v_GetNverts ( ) const
overrideprotectedvirtual

Implements Nektar::StdRegions::StdExpansion.

Definition at line 955 of file StdTetExp.cpp.

956{
957 return 4;
958}

◆ v_GetSimplexEquiSpacedConnectivity()

void Nektar::StdRegions::StdTetExp::v_GetSimplexEquiSpacedConnectivity ( Array< OneD, int > &  conn,
bool  standard = true 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 2222 of file StdTetExp.cpp.

2224{
2225 int np0 = m_base[0]->GetNumPoints();
2226 int np1 = m_base[1]->GetNumPoints();
2227 int np2 = m_base[2]->GetNumPoints();
2228 int np = max(np0, max(np1, np2));
2229
2230 conn = Array<OneD, int>(4 * (np - 1) * (np - 1) * (np - 1));
2231
2232 int row = 0;
2233 int rowp1 = 0;
2234 int plane = 0;
2235 int row1 = 0;
2236 int row1p1 = 0;
2237 int planep1 = 0;
2238 int cnt = 0;
2239 for (int i = 0; i < np - 1; ++i)
2240 {
2241 planep1 += (np - i) * (np - i + 1) / 2;
2242 row = 0; // current plane row offset
2243 rowp1 = 0; // current plane row plus one offset
2244 row1 = 0; // next plane row offset
2245 row1p1 = 0; // nex plane row plus one offset
2246 for (int j = 0; j < np - i - 1; ++j)
2247 {
2248 rowp1 += np - i - j;
2249 row1p1 += np - i - j - 1;
2250 for (int k = 0; k < np - i - j - 2; ++k)
2251 {
2252 conn[cnt++] = plane + row + k + 1;
2253 conn[cnt++] = plane + row + k;
2254 conn[cnt++] = plane + rowp1 + k;
2255 conn[cnt++] = planep1 + row1 + k;
2256
2257 conn[cnt++] = plane + row + k + 1;
2258 conn[cnt++] = plane + rowp1 + k + 1;
2259 conn[cnt++] = planep1 + row1 + k + 1;
2260 conn[cnt++] = planep1 + row1 + k;
2261
2262 conn[cnt++] = plane + rowp1 + k + 1;
2263 conn[cnt++] = plane + row + k + 1;
2264 conn[cnt++] = plane + rowp1 + k;
2265 conn[cnt++] = planep1 + row1 + k;
2266
2267 conn[cnt++] = planep1 + row1 + k;
2268 conn[cnt++] = planep1 + row1p1 + k;
2269 conn[cnt++] = plane + rowp1 + k;
2270 conn[cnt++] = plane + rowp1 + k + 1;
2271
2272 conn[cnt++] = planep1 + row1 + k;
2273 conn[cnt++] = planep1 + row1p1 + k;
2274 conn[cnt++] = planep1 + row1 + k + 1;
2275 conn[cnt++] = plane + rowp1 + k + 1;
2276
2277 if (k < np - i - j - 3)
2278 {
2279 conn[cnt++] = plane + rowp1 + k + 1;
2280 conn[cnt++] = planep1 + row1p1 + k + 1;
2281 conn[cnt++] = planep1 + row1 + k + 1;
2282 conn[cnt++] = planep1 + row1p1 + k;
2283 }
2284 }
2285
2286 conn[cnt++] = plane + row + np - i - j - 1;
2287 conn[cnt++] = plane + row + np - i - j - 2;
2288 conn[cnt++] = plane + rowp1 + np - i - j - 2;
2289 conn[cnt++] = planep1 + row1 + np - i - j - 2;
2290
2291 row += np - i - j;
2292 row1 += np - i - j - 1;
2293 }
2294 plane += (np - i) * (np - i + 1) / 2;
2295 }
2296}

References Nektar::StdRegions::StdExpansion::m_base.

◆ v_GetTraceBasisKey()

const LibUtilities::BasisKey Nektar::StdRegions::StdTetExp::v_GetTraceBasisKey ( const int  i,
const int  k 
) const
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1132 of file StdTetExp.cpp.

1134{
1135 ASSERTL2(i >= 0 && i <= 4, "face id is out of range");
1136 ASSERTL2(k == 0 || k == 1, "face direction out of range");
1137
1138 int dir = k;
1139 switch (i)
1140 {
1141 case 0:
1142 dir = k;
1143 break;
1144 case 1:
1145 dir = 2 * k;
1146 break;
1147 case 2:
1148 case 3:
1149 dir = k + 1;
1150 break;
1151 }
1152
1154 m_base[dir]->GetNumPoints(),
1155 m_base[dir]->GetNumModes());
1156
1157 // Should not get here.
1159}
static const BasisKey NullBasisKey(eNoBasisType, 0, NullPointsKey)
Defines a null basis with no type or points.
LibUtilities::BasisKey EvaluateTriFaceBasisKey(const int facedir, const LibUtilities::BasisType faceDirBasisType, const int numpoints, const int nummodes)

References ASSERTL2, Nektar::StdRegions::EvaluateTriFaceBasisKey(), Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::StdRegions::StdExpansion::GetNumPoints(), Nektar::StdRegions::StdExpansion::m_base, and Nektar::LibUtilities::NullBasisKey().

◆ v_GetTraceCoeffMap()

void Nektar::StdRegions::StdTetExp::v_GetTraceCoeffMap ( const unsigned int  fid,
Array< OneD, unsigned int > &  maparray 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1376 of file StdTetExp.cpp.

1378{
1379 int i, j, k;
1380 int P = 0, Q = 0, idx = 0;
1381 int nFaceCoeffs = 0;
1382
1383 switch (fid)
1384 {
1385 case 0:
1386 P = m_base[0]->GetNumModes();
1387 Q = m_base[1]->GetNumModes();
1388 break;
1389 case 1:
1390 P = m_base[0]->GetNumModes();
1391 Q = m_base[2]->GetNumModes();
1392 break;
1393 case 2:
1394 case 3:
1395 P = m_base[1]->GetNumModes();
1396 Q = m_base[2]->GetNumModes();
1397 break;
1398 default:
1399 ASSERTL0(false, "fid must be between 0 and 3");
1400 }
1401
1402 nFaceCoeffs = P * (2 * Q - P + 1) / 2;
1403
1404 if (maparray.size() != nFaceCoeffs)
1405 {
1406 maparray = Array<OneD, unsigned int>(nFaceCoeffs);
1407 }
1408
1409 switch (fid)
1410 {
1411 case 0:
1412 idx = 0;
1413 for (i = 0; i < P; ++i)
1414 {
1415 for (j = 0; j < Q - i; ++j)
1416 {
1417 maparray[idx++] = GetMode(i, j, 0);
1418 }
1419 }
1420 break;
1421 case 1:
1422 idx = 0;
1423 for (i = 0; i < P; ++i)
1424 {
1425 for (k = 0; k < Q - i; ++k)
1426 {
1427 maparray[idx++] = GetMode(i, 0, k);
1428 }
1429 }
1430 break;
1431 case 2:
1432 idx = 0;
1433 for (j = 0; j < P - 1; ++j)
1434 {
1435 for (k = 0; k < Q - 1 - j; ++k)
1436 {
1437 maparray[idx++] = GetMode(1, j, k);
1438 // Incorporate modes from zeroth plane where needed.
1439 if (j == 0 && k == 0)
1440 {
1441 maparray[idx++] = GetMode(0, 0, 1);
1442 }
1443 if (j == 0 && k == Q - 2)
1444 {
1445 for (int r = 0; r < Q - 1; ++r)
1446 {
1447 maparray[idx++] = GetMode(0, 1, r);
1448 }
1449 }
1450 }
1451 }
1452 break;
1453 case 3:
1454 idx = 0;
1455 for (j = 0; j < P; ++j)
1456 {
1457 for (k = 0; k < Q - j; ++k)
1458 {
1459 maparray[idx++] = GetMode(0, j, k);
1460 }
1461 }
1462 break;
1463 default:
1464 ASSERTL0(false, "Element map not available.");
1465 }
1466}

References ASSERTL0, GetMode(), Nektar::StdRegions::StdExpansion::m_base, and Nektar::LibUtilities::P.

◆ v_GetTraceInteriorToElementMap()

void Nektar::StdRegions::StdTetExp::v_GetTraceInteriorToElementMap ( const int  tid,
Array< OneD, unsigned int > &  maparray,
Array< OneD, int > &  signarray,
const Orientation  traceOrient = eDir1FwdDir1_Dir2FwdDir2 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1698 of file StdTetExp.cpp.

