[1]    M Ainsworth and S Sherwin. Domain decomposition preconditioners for p and hp finite element approximation of stokes equations. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 175:243–266, 1999.

[2]    R. R. Aliev and A. V. Panfilov. A simple two-variable model of cardiac excitation. Chaos, Solitons & Fractals, 7:293–301, 1996.

[3]    Ivo Babuška and Manil Suri. The p and h-p versions of the finite element method, basic principles and properties. SIAM review, 36(4):578–632, 1994.

[4]    Y. Bao, R. Palacios, M. Graham, and S.J. Sherwin. Generalized “thick” strip modelling for vortex-induced vibration of long flexible cylinders. J. Comp. Phys, 321:1079–1097, 2016.

[5]    P-E Bernard, J-F Remacle, Richard Comblen, Vincent Legat, and Koen Hillewaert. High-order discontinuous galerkin schemes on general 2d manifolds applied to the shallow water equations. Journal of Computational Physics, 228(17):6514–6535, 2009.

[6]    C. D. Cantwell, S. J. Sherwin, R. M. Kirby, and P. H. J. Kelly. From h to p efficiently: selecting the optimal spectral/hp discretisation in three dimensions. Math. Mod. Nat. Phenom., 6:84–96, 2011.

[7]    C. D. Cantwell, S. J. Sherwin, R. M. Kirby, and P. H. J. Kelly. From h to p efficiently: strategy selection for operator evaluation on hexahedral and tetrahedral elements. Computers & Fluids, 43:23–28, 2011.

[8]    CD Cantwell, D Moxey, A Comerford, A Bolis, G Rocco, G Mengaldo, D De Grazia, S Yakovlev, J-E Lombard, D Ekelschot, et al. Nektar++: An open-source spectral/hp element framework. Computer Physics Communications, 192:205–219, 2015.

[9]    D. De Grazia, G. Mengaldo, D. Moxey, P. E. Vincent, and S. J. Sherwin. Connections between the discontinuous galerkin method and high-order flux reconstruction schemes. International Journal for Numerical Methods in Fluids, 75(12):860–877, 2014.

[10]   S. Dong. A convective-like energy-stable open boundary condition for simulation of incompressible flows. Journal of Computational Physics, 302:300–328, 2015.

[11]   S. Dong, G. E. Karniadakis, and C. Chryssostomidis. A robust and accurate outflow boundary condition for incompressible flow simulations on severely-truncated unbounded domains. Journal of Computational Physics, 261:95–136, 2014.

[12]   AP Dowling and Ffowcs-Williams JE. Sound and sources of sound. Ellis Horwood series in engineering science, 1983.

[13]   Niederer ”et al.”. Verification of cardiac tissue electrophysiology simulators using an n-version benchmark. Philos Transact A Math Phys Eng Sci, 369:4331–51, 2011.

[14]   Abel Gargallo-Peiró, Xevi Roca, Jaime Peraire, and Josep Sarrate. Distortion and quality measures for validating and generating high-order tetrahedral meshes. Engineering with Computers, 31(3):423–437, 2015.

[15]   David Gottlieb, Steven A Orszag, and CAMBRIDGE HYDRODYNAMICS INC MA. Numerical analysis of spectral methods. SIAM, 1977.

[16]   J.L. Guermond and J. Shen. Velocity-correction projection methods for incompressible flows. SIAM J. Numer. Anal., 41:112–134, 2003.

[17]   Jan S Hesthaven and Tim Warburton. Nodal high-order methods on unstructured grids: I. time-domain solution of maxwell’s equations. Journal of Computational Physics, 181(1):186–221, 2002.

[18]   B. E. Jordi, C. J. Cotter, and S. J. Sherwin. Encapsulated formulation of the selective frequency damping method. Phys. Fluids, 2014.

[19]   G. E. Karniadakis, M. Israeli, and S. A. Orszag. High-order splitting methods for the incompressible Navier–Stokes equations. 97(2):414–443, 1991.

