Nektar++
Public Member Functions | Static Public Member Functions | Static Public Attributes | Protected Member Functions | Protected Attributes | Private Member Functions | Friends | List of all members
Nektar::APE Class Reference

#include <APE.h>

Inheritance diagram for Nektar::APE:
Inheritance graph
[legend]
Collaboration diagram for Nektar::APE:
Collaboration graph
[legend]

Public Member Functions

virtual ~APE ()
 Destructor. More...
 
- Public Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
virtual SOLVER_UTILS_EXPORT ~UnsteadySystem ()
 Destructor. More...
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Calculate the larger time-step mantaining the problem stable. More...
 
- Public Member Functions inherited from Nektar::SolverUtils::EquationSystem
virtual SOLVER_UTILS_EXPORT ~EquationSystem ()
 Destructor. More...
 
SOLVER_UTILS_EXPORT void SetUpTraceNormals (void)
 
SOLVER_UTILS_EXPORT void InitObject ()
 Initialises the members of this object. More...
 
SOLVER_UTILS_EXPORT void DoInitialise ()
 Perform any initialisation necessary before solving the problem. More...
 
SOLVER_UTILS_EXPORT void DoSolve ()
 Solve the problem. More...
 
SOLVER_UTILS_EXPORT void TransCoeffToPhys ()
 Transform from coefficient to physical space. More...
 
SOLVER_UTILS_EXPORT void TransPhysToCoeff ()
 Transform from physical to coefficient space. More...
 
SOLVER_UTILS_EXPORT void Output ()
 Perform output operations after solve. More...
 
SOLVER_UTILS_EXPORT NekDouble LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Linf error computation. More...
 
SOLVER_UTILS_EXPORT std::string GetSessionName ()
 Get Session name. More...
 
template<class T >
boost::shared_ptr< T > as ()
 
SOLVER_UTILS_EXPORT void ResetSessionName (std::string newname)
 Reset Session name. More...
 
SOLVER_UTILS_EXPORT LibUtilities::SessionReaderSharedPtr GetSession ()
 Get Session name. More...
 
SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr GetPressure ()
 Get pressure field if available. More...
 
SOLVER_UTILS_EXPORT void PrintSummary (std::ostream &out)
 Print a summary of parameters and solver characteristics. More...
 
SOLVER_UTILS_EXPORT void SetLambda (NekDouble lambda)
 Set parameter m_lambda. More...
 
SOLVER_UTILS_EXPORT void EvaluateFunction (Array< OneD, Array< OneD, NekDouble > > &pArray, std::string pFunctionName, const NekDouble pTime=0.0, const int domain=0)
 Evaluates a function as specified in the session file. More...
 
SOLVER_UTILS_EXPORT void EvaluateFunction (std::vector< std::string > pFieldNames, Array< OneD, Array< OneD, NekDouble > > &pFields, const std::string &pName, const int domain=0)
 Populate given fields with the function from session. More...
 
SOLVER_UTILS_EXPORT void EvaluateFunction (std::vector< std::string > pFieldNames, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const std::string &pName, const int domain=0)
 Populate given fields with the function from session. More...
 
SOLVER_UTILS_EXPORT void EvaluateFunction (std::string pFieldName, Array< OneD, NekDouble > &pArray, const std::string &pFunctionName, const NekDouble &pTime=0.0, const int domain=0)
 
SOLVER_UTILS_EXPORT std::string DescribeFunction (std::string pFieldName, const std::string &pFunctionName, const int domain)
 Provide a description of a function for a given field name. More...
 
SOLVER_UTILS_EXPORT void InitialiseBaseFlow (Array< OneD, Array< OneD, NekDouble > > &base)
 Perform initialisation of the base flow. More...
 
SOLVER_UTILS_EXPORT void SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 Initialise the data in the dependent fields. More...
 
SOLVER_UTILS_EXPORT void EvaluateExactSolution (int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 Evaluates an exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln, bool Normalised=false)
 Compute the L2 error between fields and a given exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, bool Normalised=false)
 Compute the L2 error of the fields. More...
 