1701{
1702 int i, j, idx, k;
1703 const int P = m_base[0]->GetNumModes();
1704 const int Q = m_base[1]->GetNumModes();
1705 const int R = m_base[2]->GetNumModes();
1706
1707 const int nFaceIntCoeffs = v_GetTraceIntNcoeffs(fid);
1708
1709 if (maparray.size() != nFaceIntCoeffs)
1710 {
1711 maparray = Array<OneD, unsigned int>(nFaceIntCoeffs);
1712 }
1713
1714 if (signarray.size() != nFaceIntCoeffs)
1715 {
1716 signarray = Array<OneD, int>(nFaceIntCoeffs, 1);
1717 }
1718 else
1719 {
1720 fill(signarray.get(), signarray.get() + nFaceIntCoeffs, 1);
1721 }
1722
1723 switch (fid)
1724 {
1725 case 0:
1726 idx = 0;
1727 for (i = 2; i < P - 1; ++i)
1728 {
1729 for (j = 1; j < Q - i; ++j)
1730 {
1731 if ((int)faceOrient == 7)
1732 {
1733 signarray[idx] = (i % 2 ? -1 : 1);
1734 }
1735 maparray[idx++] = GetMode(i, j, 0);
1736 }
1737 }
1738 break;
1739 case 1:
1740 idx = 0;
1741 for (i = 2; i < P; ++i)
1742 {
1743 for (k = 1; k < R - i; ++k)
1744 {
1745 if ((int)faceOrient == 7)
1746 {
1747 signarray[idx] = (i % 2 ? -1 : 1);
1748 }
1749 maparray[idx++] = GetMode(i, 0, k);
1750 }
1751 }
1752 break;
1753 case 2:
1754 idx = 0;
1755 for (j = 1; j < Q - 2; ++j)
1756 {
1757 for (k = 1; k < R - 1 - j; ++k)
1758 {
1759 if ((int)faceOrient == 7)
1760 {
1761 signarray[idx] = ((j + 1) % 2 ? -1 : 1);
1762 }
1763 maparray[idx++] = GetMode(1, j, k);
1764 }
1765 }
1766 break;
1767 case 3:
1768 idx = 0;
1769 for (j = 2; j < Q - 1; ++j)
1770 {
1771 for (k = 1; k < R - j; ++k)
1772 {
1773 if ((int)faceOrient == 7)
1774 {
1775 signarray[idx] = (j % 2 ? -1 : 1);
1776 }
1777 maparray[idx++] = GetMode(0, j, k);
1778 }
1779 }
1780 break;
1781 default:
1782 ASSERTL0(false, "Face interior map not available.");
1783 break;
1784 }
1785}
int v_GetTraceIntNcoeffs(const int i) const override
Definition: StdTetExp.cpp:1041

References ASSERTL0, GetMode(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LibUtilities::P, and v_GetTraceIntNcoeffs().

◆ v_GetTraceIntNcoeffs()

int Nektar::StdRegions::StdTetExp::v_GetTraceIntNcoeffs ( const int  i) const
overrideprotectedvirtual

Implements Nektar::StdRegions::StdExpansion.

Definition at line 1041 of file StdTetExp.cpp.

1042{
1043 ASSERTL2((i >= 0) && (i <= 3), "face id is out of range");
1044 int Pi = m_base[0]->GetNumModes() - 2;
1045 int Qi = m_base[1]->GetNumModes() - 2;
1046 int Ri = m_base[2]->GetNumModes() - 2;
1047
1048 if ((i == 0))
1049 {
1050 return Pi * (2 * Qi - Pi - 1) / 2;
1051 }
1052 else if ((i == 1))
1053 {
1054 return Pi * (2 * Ri - Pi - 1) / 2;
1055 }
1056 else
1057 {
1058 return Qi * (2 * Ri - Qi - 1) / 2;
1059 }
1060}

References ASSERTL2, and Nektar::StdRegions::StdExpansion::m_base.

Referenced by v_GetTraceInteriorToElementMap().

◆ v_GetTraceNcoeffs()

int Nektar::StdRegions::StdTetExp::v_GetTraceNcoeffs ( const int  i) const
overrideprotectedvirtual

Implements Nektar::StdRegions::StdExpansion.

Definition at line 1015 of file StdTetExp.cpp.

1016{
1017 ASSERTL2((i >= 0) && (i <= 3), "face id is out of range");
1018 int nFaceCoeffs = 0;
1019 int nummodesA, nummodesB, P, Q;
1020 if (i == 0)
1021 {
1022 nummodesA = GetBasisNumModes(0);
1023 nummodesB = GetBasisNumModes(1);
1024 }
1025 else if ((i == 1) || (i == 2))
1026 {
1027 nummodesA = GetBasisNumModes(0);
1028 nummodesB = GetBasisNumModes(2);
1029 }
1030 else
1031 {
1032 nummodesA = GetBasisNumModes(1);
1033 nummodesB = GetBasisNumModes(2);
1034 }
1035 P = nummodesA - 1;
1036 Q = nummodesB - 1;
1037 nFaceCoeffs = Q + 1 + (P * (1 + 2 * Q - P)) / 2;
1038 return nFaceCoeffs;
1039}
int GetBasisNumModes(const int dir) const
This function returns the number of expansion modes in the dir direction.
Definition: StdExpansion.h:169

References ASSERTL2, Nektar::StdRegions::StdExpansion::GetBasisNumModes(), and Nektar::LibUtilities::P.

◆ v_GetTraceNumModes()

void Nektar::StdRegions::StdTetExp::v_GetTraceNumModes ( const int  fid,
int &  numModes0,
int &  numModes1,
Orientation  traceOrient = eDir1FwdDir1_Dir2FwdDir2 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 921 of file StdTetExp.cpp.

924{
925 int nummodes[3] = {m_base[0]->GetNumModes(), m_base[1]->GetNumModes(),
926 m_base[2]->GetNumModes()};
927 switch (fid)
928 {
929 case 0:
930 {
931 numModes0 = nummodes[0];
932 numModes1 = nummodes[1];
933 }
934 break;
935 case 1:
936 {
937 numModes0 = nummodes[0];
938 numModes1 = nummodes[2];
939 }
940 break;
941 case 2:
942 case 3:
943 {
944 numModes0 = nummodes[1];
945 numModes1 = nummodes[2];
946 }
947 break;
948 }
949}

References Nektar::StdRegions::StdExpansion::m_base.

◆ v_GetTraceNumPoints()

int Nektar::StdRegions::StdTetExp::v_GetTraceNumPoints ( const int  i) const
overrideprotectedvirtual

Implements Nektar::StdRegions::StdExpansion.

Definition at line 1062 of file StdTetExp.cpp.

1063{
1064 ASSERTL2(i >= 0 && i <= 3, "face id is out of range");
1065
1066 if (i == 0)
1067 {
1068 return m_base[0]->GetNumPoints() * m_base[1]->GetNumPoints();
1069 }
1070 else if (i == 1)
1071 {
1072 return m_base[0]->GetNumPoints() * m_base[2]->GetNumPoints();
1073 }
1074 else
1075 {
1076 return m_base[1]->GetNumPoints() * m_base[2]->GetNumPoints();
1077 }
1078}

References ASSERTL2, and Nektar::StdRegions::StdExpansion::m_base.

◆ v_GetTracePointsKey()

LibUtilities::PointsKey Nektar::StdRegions::StdTetExp::v_GetTracePointsKey ( const int  i,
const int  j 
) const
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1101 of file StdTetExp.cpp.

1103{
1104 ASSERTL2(i >= 0 && i <= 3, "face id is out of range");
1105 ASSERTL2(j == 0 || j == 1, "face direction is out of range");
1106
1107 if (i == 0)
1108 {
1109 return m_base[j]->GetPointsKey();
1110 }
1111 else if (i == 1)
1112 {
1113 return m_base[2 * j]->GetPointsKey();
1114 }
1115 else
1116 {
1117 return m_base[j + 1]->GetPointsKey();
1118 }
1119}

References ASSERTL2, and Nektar::StdRegions::StdExpansion::m_base.

◆ v_GetVertexMap()

int Nektar::StdRegions::StdTetExp::v_GetVertexMap ( int  localVertexId,
bool  useCoeffPacking = false 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1201 of file StdTetExp.cpp.