[20]   Jonas Koko. Vectorized matlab codes for linear two-dimensional elasticity. Scientific Programming, 15(3):157–172, 2007.

[21]   C. H. Luo and Y. Rudy. A model of the ventricular cardiac action potential. depolarization repolarization and their interaction. Circulation research, 68:1501–1526, 1991.

[22]   R. J. Ramirez M. Courtemanche and S. Nattel. Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. American Journal of Physiology-Heart and Circulatory Physiology, 275:H301–H321, 1998.

[23]   Y. Maday, A. T. Patera, and E.M. Ronquist. An operator-integration-factor splitting method for time-dependent problems: Application to incompressible fludi flow. J. Sci. Comp., 4:263–292, 1990.

[24]   Gianmarco Mengaldo, Daniele De Grazia, Freddie Witherden, Antony Farrington, Peter Vincent, Spencer Sherwin, and Joaquim Peiro. A Guide to the Implementation of Boundary Conditions in Compact High-Order Methods for Compressible Aerodynamics. American Institute of Aeronautics and Astronautics, 2014/08/10 2014.

[25]   D. Moxey, M. Hazan, J. Peiró, and S. J. Sherwin. An isoparametric approach to high-order curvilinear boundary-layer meshing. Comp. Meth. Appl. Mech. Eng., 2014.

[26]   D. Moxey, M. Hazan, J. Peiró, and S. J. Sherwin. On the generation of curvilinear meshes through subdivision of isoparametric elements. to appear in proceedings of Tetrahedron IV, 2014.

[27]   David J Newman and George Em Karniadakis. A direct numerical simulation study of flow past a freely vibrating cable. Journal of Fluid Mechanics, 344:95–136, 1997.

[28]   Anthony T Patera. A spectral element method for fluid dynamics: laminar flow in a channel expansion. Journal of computational Physics, 54(3):468–488, 1984.

[29]   N Pignier. One-dimensional modelling of blood flow in the cardiovascular system, 2012.

[30]   CJ Roth. Pulse wave propagation in the human vascular system, 2012.

[31]   S Sherwin. A substepping navier-stokes splitting scheme for spectral/hp element discretisations. pages 43–52. Elsevier Science, 2003.

[32]   SJ Sherwin and M Ainsworth. Unsteady navier-stokes solvers using hybrid spectral/hp element methods. APPLIED NUMERICAL MATHEMATICS, 33:357–363, 2000.

[33]   SJ Sherwin, L Formaggia, J Peiró, and V Franke. Computational modelling of 1d blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system. Int. J. Numer. Meth. Fluids, 43:673–700, 2003.

[34]   SJ Sherwin and G Em Karniadakis. Tetrahedral< i> hp</i> finite elements: Algorithms and flow simulations. Journal of Computational Physics, 124(1):14–45, 1996.

[35]   K. H. W. J. ten Tusscher and A. V. Panfilov. Alternans and spiral breakup in a human ventricular tissue model. American Journal of Physiology-Heart and Circulatory Physiology, 291:H1088–H1100, 2006.

[36]   M Turner, J Peiró, and D Moxey. A Variational Framework for High-Order Mesh Generation. In 25th International Meshing Roundtable, volume 163, pages 340–352, 2016.

[37]   Peter EJ Vos, Spencer J Sherwin, and Robert M Kirby. From h to p efficiently: Implementing finite and spectral/hp element methods to achieve optimal performance for low-and high-order discretisations. Journal of Computational Physics, 229(13):5161–5181, 2010.

[38]   N Westerhof. Anatomic studies of the human systemic arterial tree. J. Biomech., 2:121–143, 1969.

[39]   D Xiu, SJ Sherwin, S Dong, and GE Karniadakis. Strong and auxiliary forms of the semi-lagrangian method for incompressible flows. J. Sci. Comp., 25:323–346, 2005.

[40]   Olgierd Cecil Zienkiewicz and Robert Leroy Taylor. Basic formulation and linear problems. McGraw-Hill, 1989.