SOLVER_UTILS_EXPORT Array< OneD, NekDoubleErrorExtraPoints (unsigned int field)
 Compute error (L2 and L_inf) over an larger set of quadrature points return [L2 Linf]. More...
 
SOLVER_UTILS_EXPORT void WeakAdvectionGreensDivergenceForm (const Array< OneD, Array< OneD, NekDouble > > &F, Array< OneD, NekDouble > &outarray)
 Compute the inner product $ (\nabla \phi \cdot F) $. More...
 
SOLVER_UTILS_EXPORT void WeakAdvectionDivergenceForm (const Array< OneD, Array< OneD, NekDouble > > &F, Array< OneD, NekDouble > &outarray)
 Compute the inner product $ (\phi, \nabla \cdot F) $. More...
 
SOLVER_UTILS_EXPORT void WeakAdvectionNonConservativeForm (const Array< OneD, Array< OneD, NekDouble > > &V, const Array< OneD, const NekDouble > &u, Array< OneD, NekDouble > &outarray, bool UseContCoeffs=false)
 Compute the inner product $ (\phi, V\cdot \nabla u) $. More...
 
f SOLVER_UTILS_EXPORT void AdvectionNonConservativeForm (const Array< OneD, Array< OneD, NekDouble > > &V, const Array< OneD, const NekDouble > &u, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wk=NullNekDouble1DArray)
 Compute the non-conservative advection. More...
 
SOLVER_UTILS_EXPORT void WeakDGAdvection (const Array< OneD, Array< OneD, NekDouble > > &InField, Array< OneD, Array< OneD, NekDouble > > &OutField, bool NumericalFluxIncludesNormal=true, bool InFieldIsInPhysSpace=false, int nvariables=0)
 Calculate the weak discontinuous Galerkin advection. More...
 
SOLVER_UTILS_EXPORT void WeakDGDiffusion (const Array< OneD, Array< OneD, NekDouble > > &InField, Array< OneD, Array< OneD, NekDouble > > &OutField, bool NumericalFluxIncludesNormal=true, bool InFieldIsInPhysSpace=false)
 Calculate weak DG Diffusion in the LDG form. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n)
 Write checkpoint file of m_fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write checkpoint file of custom data fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_BaseFlow (const int n)
 Write base flow file of m_fields. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname)
 Write field data to the given filename. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write input fields to the given filename. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields)
 Input field data from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFldToMultiDomains (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const int ndomains)
 Input field data from the given file to multiple domains. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, std::vector< std::string > &fieldStr, Array< OneD, Array< OneD, NekDouble > > &coeffs)
 Output a field. Input field data into array from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, MultiRegions::ExpListSharedPtr &pField, std::string &pFieldName)
 Output a field. Input field data into ExpList from the given file. More...
 
SOLVER_UTILS_EXPORT void ScanForHistoryPoints ()
 Builds map of which element holds each history point. More...
 
SOLVER_UTILS_EXPORT void WriteHistoryData (std::ostream &out)
 Probe each history point and write to file. More...
 
SOLVER_UTILS_EXPORT void SessionSummary (SummaryList &vSummary)
 Write out a session summary. More...
 
SOLVER_UTILS_EXPORT Array< OneD, MultiRegions::ExpListSharedPtr > & UpdateFields ()
 
SOLVER_UTILS_EXPORT LibUtilities::FieldMetaDataMapUpdateFieldMetaDataMap ()
 Get hold of FieldInfoMap so it can be updated. More...
 
SOLVER_UTILS_EXPORT NekDouble GetFinalTime ()
 Return final time. More...
 