1202{
1206 "Mapping not defined for this type of basis");
1207
1208 int localDOF = 0;
1209 if (useCoeffPacking == true) // follow packing of coefficients i.e q,r,p
1210 {
1211 switch (localVertexId)
1212 {
1213 case 0:
1214 {
1215 localDOF = GetMode(0, 0, 0);
1216 break;
1217 }
1218 case 1:
1219 {
1220 localDOF = GetMode(0, 0, 1);
1221 break;
1222 }
1223 case 2:
1224 {
1225 localDOF = GetMode(0, 1, 0);
1226 break;
1227 }
1228 case 3:
1229 {
1230 localDOF = GetMode(1, 0, 0);
1231 break;
1232 }
1233 default:
1234 {
1235 ASSERTL0(false, "Vertex ID must be between 0 and 3");
1236 break;
1237 }
1238 }
1239 }
1240 else
1241 {
1242 switch (localVertexId)
1243 {
1244 case 0:
1245 {
1246 localDOF = GetMode(0, 0, 0);
1247 break;
1248 }
1249 case 1:
1250 {
1251 localDOF = GetMode(1, 0, 0);
1252 break;
1253 }
1254 case 2:
1255 {
1256 localDOF = GetMode(0, 1, 0);
1257 break;
1258 }
1259 case 3:
1260 {
1261 localDOF = GetMode(0, 0, 1);
1262 break;
1263 }
1264 default:
1265 {
1266 ASSERTL0(false, "Vertex ID must be between 0 and 3");
1267 break;
1268 }
1269 }
1270 }
1271
1272 return localDOF;
1273}

References ASSERTL0, Nektar::LibUtilities::eModified_A, Nektar::LibUtilities::eModified_B, Nektar::LibUtilities::eModified_C, Nektar::StdRegions::StdExpansion::GetBasisType(), and GetMode().

◆ v_IProductWRTBase()

void Nektar::StdRegions::StdTetExp::v_IProductWRTBase ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual

\( \begin{array}{rcl} I_{pqr} = (\phi_{pqr}, u)_{\delta} & = & \sum_{i=0}^{nq_0} \sum_{j=0}^{nq_1} \sum_{k=0}^{nq_2} \psi_{p}^{a} (\eta_{1i}) \psi_{pq}^{b} (\eta_{2j}) \psi_{pqr}^{c} (\eta_{3k}) w_i w_j w_k u(\eta_{1,i} \eta_{2,j} \eta_{3,k}) J_{i,j,k}\\ & = & \sum_{i=0}^{nq_0} \psi_p^a(\eta_{1,i}) \sum_{j=0}^{nq_1} \psi_{pq}^b(\eta_{2,j}) \sum_{k=0}^{nq_2} \psi_{pqr}^c u(\eta_{1i},\eta_{2j},\eta_{3k}) J_{i,j,k} \end{array} \)
where

\( \phi_{pqr} (\xi_1 , \xi_2 , \xi_3) = \psi_p^a (\eta_1) \psi_{pq}^b (\eta_2) \psi_{pqr}^c (\eta_3) \)

which can be implemented as
\(f_{pqr} (\xi_{3k}) = \sum_{k=0}^{nq_3} \psi_{pqr}^c u(\eta_{1i},\eta_{2j},\eta_{3k}) J_{i,j,k} = {\bf B_3 U} \)
\( g_{pq} (\xi_{3k}) = \sum_{j=0}^{nq_1} \psi_{pq}^b (\xi_{2j}) f_{pqr} (\xi_{3k}) = {\bf B_2 F} \)
\( (\phi_{pqr}, u)_{\delta} = \sum_{k=0}^{nq_0} \psi_{p}^a (\xi_{3k}) g_{pq} (\xi_{3k}) = {\bf B_1 G} \)

Parameters
inarrayFunction evaluated at physical collocation points.
outarrayInner product with respect to each basis function over the element.

Implements Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::TetExp.

Definition at line 466 of file StdTetExp.cpp.

468{
471 "Basis[1] is not a general tensor type");
472
475 "Basis[2] is not a general tensor type");
476
477 if (m_base[0]->Collocation() && m_base[1]->Collocation())
478 {
479 MultiplyByQuadratureMetric(inarray, outarray);
480 }
481 else
482 {
483 StdTetExp::v_IProductWRTBase_SumFac(inarray, outarray);
484 }
485}
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:723
void v_IProductWRTBase_SumFac(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true) override
Definition: StdTetExp.cpp:493

References ASSERTL1, Nektar::LibUtilities::eModified_B, Nektar::LibUtilities::eModified_C, Nektar::LibUtilities::eOrtho_B, Nektar::LibUtilities::eOrtho_C, Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric(), and v_IProductWRTBase_SumFac().

Referenced by v_FwdTrans().

◆ v_IProductWRTBase_SumFac()

void Nektar::StdRegions::StdTetExp::v_IProductWRTBase_SumFac ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
bool  multiplybyweights = true 
)
overrideprotectedvirtual
Parameters
inarrayFunction evaluated at physical collocation points.
outarrayInner product with respect to each basis function over the element.

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::TetExp.

Definition at line 493 of file StdTetExp.cpp.

496{
497 int nquad0 = m_base[0]->GetNumPoints();
498 int nquad1 = m_base[1]->GetNumPoints();
499 int nquad2 = m_base[2]->GetNumPoints();
500 int order0 = m_base[0]->GetNumModes();
501 int order1 = m_base[1]->GetNumModes();
502
503 Array<OneD, NekDouble> wsp(nquad1 * nquad2 * order0 +
504 nquad2 * order0 * (2 * order1 - order0 + 1) / 2);
505
506 if (multiplybyweights)
507 {
508 Array<OneD, NekDouble> tmp(nquad0 * nquad1 * nquad2);
509 MultiplyByQuadratureMetric(inarray, tmp);
510
512 m_base[0]->GetBdata(), m_base[1]->GetBdata(), m_base[2]->GetBdata(),
513 tmp, outarray, wsp, true, true, true);
514 }
515 else
516 {
518 m_base[0]->GetBdata(), m_base[1]->GetBdata(), m_base[2]->GetBdata(),
519 inarray, outarray, wsp, true, true, true);
520 }
521}
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)

References Nektar::StdRegions::StdExpansion3D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, and Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric().

Referenced by v_IProductWRTBase(), and Nektar::StdRegions::StdNodalTetExp::v_IProductWRTBase_SumFac().

◆ v_IProductWRTBase_SumFacKernel()

void Nektar::StdRegions::StdTetExp::v_IProductWRTBase_SumFacKernel ( const Array< OneD, const NekDouble > &  base0,
const Array< OneD, const NekDouble > &  base1,
const Array< OneD, const NekDouble > &  base2,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp,
bool  doCheckCollDir0,
bool  doCheckCollDir1,
bool  doCheckCollDir2 
)
overrideprotectedvirtual

Implements Nektar::StdRegions::StdExpansion3D.

Definition at line 523 of file StdTetExp.cpp.

532{
533 int nquad0 = m_base[0]->GetNumPoints();
534 int nquad1 = m_base[1]->GetNumPoints();
535 int nquad2 = m_base[2]->GetNumPoints();
536
537 int order0 = m_base[0]->GetNumModes();
538 int order1 = m_base[1]->GetNumModes();
539 int order2 = m_base[2]->GetNumModes();
540
541 Array<OneD, NekDouble> tmp1 = wsp;
542 Array<OneD, NekDouble> tmp2 = wsp + nquad1 * nquad2 * order0;
543
544 int i, j, mode, mode1, cnt;
545
546 // Inner product with respect to the '0' direction
547 Blas::Dgemm('T', 'N', nquad1 * nquad2, order0, nquad0, 1.0, inarray.get(),
548 nquad0, base0.get(), nquad0, 0.0, tmp1.get(), nquad1 * nquad2);
549
550 // Inner product with respect to the '1' direction
551 for (mode = i = 0; i < order0; ++i)
552 {
553 Blas::Dgemm('T', 'N', nquad2, order1 - i, nquad1, 1.0,
554 tmp1.get() + i * nquad1 * nquad2, nquad1,
555 base1.get() + mode * nquad1, nquad1, 0.0,
556 tmp2.get() + mode * nquad2, nquad2);
557 mode += order1 - i;
558 }
559
560 // fix for modified basis for base singular vertex
562 {
563 // base singular vertex and singular edge (1+b)/2
564 //(1+a)/2 components (makes tmp[nquad2] entry into (1+b)/2)
565 Blas::Dgemv('T', nquad1, nquad2, 1.0, tmp1.get() + nquad1 * nquad2,
566 nquad1, base1.get() + nquad1, 1, 1.0, tmp2.get() + nquad2,
567 1);
568 }
569
570 // Inner product with respect to the '2' direction
571 mode = mode1 = cnt = 0;
572 for (i = 0; i < order0; ++i)
573 {
574 for (j = 0; j < order1 - i; ++j, ++cnt)
575 {
576 Blas::Dgemv('T', nquad2, order2 - i - j, 1.0,
577 base2.get() + mode * nquad2, nquad2,
578 tmp2.get() + cnt * nquad2, 1, 0.0,
579 outarray.get() + mode1, 1);
580 mode += order2 - i - j;
581 mode1 += order2 - i - j;
582 }
583 // increment mode in case order1!=order2
584 for (j = order1 - i; j < order2 - i; ++j)
585 {
586 mode += order2 - i - j;
587 }
588 }
589
590 // fix for modified basis for top singular vertex component
591 // Already have evaluated (1+c)/2 (1-b)/2 (1-a)/2
593 {
594 // add in (1+c)/2 (1+b)/2 component
595 outarray[1] +=
596 Blas::Ddot(nquad2, base2.get() + nquad2, 1, &tmp2[nquad2], 1);
597
598 // add in (1+c)/2 (1-b)/2 (1+a)/2 component
599 outarray[1] += Blas::Ddot(nquad2, base2.get() + nquad2, 1,
600 &tmp2[nquad2 * order1], 1);
601 }
602}
static double Ddot(const int &n, const double *x, const int &incx, const double *y, const int &incy)
BLAS level 1: output = .
Definition: Blas.hpp:163

References Blas::Ddot(), Blas::Dgemm(), Blas::Dgemv(), Nektar::LibUtilities::eModified_A, Nektar::StdRegions::StdExpansion::GetBasisType(), and Nektar::StdRegions::StdExpansion::m_base.

◆ v_IProductWRTDerivBase()

void Nektar::StdRegions::StdTetExp::v_IProductWRTDerivBase ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::TetExp.

Definition at line 604 of file StdTetExp.cpp.

607{
608 StdTetExp::v_IProductWRTDerivBase_SumFac(dir, inarray, outarray);
609}
void v_IProductWRTDerivBase_SumFac(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Definition: StdTetExp.cpp:617

References v_IProductWRTDerivBase_SumFac().

◆ v_IProductWRTDerivBase_SumFac()

void Nektar::StdRegions::StdTetExp::v_IProductWRTDerivBase_SumFac ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual
Parameters
inarrayFunction evaluated at physical collocation points.
outarrayInner product with respect to each basis function over the element.

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 617 of file StdTetExp.cpp.

620{
621 int i;
622 int nquad0 = m_base[0]->GetNumPoints();
623 int nquad1 = m_base[1]->GetNumPoints();
624 int nquad2 = m_base[2]->GetNumPoints();
625 int nqtot = nquad0 * nquad1 * nquad2;
626 int nmodes0 = m_base[0]->GetNumModes();
627 int nmodes1 = m_base[1]->GetNumModes();
628 int wspsize = nquad0 + nquad1 + nquad2 + max(nqtot, m_ncoeffs) +
629 nquad1 * nquad2 * nmodes0 +
630 nquad2 * nmodes0 * (2 * nmodes1 - nmodes0 + 1) / 2;
631
632 Array<OneD, NekDouble> gfac0(wspsize);
633 Array<OneD, NekDouble> gfac1(gfac0 + nquad0);
634 Array<OneD, NekDouble> gfac2(gfac1 + nquad1);
635 Array<OneD, NekDouble> tmp0(gfac2 + nquad2);
636 Array<OneD, NekDouble> wsp(tmp0 + max(nqtot, m_ncoeffs));
637
638 const Array<OneD, const NekDouble> &z0 = m_base[0]->GetZ();
639 const Array<OneD, const NekDouble> &z1 = m_base[1]->GetZ();
640 const Array<OneD, const NekDouble> &z2 = m_base[2]->GetZ();
641
642 // set up geometric factor: (1+z0)/2
643 for (i = 0; i < nquad0; ++i)
644 {
645 gfac0[i] = 0.5 * (1 + z0[i]);
646 }
647
648 // set up geometric factor: 2/(1-z1)
649 for (i = 0; i < nquad1; ++i)
650 {
651 gfac1[i] = 2.0 / (1 - z1[i]);
652 }
653
654 // Set up geometric factor: 2/(1-z2)
655 for (i = 0; i < nquad2; ++i)
656 {
657 gfac2[i] = 2.0 / (1 - z2[i]);
658 }
659
660 // Derivative in first direction is always scaled as follows
661 for (i = 0; i < nquad1 * nquad2; ++i)
662 {
663 Vmath::Smul(nquad0, gfac1[i % nquad1], &inarray[0] + i * nquad0, 1,
664 &tmp0[0] + i * nquad0, 1);
665 }
666 for (i = 0; i < nquad2; ++i)
667 {
668 Vmath::Smul(nquad0 * nquad1, gfac2[i], &tmp0[0] + i * nquad0 * nquad1,
669 1, &tmp0[0] + i * nquad0 * nquad1, 1);
670 }
671
672 MultiplyByQuadratureMetric(tmp0, tmp0);
673
674 switch (dir)
675 {
676 case 0:
677 {
679 m_base[0]->GetDbdata(), m_base[1]->GetBdata(),
680 m_base[2]->GetBdata(), tmp0, outarray, wsp, false, true, true);
681 }
682 break;
683 case 1:
684 {
685 Array<OneD, NekDouble> tmp3(m_ncoeffs);
686
687 for (i = 0; i < nquad1 * nquad2; ++i)
688 {
689 Vmath::Vmul(nquad0, &gfac0[0], 1, &tmp0[0] + i * nquad0, 1,
690 &tmp0[0] + i * nquad0, 1);
691 }
692
694 m_base[0]->GetDbdata(), m_base[1]->GetBdata(),
695 m_base[2]->GetBdata(), tmp0, tmp3, wsp, false, true, true);
696
697 for (i = 0; i < nquad2; ++i)
698 {
699 Vmath::Smul(nquad0 * nquad1, gfac2[i],
700 &inarray[0] + i * nquad0 * nquad1, 1,
701 &tmp0[0] + i * nquad0 * nquad1, 1);
702 }
703 MultiplyByQuadratureMetric(tmp0, tmp0);
705 m_base[0]->GetBdata(), m_base[1]->GetDbdata(),
706 m_base[2]->GetBdata(), tmp0, outarray, wsp, true, false, true);
707 Vmath::Vadd(m_ncoeffs, &tmp3[0], 1, &outarray[0], 1, &outarray[0],
708 1);
709 }
710 break;
711 case 2:
712 {
713 Array<OneD, NekDouble> tmp3(m_ncoeffs);
714 Array<OneD, NekDouble> tmp4(m_ncoeffs);
715 for (i = 0; i < nquad1; ++i)
716 {
717 gfac1[i] = (1 + z1[i]) / 2;
718 }
719
720 for (i = 0; i < nquad1 * nquad2; ++i)
721 {
722 Vmath::Vmul(nquad0, &gfac0[0], 1, &tmp0[0] + i * nquad0, 1,
723 &tmp0[0] + i * nquad0, 1);
724 }
726 m_base[0]->GetDbdata(), m_base[1]->GetBdata(),
727 m_base[2]->GetBdata(), tmp0, tmp3, wsp, false, true, true);
728
729 for (i = 0; i < nquad2; ++i)
730 {
731 Vmath::Smul(nquad0 * nquad1, gfac2[i],
732 &inarray[0] + i * nquad0 * nquad1, 1,
733 &tmp0[0] + i * nquad0 * nquad1, 1);
734 }
735 for (i = 0; i < nquad1 * nquad2; ++i)
736 {
737 Vmath::Smul(nquad0, gfac1[i % nquad1], &tmp0[0] + i * nquad0, 1,
738 &tmp0[0] + i * nquad0, 1);
739 }
740 MultiplyByQuadratureMetric(tmp0, tmp0);
742 m_base[0]->GetBdata(), m_base[1]->GetDbdata(),
743 m_base[2]->GetBdata(), tmp0, tmp4, wsp, true, false, true);
744
745 MultiplyByQuadratureMetric(inarray, tmp0);
747 m_base[0]->GetBdata(), m_base[1]->GetBdata(),
748 m_base[2]->GetDbdata(), tmp0, outarray, wsp, true, true, false);
749
750 Vmath::Vadd(m_ncoeffs, &tmp3[0], 1, &outarray[0], 1, &outarray[0],
751 1);
752 Vmath::Vadd(m_ncoeffs, &tmp4[0], 1, &outarray[0], 1, &outarray[0],
753 1);
754 }
755 break;
756 default:
757 {
758 ASSERTL1(false, "input dir is out of range");
759 }
760 break;
761 }
762}
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.hpp:72
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.hpp:180

References ASSERTL1, Nektar::StdRegions::StdExpansion3D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric(), Vmath::Smul(), Vmath::Vadd(), and Vmath::Vmul().

Referenced by v_IProductWRTDerivBase(), and Nektar::StdRegions::StdNodalTetExp::v_IProductWRTDerivBase_SumFac().