SOLVER_UTILS_EXPORT int GetNcoeffs ()
 
SOLVER_UTILS_EXPORT int GetNcoeffs (const int eid)
 
SOLVER_UTILS_EXPORT int GetNumExpModes ()
 
SOLVER_UTILS_EXPORT const Array< OneD, int > GetNumExpModesPerExp ()
 
SOLVER_UTILS_EXPORT int GetNvariables ()
 
SOLVER_UTILS_EXPORT const std::string GetVariable (unsigned int i)
 
SOLVER_UTILS_EXPORT int GetTraceTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTraceNpoints ()
 
SOLVER_UTILS_EXPORT int GetExpSize ()
 
SOLVER_UTILS_EXPORT int GetPhys_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetCoeff_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTotPoints (int n)
 
SOLVER_UTILS_EXPORT int GetNpoints ()
 
SOLVER_UTILS_EXPORT int GetNumElmVelocity ()
 
SOLVER_UTILS_EXPORT int GetSteps ()
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep ()
 
SOLVER_UTILS_EXPORT void CopyFromPhysField (const int i, Array< OneD, NekDouble > &output)
 
SOLVER_UTILS_EXPORT void CopyToPhysField (const int i, Array< OneD, NekDouble > &output)
 
SOLVER_UTILS_EXPORT void SetStepsToOne ()
 
SOLVER_UTILS_EXPORT void ZeroPhysFields ()
 
SOLVER_UTILS_EXPORT void FwdTransFields ()
 
SOLVER_UTILS_EXPORT void GetFluxVector (const int i, Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &flux)
 
SOLVER_UTILS_EXPORT void GetFluxVector (const int i, Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &fluxX, Array< OneD, Array< OneD, NekDouble > > &fluxY)
 
SOLVER_UTILS_EXPORT void GetFluxVector (const int i, const int j, Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &flux)
 
SOLVER_UTILS_EXPORT void NumericalFlux (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numflux)
 
SOLVER_UTILS_EXPORT void NumericalFlux (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numfluxX, Array< OneD, Array< OneD, NekDouble > > &numfluxY)
 
SOLVER_UTILS_EXPORT void NumFluxforScalar (const Array< OneD, Array< OneD, NekDouble > > &ufield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &uflux)
 
SOLVER_UTILS_EXPORT void NumFluxforVector (const Array< OneD, Array< OneD, NekDouble > > &ufield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &qfield, Array< OneD, Array< OneD, NekDouble > > &qflux)
 
SOLVER_UTILS_EXPORT void SetModifiedBasis (const bool modbasis)
 
SOLVER_UTILS_EXPORT int NoCaseStringCompare (const string &s1, const string &s2)
 Perform a case-insensitive string comparison. More...
 
virtual SOLVER_UTILS_EXPORT bool v_NegatedOp ()
 Virtual function to identify if operator is negated in DoSolve. More...
 

Static Public Member Functions

static EquationSystemSharedPtr create (const LibUtilities::SessionReaderSharedPtr &pSession)
 Creates an instance of this class. More...
 

Static Public Attributes

static std::string className
 Name of class. More...
 

Protected Member Functions

 APE (const LibUtilities::SessionReaderSharedPtr &pSession)
 Initialises UnsteadySystem class members. More...
 
virtual void v_InitObject ()
 Initialization object for the APE class. More...
 
virtual void v_DoInitialise ()
 Sets up initial conditions. More...
 
void DoOdeRhs (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 Compute the right-hand side. More...
 
void DoOdeProjection (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 Compute the projection and call the method for imposing the boundary conditions in case of discontinuous projection. More...
 
void GetFluxVector (const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &flux)
 Return the flux vector for the APE equations. More...
 
void AddSource (Array< OneD, Array< OneD, NekDouble > > &outarray)
 sourceterm for p' equation obtained from GetSource More...
 
virtual void v_ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 
const Array< OneD, const Array< OneD, NekDouble > > & GetNormals ()
 Get the normal vectors. More...
 
const Array< OneD, const Array< OneD, NekDouble > > & GetVecLocs ()
 Get the locations of the components of the directed fields within the fields array. More...
 
const Array< OneD, const Array< OneD, NekDouble > > & GetBasefield ()
 Get the baseflow field. More...
 
NekDouble GetGamma ()
 Get the heat capacity ratio. More...
 
void UpdateBasefield ()
 
void UpdateSourceTerms ()
 
- Protected Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
SOLVER_UTILS_EXPORT UnsteadySystem (const LibUtilities::SessionReaderSharedPtr &pSession)
 Initialises UnsteadySystem class members. More...
 