◆ v_IsBoundaryInteriorExpansion()

bool Nektar::StdRegions::StdTetExp::v_IsBoundaryInteriorExpansion ( ) const
overrideprotectedvirtual

◆ v_LocCollapsedToLocCoord()

void Nektar::StdRegions::StdTetExp::v_LocCollapsedToLocCoord ( const Array< OneD, const NekDouble > &  eta,
Array< OneD, NekDouble > &  xi 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 800 of file StdTetExp.cpp.

802{
803 xi[1] = (1.0 + eta[0]) * (1.0 - eta[2]) * 0.5 - 1.0;
804 xi[0] = (1.0 + eta[0]) * (-xi[1] - eta[2]) * 0.5 - 1.0;
805 xi[2] = eta[2];
806}

◆ v_LocCoordToLocCollapsed()

void Nektar::StdRegions::StdTetExp::v_LocCoordToLocCollapsed ( const Array< OneD, const NekDouble > &  xi,
Array< OneD, NekDouble > &  eta 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 768 of file StdTetExp.cpp.

770{
771 NekDouble d2 = 1.0 - xi[2];
772 NekDouble d12 = -xi[1] - xi[2];
773 if (fabs(d2) < NekConstants::kNekZeroTol)
774 {
775 if (d2 >= 0.)
776 {
778 }
779 else
780 {
782 }
783 }
784 if (fabs(d12) < NekConstants::kNekZeroTol)
785 {
786 if (d12 >= 0.)
787 {
789 }
790 else
791 {
793 }
794 }
795 eta[0] = 2.0 * (1.0 + xi[0]) / d12 - 1.0;
796 eta[1] = 2.0 * (1.0 + xi[1]) / d2 - 1.0;
797 eta[2] = xi[2];
798}
static const NekDouble kNekZeroTol

References Nektar::NekConstants::kNekZeroTol.

◆ v_MultiplyByStdQuadratureMetric()

void Nektar::StdRegions::StdTetExp::v_MultiplyByStdQuadratureMetric ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1939 of file StdTetExp.cpp.

1942{
1943 int i, j;
1944
1945 int nquad0 = m_base[0]->GetNumPoints();
1946 int nquad1 = m_base[1]->GetNumPoints();
1947 int nquad2 = m_base[2]->GetNumPoints();
1948
1949 const Array<OneD, const NekDouble> &w0 = m_base[0]->GetW();
1950 const Array<OneD, const NekDouble> &w1 = m_base[1]->GetW();
1951 const Array<OneD, const NekDouble> &w2 = m_base[2]->GetW();
1952
1953 const Array<OneD, const NekDouble> &z1 = m_base[1]->GetZ();
1954 const Array<OneD, const NekDouble> &z2 = m_base[2]->GetZ();
1955
1956 // multiply by integration constants
1957 for (i = 0; i < nquad1 * nquad2; ++i)
1958 {
1959 Vmath::Vmul(nquad0, (NekDouble *)&inarray[0] + i * nquad0, 1, w0.get(),
1960 1, &outarray[0] + i * nquad0, 1);
1961 }
1962
1963 switch (m_base[1]->GetPointsType())
1964 {
1965 // (1,0) Jacobi Inner product.
1966 case LibUtilities::eGaussRadauMAlpha1Beta0:
1967 for (j = 0; j < nquad2; ++j)
1968 {
1969 for (i = 0; i < nquad1; ++i)
1970 {
1971 Blas::Dscal(nquad0, 0.5 * w1[i],
1972 &outarray[0] + i * nquad0 + j * nquad0 * nquad1,
1973 1);
1974 }
1975 }
1976 break;
1977
1978 default:
1979 for (j = 0; j < nquad2; ++j)
1980 {
1981 for (i = 0; i < nquad1; ++i)
1982 {
1983 Blas::Dscal(nquad0, 0.5 * (1 - z1[i]) * w1[i],
1984 &outarray[0] + i * nquad0 + j * nquad0 * nquad1,
1985 1);
1986 }
1987 }
1988 break;
1989 }
1990
1991 switch (m_base[2]->GetPointsType())
1992 {
1993 // (2,0) Jacobi inner product.
1994 case LibUtilities::eGaussRadauMAlpha2Beta0:
1995 for (i = 0; i < nquad2; ++i)
1996 {
1997 Blas::Dscal(nquad0 * nquad1, 0.25 * w2[i],
1998 &outarray[0] + i * nquad0 * nquad1, 1);
1999 }
2000 break;
2001 // (1,0) Jacobi inner product.
2002 case LibUtilities::eGaussRadauMAlpha1Beta0:
2003 for (i = 0; i < nquad2; ++i)
2004 {
2005 Blas::Dscal(nquad0 * nquad1, 0.25 * (1 - z2[i]) * w2[i],
2006 &outarray[0] + i * nquad0 * nquad1, 1);
2007 }
2008 break;
2009 default:
2010 for (i = 0; i < nquad2; ++i)
2011 {
2012 Blas::Dscal(nquad0 * nquad1,
2013 0.25 * (1 - z2[i]) * (1 - z2[i]) * w2[i],
2014 &outarray[0] + i * nquad0 * nquad1, 1);
2015 }
2016 break;
2017 }
2018}
LibUtilities::PointsType GetPointsType(const int dir) const
This function returns the type of quadrature points used in the dir direction.
Definition: StdExpansion.h:205
static void Dscal(const int &n, const double &alpha, double *x, const int &incx)
BLAS level 1: x = alpha x.
Definition: Blas.hpp:149

References Blas::Dscal(), Nektar::StdRegions::StdExpansion::GetPointsType(), Nektar::StdRegions::StdExpansion::m_base, and Vmath::Vmul().

◆ v_NumBndryCoeffs()

int Nektar::StdRegions::StdTetExp::v_NumBndryCoeffs ( ) const
overrideprotectedvirtual

Implements Nektar::StdRegions::StdExpansion.

Definition at line 975 of file StdTetExp.cpp.

976{
979 "BasisType is not a boundary interior form");
982 "BasisType is not a boundary interior form");
985 "BasisType is not a boundary interior form");
986
987 int P = m_base[0]->GetNumModes();
988 int Q = m_base[1]->GetNumModes();
989 int R = m_base[2]->GetNumModes();
990
992}
int getNumberOfBndCoefficients(int Na, int Nb, int Nc)
Definition: ShapeType.hpp:210

References ASSERTL1, Nektar::LibUtilities::eGLL_Lagrange, Nektar::LibUtilities::eModified_A, Nektar::LibUtilities::eModified_B, Nektar::LibUtilities::eModified_C, Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::LibUtilities::StdTetData::getNumberOfBndCoefficients(), Nektar::StdRegions::StdExpansion::m_base, and Nektar::LibUtilities::P.

◆ v_NumDGBndryCoeffs()

int Nektar::StdRegions::StdTetExp::v_NumDGBndryCoeffs ( ) const
overrideprotectedvirtual

Implements Nektar::StdRegions::StdExpansion.

Definition at line 994 of file StdTetExp.cpp.

995{
998 "BasisType is not a boundary interior form");
1001 "BasisType is not a boundary interior form");
1004 "BasisType is not a boundary interior form");
1005
1006 int P = m_base[0]->GetNumModes() - 1;
1007 int Q = m_base[1]->GetNumModes() - 1;
1008 int R = m_base[2]->GetNumModes() - 1;
1009
1010 return (Q + 1) + P * (1 + 2 * Q - P) / 2 // base face
1011 + (R + 1) + P * (1 + 2 * R - P) / 2 // front face
1012 + 2 * (R + 1) + Q * (1 + 2 * R - Q); // back two faces
1013}

References ASSERTL1, Nektar::LibUtilities::eGLL_Lagrange, Nektar::LibUtilities::eModified_A, Nektar::LibUtilities::eModified_B, Nektar::LibUtilities::eModified_C, Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::StdRegions::StdExpansion::m_base, and Nektar::LibUtilities::P.

◆ v_PhysDeriv() [1/2]

void Nektar::StdRegions::StdTetExp::v_PhysDeriv ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out_dxi0,
Array< OneD, NekDouble > &  out_dxi1,
Array< OneD, NekDouble > &  out_dxi2 
)
overrideprotectedvirtual

Calculate the derivative of the physical points.

The derivative is evaluated at the nodal physical points. Derivatives with respect to the local Cartesian coordinates

\(\begin{Bmatrix} \frac {\partial} {\partial \xi_1} \\ \frac {\partial} {\partial \xi_2} \\ \frac {\partial} {\partial \xi_3} \end{Bmatrix} = \begin{Bmatrix} \frac 4 {(1-\eta_2)(1-\eta_3)} \frac \partial {\partial \eta_1} \ \ \frac {2(1+\eta_1)} {(1-\eta_2)(1-\eta_3)} \frac \partial {\partial \eta_1} + \frac 2 {1-\eta_3} \frac \partial {\partial \eta_3} \\ \frac {2(1 + \eta_1)} {2(1 - \eta_2)(1-\eta_3)} \frac \partial {\partial \eta_1} + \frac {1 + \eta_2} {1 - \eta_3} \frac \partial {\partial \eta_2} + \frac \partial {\partial \eta_3} \end{Bmatrix}\)

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::TetExp.

Definition at line 83 of file StdTetExp.cpp.

87{
88 int Q0 = m_base[0]->GetNumPoints();
89 int Q1 = m_base[1]->GetNumPoints();
90 int Q2 = m_base[2]->GetNumPoints();
91 int Qtot = Q0 * Q1 * Q2;
92
93 // Compute the physical derivative
94 Array<OneD, NekDouble> out_dEta0(3 * Qtot, 0.0);
95 Array<OneD, NekDouble> out_dEta1 = out_dEta0 + Qtot;
96 Array<OneD, NekDouble> out_dEta2 = out_dEta1 + Qtot;
97
98 bool Do_2 = (out_dxi2.size() > 0) ? true : false;
99 bool Do_1 = (out_dxi1.size() > 0) ? true : false;
100
101 if (Do_2) // Need all local derivatives
102 {
103 PhysTensorDeriv(inarray, out_dEta0, out_dEta1, out_dEta2);
104 }
105 else if (Do_1) // Need 0 and 1 derivatives
106 {
107 PhysTensorDeriv(inarray, out_dEta0, out_dEta1, NullNekDouble1DArray);
108 }
109 else // Only need Eta0 derivaitve
110 {
111 PhysTensorDeriv(inarray, out_dEta0, NullNekDouble1DArray,
113 }
114
115 Array<OneD, const NekDouble> eta_0, eta_1, eta_2;
116 eta_0 = m_base[0]->GetZ();
117 eta_1 = m_base[1]->GetZ();
118 eta_2 = m_base[2]->GetZ();
119
120 // calculate 2.0/((1-eta_1)(1-eta_2)) Out_dEta0
121
122 NekDouble *dEta0 = &out_dEta0[0];
123 NekDouble fac;
124 for (int k = 0; k < Q2; ++k)
125 {
126 for (int j = 0; j < Q1; ++j, dEta0 += Q0)
127 {
128 Vmath::Smul(Q0, 2.0 / (1.0 - eta_1[j]), dEta0, 1, dEta0, 1);
129 }
130 fac = 1.0 / (1.0 - eta_2[k]);
131 Vmath::Smul(Q0 * Q1, fac, &out_dEta0[0] + k * Q0 * Q1, 1,
132 &out_dEta0[0] + k * Q0 * Q1, 1);
133 }
134
135 if (out_dxi0.size() > 0)
136 {
137 // out_dxi0 = 4.0/((1-eta_1)(1-eta_2)) Out_dEta0
138 Vmath::Smul(Qtot, 2.0, out_dEta0, 1, out_dxi0, 1);
139 }
140
141 if (Do_1 || Do_2)
142 {
143 Array<OneD, NekDouble> Fac0(Q0);
144 Vmath::Sadd(Q0, 1.0, eta_0, 1, Fac0, 1);
145
146 // calculate 2.0*(1+eta_0)/((1-eta_1)(1-eta_2)) Out_dEta0
147 for (int k = 0; k < Q1 * Q2; ++k)
148 {
149 Vmath::Vmul(Q0, &Fac0[0], 1, &out_dEta0[0] + k * Q0, 1,
150 &out_dEta0[0] + k * Q0, 1);
151 }
152 // calculate 2/(1.0-eta_2) out_dEta1
153 for (int k = 0; k < Q2; ++k)
154 {
155 Vmath::Smul(Q0 * Q1, 2.0 / (1.0 - eta_2[k]),
156 &out_dEta1[0] + k * Q0 * Q1, 1,
157 &out_dEta1[0] + k * Q0 * Q1, 1);
158 }
159
160 if (Do_1)
161 {
162 // calculate out_dxi1 = 2.0(1+eta_0)/((1-eta_1)(1-eta_2)) Out_dEta0
163 // + 2/(1.0-eta_2) out_dEta1
164 Vmath::Vadd(Qtot, out_dEta0, 1, out_dEta1, 1, out_dxi1, 1);
165 }
166
167 if (Do_2)
168 {
169 // calculate (1 + eta_1)/(1 -eta_2)*out_dEta1
170 NekDouble *dEta1 = &out_dEta1[0];
171 for (int k = 0; k < Q2; ++k)
172 {
173 for (int j = 0; j < Q1; ++j, dEta1 += Q0)
174 {
175 Vmath::Smul(Q0, (1.0 + eta_1[j]) / 2.0, dEta1, 1, dEta1, 1);
176 }
177 }
178
179 // calculate out_dxi2 =
180 // 2.0(1+eta_0)/((1-eta_1)(1-eta_2)) Out_dEta0 +
181 // (1 + eta_1)/(1 -eta_2)*out_dEta1 + out_dEta2
182 Vmath::Vadd(Qtot, out_dEta0, 1, out_dEta1, 1, out_dxi2, 1);
183 Vmath::Vadd(Qtot, out_dEta2, 1, out_dxi2, 1, out_dxi2, 1);
184 }
185 }
186}
void PhysTensorDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray_d1, Array< OneD, NekDouble > &outarray_d2, Array< OneD, NekDouble > &outarray_d3)
Calculate the 3D derivative in the local tensor/collapsed coordinate at the physical points.
static Array< OneD, NekDouble > NullNekDouble1DArray
void Sadd(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Add vector y = alpha + x.
Definition: Vmath.hpp:194

References Nektar::StdRegions::StdExpansion::m_base, Nektar::NullNekDouble1DArray, Nektar::StdRegions::StdExpansion3D::PhysTensorDeriv(), Vmath::Sadd(), Vmath::Smul(), Vmath::Vadd(), and Vmath::Vmul().

Referenced by v_PhysDeriv(), and v_StdPhysDeriv().

◆ v_PhysDeriv() [2/2]

void Nektar::StdRegions::StdTetExp::v_PhysDeriv ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual
Parameters
dirDirection in which to compute derivative. Valid values are 0, 1, 2.
inarrayInput array.
outarrayOutput array.

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 194 of file StdTetExp.cpp.

197{
198 switch (dir)
199 {
200 case 0:
201 {
202 v_PhysDeriv(inarray, outarray, NullNekDouble1DArray,
204 break;
205 }
206 case 1:
207 {
208 v_PhysDeriv(inarray, NullNekDouble1DArray, outarray,
210 break;
211 }
212 case 2:
213 {
215 outarray);
216 break;
217 }
218 default:
219 {
220 ASSERTL1(false, "input dir is out of range");
221 }
222 break;
223 }
224}
void v_PhysDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_dx, Array< OneD, NekDouble > &out_dy, Array< OneD, NekDouble > &out_dz) override
Calculate the derivative of the physical points.
Definition: StdTetExp.cpp:83

References ASSERTL1, Nektar::NullNekDouble1DArray, and v_PhysDeriv().

◆ v_PhysEvaluate()

NekDouble Nektar::StdRegions::StdTetExp::v_PhysEvaluate ( const Array< OneD, NekDouble > &  coord,
const Array< OneD, const NekDouble > &  inarray,
std::array< NekDouble, 3 > &  firstOrderDerivs 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion3D.

Reimplemented in Nektar::LocalRegions::TetExp.

Definition at line 857 of file StdTetExp.cpp.