SOLVER_UTILS_EXPORT NekDouble MaxTimeStepEstimator ()
 Get the maximum timestep estimator for cfl control. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoSolve ()
 Solves an unsteady problem. More...
 
virtual SOLVER_UTILS_EXPORT void v_GenerateSummary (SummaryList &s)
 Print a summary of time stepping parameters. More...
 
virtual SOLVER_UTILS_EXPORT void v_AppendOutput1D (Array< OneD, Array< OneD, NekDouble > > &solution1D)
 Print the solution at each solution point in a txt file. More...
 
virtual SOLVER_UTILS_EXPORT void v_NumericalFlux (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numflux)
 
virtual SOLVER_UTILS_EXPORT void v_NumericalFlux (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numfluxX, Array< OneD, Array< OneD, NekDouble > > &numfluxY)
 
virtual SOLVER_UTILS_EXPORT void v_NumFluxforScalar (const Array< OneD, Array< OneD, NekDouble > > &ufield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &uflux)
 
virtual SOLVER_UTILS_EXPORT void v_NumFluxforVector (const Array< OneD, Array< OneD, NekDouble > > &ufield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &qfield, Array< OneD, Array< OneD, NekDouble > > &qflux)
 
virtual SOLVER_UTILS_EXPORT NekDouble v_GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Return the timestep to be used for the next step in the time-marching loop. More...
 
virtual SOLVER_UTILS_EXPORT bool v_PreIntegrate (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_PostIntegrate (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_SteadyStateCheck (int step)
 
SOLVER_UTILS_EXPORT void CheckForRestartTime (NekDouble &time)
 
- Protected Member Functions inherited from Nektar::SolverUtils::EquationSystem
SOLVER_UTILS_EXPORT EquationSystem (const LibUtilities::SessionReaderSharedPtr &pSession)
 Initialises EquationSystem class members. More...
 
int nocase_cmp (const string &s1, const string &s2)
 
SOLVER_UTILS_EXPORT void SetBoundaryConditions (NekDouble time)
 Evaluates the boundary conditions at the given time. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Virtual function for the L_inf error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray, bool Normalised=false)
 Virtual function for the L_2 error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransCoeffToPhys ()
 Virtual function for transformation to physical space. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransPhysToCoeff ()
 Virtual function for transformation to coefficient space. More...
 
virtual SOLVER_UTILS_EXPORT void v_SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 
virtual SOLVER_UTILS_EXPORT void v_EvaluateExactSolution (unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 
SOLVER_UTILS_EXPORT void SetUpBaseFields (SpatialDomains::MeshGraphSharedPtr &mesh)
 
SOLVER_UTILS_EXPORT void ImportFldBase (std::string pInfile, SpatialDomains::MeshGraphSharedPtr pGraph)
 
virtual SOLVER_UTILS_EXPORT void v_Output (void)
 
virtual SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr v_GetPressure (void)
 

Protected Attributes

SolverUtils::AdvectionSharedPtr m_advection
 
SolverUtils::RiemannSolverSharedPtr m_riemannSolver
 
Array< OneD, Array< OneD, NekDouble > > m_traceBasefield
 
Array< OneD, Array< OneD, NekDouble > > m_vecLocs
 
NekDouble m_gamma
 Isentropic coefficient, Ratio of specific heats (APE) More...
 
Array< OneD, Array< OneD, NekDouble > > m_basefield
 
Array< OneD, NekDoublem_sourceTerms
 
std::vector< std::string > m_basefield_names
 
- Protected Attributes inherited from Nektar::SolverUtils::UnsteadySystem
int m_infosteps
 Number of time steps between outputting status information. More...
 
LibUtilities::TimeIntegrationWrapperSharedPtr m_intScheme
 Wrapper to the time integration scheme. More...
 
LibUtilities::TimeIntegrationSchemeOperators m_ode
 The time integration scheme operators to use. More...
 