860{
861 // Collapse coordinates
862 Array<OneD, NekDouble> coll(3, 0.0);
863 LocCoordToLocCollapsed(coord, coll);
864
865 // If near singularity do the old interpolation matrix method
866 if ((1 - coll[1]) < 1e-5 || (1 - coll[2]) < 1e-5)
867 {
868 int totPoints = GetTotPoints();
869 Array<OneD, NekDouble> EphysDeriv0(totPoints), EphysDeriv1(totPoints),
870 EphysDeriv2(totPoints);
871 PhysDeriv(inarray, EphysDeriv0, EphysDeriv1, EphysDeriv2);
872
873 Array<OneD, DNekMatSharedPtr> I(3);
874 I[0] = GetBase()[0]->GetI(coll);
875 I[1] = GetBase()[1]->GetI(coll + 1);
876 I[2] = GetBase()[2]->GetI(coll + 2);
877
878 firstOrderDerivs[0] = PhysEvaluate(I, EphysDeriv0);
879 firstOrderDerivs[1] = PhysEvaluate(I, EphysDeriv1);
880 firstOrderDerivs[2] = PhysEvaluate(I, EphysDeriv2);
881 return PhysEvaluate(I, inarray);
882 }
883
884 std::array<NekDouble, 3> interDeriv;
885 NekDouble val = BaryTensorDeriv(coll, inarray, interDeriv);
886
887 // calculate 2.0/((1-eta_1)(1-eta_2)) * Out_dEta0
888 NekDouble temp = 2.0 / ((1 - coll[1]) * (1 - coll[2]));
889 interDeriv[0] *= temp;
890
891 // out_dxi0 = 4.0/((1-eta_1)(1-eta_2)) * Out_dEta0
892 firstOrderDerivs[0] = 2 * interDeriv[0];
893
894 // fac0 = 1 + eta_0
895 NekDouble fac0;
896 fac0 = 1 + coll[0];
897
898 // calculate 2.0*(1+eta_0)/((1-eta_1)(1-eta_2)) * Out_dEta0
899 interDeriv[0] *= fac0;
900
901 // calculate 2/(1.0-eta_2) * out_dEta1
902 fac0 = 2 / (1 - coll[2]);
903 interDeriv[1] *= fac0;
904
905 // calculate out_dxi1 = 2.0(1+eta_0)/((1-eta_1)(1-eta_2))
906 // * Out_dEta0 + 2/(1.0-eta_2) out_dEta1
907 firstOrderDerivs[1] = interDeriv[0] + interDeriv[1];
908
909 // calculate (1 + eta_1)/(1 -eta_2)*out_dEta1
910 fac0 = (1 + coll[1]) / 2;
911 interDeriv[1] *= fac0;
912
913 // calculate out_dxi2 =
914 // 2.0(1+eta_0)/((1-eta_1)(1-eta_2)) Out_dEta0 +
915 // (1 + eta_1)/(1 -eta_2)*out_dEta1 + out_dEta2
916 firstOrderDerivs[2] = interDeriv[0] + interDeriv[1] + interDeriv[2];
917
918 return val;
919}
NekDouble BaryTensorDeriv(const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs)
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:134
const Array< OneD, const LibUtilities::BasisSharedPtr > & GetBase() const
This function gets the shared point to basis.
Definition: StdExpansion.h:100
NekDouble PhysEvaluate(const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
This function evaluates the expansion at a single (arbitrary) point of the domain.
Definition: StdExpansion.h:919
void PhysDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
Definition: StdExpansion.h:849

References Nektar::StdRegions::StdExpansion3D::BaryTensorDeriv(), Nektar::StdRegions::StdExpansion::GetBase(), Nektar::StdRegions::StdExpansion::GetTotPoints(), Nektar::StdRegions::StdExpansion::LocCoordToLocCollapsed(), Nektar::StdRegions::StdExpansion::PhysDeriv(), and Nektar::StdRegions::StdExpansion::PhysEvaluate().

◆ v_PhysEvaluateBasis()

NekDouble Nektar::StdRegions::StdTetExp::v_PhysEvaluateBasis ( const Array< OneD, const NekDouble > &  coords,
int  mode 
)
finalprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 815 of file StdTetExp.cpp.

817{
818 Array<OneD, NekDouble> coll(3);
819 LocCoordToLocCollapsed(coords, coll);
820
821 const int nm1 = m_base[1]->GetNumModes();
822 const int nm2 = m_base[2]->GetNumModes();
823
824 const int b = 2 * nm2 + 1;
825 const int mode0 = floor(0.5 * (b - sqrt(b * b - 8.0 * mode / nm1)));
826 const int tmp =
827 mode - nm1 * (mode0 * (nm2 - 1) + 1 - (mode0 - 2) * (mode0 - 1) / 2);
828 const int mode1 = tmp / (nm2 - mode0);
829 const int mode2 = tmp % (nm2 - mode0);
830
832 {
833 // Handle the collapsed vertices and edges in the modified
834 // basis.
835 if (mode == 1)
836 {
837 // Collapsed top vertex
838 return StdExpansion::BaryEvaluateBasis<2>(coll[2], 1);
839 }
840 else if (mode0 == 0 && mode2 == 1)
841 {
842 return StdExpansion::BaryEvaluateBasis<1>(coll[1], 0) *
843 StdExpansion::BaryEvaluateBasis<2>(coll[2], 1);
844 }
845 else if (mode0 == 1 && mode1 == 1 && mode2 == 0)
846 {
847 return StdExpansion::BaryEvaluateBasis<0>(coll[0], 0) *
848 StdExpansion::BaryEvaluateBasis<1>(coll[1], 1);
849 }
850 }
851
852 return StdExpansion::BaryEvaluateBasis<0>(coll[0], mode0) *
853 StdExpansion::BaryEvaluateBasis<1>(coll[1], mode1) *
854 StdExpansion::BaryEvaluateBasis<2>(coll[2], mode2);
855}
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294

References Nektar::LibUtilities::eModified_A, Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::StdRegions::StdExpansion::LocCoordToLocCollapsed(), Nektar::StdRegions::StdExpansion::m_base, and tinysimd::sqrt().

◆ v_ReduceOrderCoeffs()

void Nektar::StdRegions::StdTetExp::v_ReduceOrderCoeffs ( int  numMin,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 2162 of file StdTetExp.cpp.

2165{
2166 int nquad0 = m_base[0]->GetNumPoints();
2167 int nquad1 = m_base[1]->GetNumPoints();
2168 int nquad2 = m_base[2]->GetNumPoints();
2169 int nqtot = nquad0 * nquad1 * nquad2;
2170 int nmodes0 = m_base[0]->GetNumModes();
2171 int nmodes1 = m_base[1]->GetNumModes();
2172 int nmodes2 = m_base[2]->GetNumModes();
2173 int numMax = nmodes0;
2174
2175 Array<OneD, NekDouble> coeff(m_ncoeffs);
2176 Array<OneD, NekDouble> coeff_tmp1(m_ncoeffs, 0.0);
2177 Array<OneD, NekDouble> coeff_tmp2(m_ncoeffs, 0.0);
2178 Array<OneD, NekDouble> phys_tmp(nqtot, 0.0);
2179 Array<OneD, NekDouble> tmp, tmp2, tmp3, tmp4;
2180
2181 Vmath::Vcopy(m_ncoeffs, inarray, 1, coeff_tmp2, 1);
2182
2183 const LibUtilities::PointsKey Pkey0 = m_base[0]->GetPointsKey();
2184 const LibUtilities::PointsKey Pkey1 = m_base[1]->GetPointsKey();
2185 const LibUtilities::PointsKey Pkey2 = m_base[2]->GetPointsKey();
2186
2187 LibUtilities::BasisKey bortho0(LibUtilities::eOrtho_A, nmodes0, Pkey0);
2188 LibUtilities::BasisKey bortho1(LibUtilities::eOrtho_B, nmodes1, Pkey1);
2189 LibUtilities::BasisKey bortho2(LibUtilities::eOrtho_C, nmodes2, Pkey2);
2190
2191 Vmath::Zero(m_ncoeffs, coeff_tmp2, 1);
2192
2195 bortho0, bortho1, bortho2);
2196
2197 BwdTrans(inarray, phys_tmp);
2198 OrthoTetExp->FwdTrans(phys_tmp, coeff);
2199
2200 Vmath::Zero(m_ncoeffs, outarray, 1);
2201
2202 // filtering
2203 int cnt = 0;
2204 for (int u = 0; u < numMin; ++u)
2205 {
2206 for (int i = 0; i < numMin - u; ++i)
2207 {
2208 Vmath::Vcopy(numMin - u - i, tmp = coeff + cnt, 1,
2209 tmp2 = coeff_tmp1 + cnt, 1);
2210 cnt += numMax - u - i;
2211 }
2212 for (int i = numMin; i < numMax - u; ++i)
2213 {
2214 cnt += numMax - u - i;
2215 }
2216 }
2217
2218 OrthoTetExp->BwdTrans(coeff_tmp1, phys_tmp);
2219 FwdTrans(phys_tmp, outarray);
2220}
void BwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
This function performs the Backward transformation from coefficient space to physical space.
Definition: StdExpansion.h:424
void FwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
This function performs the Forward transformation from physical space to coefficient space.
@ eOrtho_A
Principle Orthogonal Functions .
Definition: BasisType.h:42
std::shared_ptr< StdTetExp > StdTetExpSharedPtr
Definition: StdTetExp.h:233
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.hpp:273

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), Nektar::StdRegions::StdExpansion::BwdTrans(), Nektar::LibUtilities::eOrtho_A, Nektar::LibUtilities::eOrtho_B, Nektar::LibUtilities::eOrtho_C, Nektar::StdRegions::StdExpansion::FwdTrans(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, Vmath::Vcopy(), and Vmath::Zero().