LibUtilities::TimeIntegrationSolutionSharedPtr m_intSoln
 
NekDouble m_epsilon
 
bool m_explicitDiffusion
 Indicates if explicit or implicit treatment of diffusion is used. More...
 
bool m_explicitAdvection
 Indicates if explicit or implicit treatment of advection is used. More...
 
bool m_explicitReaction
 Indicates if explicit or implicit treatment of reaction is used. More...
 
bool m_homoInitialFwd
 Flag to determine if simulation should start in homogeneous forward transformed state. More...
 
std::vector< int > m_intVariables
 
std::vector< FilterSharedPtrm_filters
 
- Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
LibUtilities::CommSharedPtr m_comm
 Communicator. More...
 
LibUtilities::SessionReaderSharedPtr m_session
 The session reader. More...
 
LibUtilities::FieldIOSharedPtr m_fld
 Field input/output. More...
 
map< std::string, Array< OneD, Array< OneD, float > > > m_interpWeights
 Map of the interpolation weights for a specific filename. More...
 
map< std::string, Array< OneD, Array< OneD, unsigned int > > > m_interpInds
 Map of the interpolation indices for a specific filename. More...
 
Array< OneD, MultiRegions::ExpListSharedPtrm_fields
 Array holding all dependent variables. More...
 
Array< OneD, MultiRegions::ExpListSharedPtrm_base
 Base fields. More...
 
Array< OneD, MultiRegions::ExpListSharedPtrm_derivedfields
 Array holding all dependent variables. More...
 
SpatialDomains::BoundaryConditionsSharedPtr m_boundaryConditions
 Pointer to boundary conditions object. More...
 
SpatialDomains::MeshGraphSharedPtr m_graph
 Pointer to graph defining mesh. More...
 
std::string m_sessionName
 Name of the session. More...
 
NekDouble m_time
 Current time of simulation. More...
 
NekDouble m_fintime
 Finish time of the simulation. More...
 
NekDouble m_timestep
 Time step size. More...
 
NekDouble m_lambda
 Lambda constant in real system if one required. More...
 
NekDouble m_checktime
 Time between checkpoints. More...
 
int m_steps
 Number of steps to take. More...
 
int m_checksteps
 Number of steps between checkpoints. More...
 
int m_spacedim
 Spatial dimension (>= expansion dim). More...
 
int m_expdim
 Expansion dimension. More...
 
bool m_singleMode
 Flag to determine if single homogeneous mode is used. More...
 
bool m_halfMode
 Flag to determine if half homogeneous mode is used. More...
 
bool m_multipleModes
 Flag to determine if use multiple homogenenous modes are used. More...
 
bool m_useFFT
 Flag to determine if FFT is used for homogeneous transform. More...
 
bool m_homogen_dealiasing
 Flag to determine if dealiasing is used for homogeneous simulations. More...
 
bool m_specHP_dealiasing
 Flag to determine if dealisising is usde for the Spectral/hp element discretisation. More...
 
enum MultiRegions::ProjectionType m_projectionType
 Type of projection; e.g continuous or discontinuous. More...
 
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
 Array holding trace normals for DG simulations in the forwards direction. More...
 
Array< OneD, Array< OneD, Array< OneD, NekDouble > > > m_gradtan
 1 x nvariable x nq More...
 
Array< OneD, Array< OneD, Array< OneD, NekDouble > > > m_tanbasis
 2 x m_spacedim x nq More...
 
Array< OneD, bool > m_checkIfSystemSingular
 Flag to indicate if the fields should be checked for singularity. More...
 
LibUtilities::FieldMetaDataMap m_fieldMetaDataMap
 Map to identify relevant solver info to dump in output fields. More...
 
int m_NumQuadPointsError
 Number of Quadrature points used to work out the error. More...
 
enum HomogeneousType m_HomogeneousType
 
NekDouble m_LhomX
 physical length in X direction (if homogeneous) More...
 
NekDouble m_LhomY
 physical length in Y direction (if homogeneous) More...
 
NekDouble m_LhomZ
 physical length in Z direction (if homogeneous) More...
 
int m_npointsX
 number of points in X direction (if homogeneous) More...
 
int m_npointsY
 number of points in Y direction (if homogeneous) More...
 
int m_npointsZ
 number of points in Z direction (if homogeneous) More...
 
int m_HomoDirec
 number of homogenous directions More...
 
int m_NumMode
 Mode to use in case of single mode analysis. More...
 

Private Member Functions

void SetBoundaryConditions (Array< OneD, Array< OneD, NekDouble > > &physarray, NekDouble time)
 Apply the Boundary Conditions to the APE equations. More...
 
void WallBC (int bcRegion, int cnt, Array< OneD, Array< OneD, NekDouble > > &physarray)
 Wall boundary conditions for the APE equations. More...
 

Friends

class MemoryManager< APE >
 

Additional Inherited Members

- Public Attributes inherited from Nektar::SolverUtils::UnsteadySystem
NekDouble m_cflSafetyFactor
 CFL safety factor (comprise between 0 to 1). More...
 
- Protected Types inherited from Nektar::SolverUtils::EquationSystem
enum  HomogeneousType { eHomogeneous1D, eHomogeneous2D, eHomogeneous3D, eNotHomogeneous }
 Parameter for homogeneous expansions. More...
 

Detailed Description

Definition at line 49 of file APE.h.

Constructor & Destructor Documentation

Nektar::APE::~APE ( )
virtual

Destructor.

Destructor for APE class.

Definition at line 142 of file APE.cpp.

143 {
144 
145 }
Nektar::APE::APE ( const LibUtilities::SessionReaderSharedPtr pSession)
protected

Initialises UnsteadySystem class members.

Definition at line 49 of file APE.cpp.

51  : UnsteadySystem(pSession)
52 {
53 }
SOLVER_UTILS_EXPORT UnsteadySystem(const LibUtilities::SessionReaderSharedPtr &pSession)
Initialises UnsteadySystem class members.

Member Function Documentation

void Nektar::APE::AddSource ( Array< OneD, Array< OneD, NekDouble > > &  outarray)
protected

sourceterm for p' equation obtained from GetSource

Definition at line 384 of file APE.cpp.

References Nektar::SolverUtils::EquationSystem::GetTotPoints(), m_sourceTerms, UpdateSourceTerms(), and Vmath::Vadd().

Referenced by DoOdeRhs().

385 {
387  Vmath::Vadd(GetTotPoints(), m_sourceTerms, 1, outarray[0], 1, outarray[0], 1);
388 }
SOLVER_UTILS_EXPORT int GetTotPoints()
Array< OneD, NekDouble > m_sourceTerms
Definition: APE.h:79
void UpdateSourceTerms()
Definition: APE.cpp:461
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:285
static EquationSystemSharedPtr Nektar::APE::create ( const LibUtilities::SessionReaderSharedPtr pSession)
inlinestatic

Creates an instance of this class.

Definition at line 56 of file APE.h.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr().

58  {
60  p->InitObject();
61  return p;
62  }
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
boost::shared_ptr< EquationSystem > EquationSystemSharedPtr
A shared pointer to an EquationSystem object.
void Nektar::APE::DoOdeProjection ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time 
)
protected

Compute the projection and call the method for imposing the boundary conditions in case of discontinuous projection.

Definition at line 263 of file APE.cpp.

References Nektar::SolverUtils::EquationSystem::m_fields, SetBoundaryConditions(), and Vmath::Vcopy().

Referenced by v_InitObject().

266 {
267  int nvariables = inarray.num_elements();
268  int nq = m_fields[0]->GetNpoints();
269 
270  // deep copy
271  for (int i = 0; i < nvariables; ++i)
272  {
273  Vmath::Vcopy(nq, inarray[i], 1, outarray[i], 1);
274  }
275 
276  SetBoundaryConditions(outarray, time);
277 }
void SetBoundaryConditions(Array< OneD, Array< OneD, NekDouble > > &physarray, NekDouble time)
Apply the Boundary Conditions to the APE equations.
Definition: APE.cpp:283
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1038
void Nektar::APE::DoOdeRhs ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time 
)
protected

Compute the right-hand side.