◆ v_StdPhysDeriv() [1/2]

void Nektar::StdRegions::StdTetExp::v_StdPhysDeriv ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out_d0,
Array< OneD, NekDouble > &  out_d1,
Array< OneD, NekDouble > &  out_d2 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 226 of file StdTetExp.cpp.

230{
231 StdTetExp::v_PhysDeriv(inarray, out_d0, out_d1, out_d2);
232}

References v_PhysDeriv().

◆ v_StdPhysDeriv() [2/2]

void Nektar::StdRegions::StdTetExp::v_StdPhysDeriv ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 234 of file StdTetExp.cpp.

237{
238 StdTetExp::v_PhysDeriv(dir, inarray, outarray);
239}

References v_PhysDeriv().

◆ v_SVVLaplacianFilter()

void Nektar::StdRegions::StdTetExp::v_SVVLaplacianFilter ( Array< OneD, NekDouble > &  array,
const StdMatrixKey mkey 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::TetExp.

Definition at line 2020 of file StdTetExp.cpp.

2022{
2023 // To do : 1) add a test to ensure 0 \leq SvvCutoff \leq 1.
2024 // 2) check if the transfer function needs an analytical
2025 // Fourier transform.
2026 // 3) if it doesn't : find a transfer function that renders
2027 // the if( cutoff_a ...) useless to reduce computational
2028 // cost.
2029 // 4) add SVVDiffCoef to both models!!
2030
2031 int qa = m_base[0]->GetNumPoints();
2032 int qb = m_base[1]->GetNumPoints();
2033 int qc = m_base[2]->GetNumPoints();
2034 int nmodes_a = m_base[0]->GetNumModes();
2035 int nmodes_b = m_base[1]->GetNumModes();
2036 int nmodes_c = m_base[2]->GetNumModes();
2037
2038 // Declare orthogonal basis.
2039 LibUtilities::PointsKey pa(qa, m_base[0]->GetPointsType());
2040 LibUtilities::PointsKey pb(qb, m_base[1]->GetPointsType());
2041 LibUtilities::PointsKey pc(qc, m_base[2]->GetPointsType());
2042
2043 LibUtilities::BasisKey Ba(LibUtilities::eOrtho_A, nmodes_a, pa);
2044 LibUtilities::BasisKey Bb(LibUtilities::eOrtho_B, nmodes_b, pb);
2045 LibUtilities::BasisKey Bc(LibUtilities::eOrtho_C, nmodes_c, pc);
2046
2047 StdTetExp OrthoExp(Ba, Bb, Bc);
2048
2049 Array<OneD, NekDouble> orthocoeffs(OrthoExp.GetNcoeffs());
2050 int i, j, k, cnt = 0;
2051
2052 // project onto physical space.
2053 OrthoExp.FwdTrans(array, orthocoeffs);
2054
2055 if (mkey.ConstFactorExists(eFactorSVVPowerKerDiffCoeff))
2056 {
2057 // Rodrigo's power kernel
2058 NekDouble cutoff = mkey.GetConstFactor(eFactorSVVCutoffRatio);
2059 NekDouble SvvDiffCoeff =
2060 mkey.GetConstFactor(eFactorSVVPowerKerDiffCoeff) *
2061 mkey.GetConstFactor(eFactorSVVDiffCoeff);
2062
2063 for (int i = 0; i < nmodes_a; ++i)
2064 {
2065 for (int j = 0; j < nmodes_b - j; ++j)
2066 {
2067 NekDouble fac1 = std::max(
2068 pow((1.0 * i) / (nmodes_a - 1), cutoff * nmodes_a),
2069 pow((1.0 * j) / (nmodes_b - 1), cutoff * nmodes_b));
2070
2071 for (int k = 0; k < nmodes_c - i - j; ++k)
2072 {
2073 NekDouble fac =
2074 std::max(fac1, pow((1.0 * k) / (nmodes_c - 1),
2075 cutoff * nmodes_c));
2076
2077 orthocoeffs[cnt] *= SvvDiffCoeff * fac;
2078 cnt++;
2079 }
2080 }
2081 }
2082 }
2083 else if (mkey.ConstFactorExists(
2084 eFactorSVVDGKerDiffCoeff)) // Rodrigo/Mansoor's DG Kernel
2085 {
2086 NekDouble SvvDiffCoeff = mkey.GetConstFactor(eFactorSVVDGKerDiffCoeff) *
2087 mkey.GetConstFactor(eFactorSVVDiffCoeff);
2088
2089 int max_abc = max(nmodes_a - kSVVDGFiltermodesmin,
2090 nmodes_b - kSVVDGFiltermodesmin);
2091 max_abc = max(max_abc, nmodes_c - kSVVDGFiltermodesmin);
2092 // clamp max_abc
2093 max_abc = max(max_abc, 0);
2094 max_abc = min(max_abc, kSVVDGFiltermodesmax - kSVVDGFiltermodesmin);
2095
2096 for (int i = 0; i < nmodes_a; ++i)
2097 {
2098 for (int j = 0; j < nmodes_b - j; ++j)
2099 {
2100 int maxij = max(i, j);
2101
2102 for (int k = 0; k < nmodes_c - i - j; ++k)
2103 {
2104 int maxijk = max(maxij, k);
2105 maxijk = min(maxijk, kSVVDGFiltermodesmax - 1);
2106
2107 orthocoeffs[cnt] *=
2108 SvvDiffCoeff * kSVVDGFilter[max_abc][maxijk];
2109 cnt++;
2110 }
2111 }
2112 }
2113 }
2114 else
2115 {
2116
2117 // SVV filter paramaters (how much added diffusion
2118 // relative to physical one and fraction of modes from
2119 // which you start applying this added diffusion)
2120
2121 NekDouble SvvDiffCoeff =
2122 mkey.GetConstFactor(StdRegions::eFactorSVVDiffCoeff);
2123 NekDouble SVVCutOff =
2124 mkey.GetConstFactor(StdRegions::eFactorSVVCutoffRatio);
2125
2126 // Defining the cut of mode
2127 int cutoff_a = (int)(SVVCutOff * nmodes_a);
2128 int cutoff_b = (int)(SVVCutOff * nmodes_b);
2129 int cutoff_c = (int)(SVVCutOff * nmodes_c);
2130 int nmodes = min(min(nmodes_a, nmodes_b), nmodes_c);
2131 NekDouble cutoff = min(min(cutoff_a, cutoff_b), cutoff_c);
2132 NekDouble epsilon = 1;
2133
2134 //------"New" Version August 22nd '13--------------------
2135 for (i = 0; i < nmodes_a; ++i)
2136 {
2137 for (j = 0; j < nmodes_b - i; ++j)
2138 {
2139 for (k = 0; k < nmodes_c - i - j; ++k)
2140 {
2141 if (i + j + k >= cutoff)
2142 {
2143 orthocoeffs[cnt] *= ((SvvDiffCoeff)*exp(
2144 -(i + j + k - nmodes) * (i + j + k - nmodes) /
2145 ((NekDouble)((i + j + k - cutoff + epsilon) *
2146 (i + j + k - cutoff + epsilon)))));
2147 }
2148 else
2149 {
2150 orthocoeffs[cnt] *= 0.0;
2151 }
2152 cnt++;
2153 }
2154 }
2155 }
2156 }
2157
2158 // backward transform to physical space
2159 OrthoExp.BwdTrans(orthocoeffs, array);
2160}
StdTetExp(const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc)
Definition: StdTetExp.cpp:42
const int kSVVDGFiltermodesmin
Definition: StdRegions.hpp:472
const int kSVVDGFiltermodesmax
Definition: StdRegions.hpp:473
const NekDouble kSVVDGFilter[9][11]
Definition: StdRegions.hpp:475

References Nektar::StdRegions::StdExpansion::BwdTrans(), Nektar::StdRegions::StdMatrixKey::ConstFactorExists(), Nektar::StdRegions::eFactorSVVCutoffRatio, Nektar::StdRegions::eFactorSVVDGKerDiffCoeff, Nektar::StdRegions::eFactorSVVDiffCoeff, Nektar::StdRegions::eFactorSVVPowerKerDiffCoeff, Nektar::LibUtilities::eOrtho_A, Nektar::LibUtilities::eOrtho_B, Nektar::LibUtilities::eOrtho_C, Nektar::StdRegions::StdExpansion::FwdTrans(), Nektar::StdRegions::StdMatrixKey::GetConstFactor(), Nektar::StdRegions::StdExpansion::GetNcoeffs(), Nektar::StdRegions::StdExpansion::GetPointsType(), Nektar::StdRegions::kSVVDGFilter, Nektar::StdRegions::kSVVDGFiltermodesmax, Nektar::StdRegions::kSVVDGFiltermodesmin, and Nektar::StdRegions::StdExpansion::m_base.