Definition at line 230 of file APE.cpp.

References AddSource(), Nektar::SolverUtils::EquationSystem::GetTotPoints(), m_advection, m_basefield, Nektar::SolverUtils::EquationSystem::m_fields, m_gamma, Nektar::SolverUtils::EquationSystem::m_spacedim, Vmath::Neg(), Vmath::Smul(), Vmath::Vdiv(), and Vmath::Vmul().

Referenced by v_InitObject().

233 {
234  int nVariables = inarray.num_elements();
235  int nq = GetTotPoints();
236  Array<OneD, NekDouble> tmp1(nq);
237 
238  // WeakDG does not use advVel, so we only provide a dummy array
240  m_advection->Advect(nVariables, m_fields, advVel, inarray, outarray, time);
241 
242  for (int i = 0; i < nVariables; ++i)
243  {
244  if (i == 0)
245  {
246  // c^2 = gamma*p0/rho0
247  Vmath::Vdiv(nq, m_basefield[0], 1, m_basefield[1], 1, tmp1, 1);
248  Vmath::Smul(nq, m_gamma, tmp1, 1, tmp1, 1);
249  Vmath::Vmul(nq, tmp1, 1, outarray[i], 1, outarray[i], 1);
250  }
251 
252  Vmath::Neg(nq, outarray[i], 1);
253  }
254 
255  AddSource(outarray);
256 }
SolverUtils::AdvectionSharedPtr m_advection
Definition: APE.h:72
void AddSource(Array< OneD, Array< OneD, NekDouble > > &outarray)
sourceterm for p' equation obtained from GetSource
Definition: APE.cpp:384
Array< OneD, Array< OneD, NekDouble > > m_basefield
Definition: APE.h:78
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:227
SOLVER_UTILS_EXPORT int GetTotPoints()
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
int m_spacedim
Spatial dimension (>= expansion dim).
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:382
NekDouble m_gamma
Isentropic coefficient, Ratio of specific heats (APE)
Definition: APE.h:77
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
const Array< OneD, const Array< OneD, NekDouble > > & Nektar::APE::GetBasefield ( )
protected

Get the baseflow field.

Definition at line 431 of file APE.cpp.

References m_basefield, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_spacedim, and m_traceBasefield.

Referenced by v_InitObject().

432 {
433  for (int i = 0; i < m_spacedim + 2; i++)
434  {
435  m_fields[0]->ExtractTracePhys(m_basefield[i], m_traceBasefield[i]);
436  }
437  return m_traceBasefield;
438 }
Array< OneD, Array< OneD, NekDouble > > m_basefield
Definition: APE.h:78
Array< OneD, Array< OneD, NekDouble > > m_traceBasefield
Definition: APE.h:74
int m_spacedim
Spatial dimension (>= expansion dim).
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
void Nektar::APE::GetFluxVector ( const Array< OneD, Array< OneD, NekDouble > > &  physfield,
Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &  flux 
)
protected

Return the flux vector for the APE equations.

Parameters
physfieldFields.
fluxResulting flux. flux[eq][dir][pt]

Definition at line 163 of file APE.cpp.

References ASSERTL1, m_basefield, m_gamma, Nektar::SolverUtils::EquationSystem::m_spacedim, Vmath::Smul(), UpdateBasefield(), Vmath::Vadd(), Vmath::Vdiv(), Vmath::Vmul(), Vmath::Vvtvp(), and Vmath::Zero().

Referenced by v_InitObject().

166 {
167  UpdateBasefield();
168 
169  int nq = physfield[0].num_elements();
170  Array<OneD, NekDouble> tmp1(nq);
171  Array<OneD, NekDouble> tmp2(nq);
172 
173  ASSERTL1(flux[0].num_elements() == m_spacedim,
174  "Dimension of flux array and velocity array do not match");
175 
176  // F_{adv,p',j} = \rho_0 u'_j + p' \bar{u}_j / c^2
177  for (int j = 0; j < m_spacedim; ++j)
178  {
179  Vmath::Zero(nq, flux[0][j], 1);
180 
181  // construct rho_0 u'_j term
182  Vmath::Vmul(nq, m_basefield[1], 1, physfield[j + 1], 1, flux[0][j], 1);
183 
184  // construct p' \bar{u}_j / c^2 term
185  // c^2
186  Vmath::Vdiv(nq, m_basefield[0], 1, m_basefield[1], 1, tmp1, 1);
187  Vmath::Smul(nq, m_gamma, tmp1, 1, tmp1, 1);
188 
189  // p' \bar{u}_j / c^2 term
190  Vmath::Vmul(nq, physfield[0], 1, m_basefield[j + 2], 1, tmp2, 1);
191  Vmath::Vdiv(nq, tmp2, 1, tmp1, 1, tmp2, 1);
192 
193  // \rho_0 u'_j + p' \bar{u}_j / c^2
194  Vmath::Vadd(nq, flux[0][j], 1, tmp2, 1, flux[0][j], 1);
195  }
196 
197  for (int i = 1; i < flux.num_elements(); ++i)
198  {
199  ASSERTL1(flux[i].num_elements() == m_spacedim,
200  "Dimension of flux array and velocity array do not match");
201 
202  // F_{adv,u'_i,j} = (p'/ \bar{rho} + \bar{u}_k u'_k) \delta_{ij}
203  for (int j = 0; j < m_spacedim; ++j)
204  {
205  Vmath::Zero(nq, flux[i][j], 1);
206 
207  if (i - 1 == j)
208  {
209  // contruct p'/ \bar{rho} term
210  Vmath::Vdiv(nq, physfield[0], 1, m_basefield[1], 1, flux[i][j], 1);
211 
212  // construct \bar{u}_k u'_k term
213  Vmath::Zero(nq, tmp1, 1);
214  for (int k = 0; k < m_spacedim; ++k)
215  {
216  Vmath::Vvtvp(nq, physfield[k + 1], 1, m_basefield[k + 2], 1, tmp1, 1, tmp1, 1);
217  }
218 
219  // add terms
220  Vmath::Vadd(nq, flux[i][j], 1, tmp1, 1, flux[i][j], 1);
221  }
222  }
223  }
224 }
Array< OneD, Array< OneD, NekDouble > > m_basefield
Definition: APE.h:78
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:428
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:227
void UpdateBasefield()
Definition: APE.cpp:450
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
int m_spacedim
Spatial dimension (>= expansion dim).
NekDouble m_gamma
Isentropic coefficient, Ratio of specific heats (APE)
Definition: APE.h:77
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:359
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:285
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
NekDouble Nektar::APE::GetGamma ( )
protected

Get the heat capacity ratio.

Definition at line 444 of file APE.cpp.

References m_gamma.

Referenced by v_InitObject().

445 {
446  return m_gamma;
447 }
NekDouble m_gamma
Isentropic coefficient, Ratio of specific heats (APE)
Definition: APE.h:77
const Array< OneD, const Array< OneD, NekDouble > > & Nektar::APE::GetNormals ( )
protected

Get the normal vectors.

Definition at line 413 of file APE.cpp.

References Nektar::SolverUtils::EquationSystem::m_traceNormals.

Referenced by v_InitObject().

414 {
415  return m_traceNormals;
416 }
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
Array holding trace normals for DG simulations in the forwards direction.
const Array< OneD, const Array< OneD, NekDouble > > & Nektar::APE::GetVecLocs ( )
protected

Get the locations of the components of the directed fields within the fields array.

Definition at line 422 of file APE.cpp.

References m_vecLocs.

Referenced by v_InitObject().

423 {
424  return m_vecLocs;
425 }
Array< OneD, Array< OneD, NekDouble > > m_vecLocs
Definition: APE.h:75
void Nektar::APE::SetBoundaryConditions ( Array< OneD, Array< OneD, NekDouble > > &  physarray,
NekDouble  time 
)
private

Apply the Boundary Conditions to the APE equations.

Definition at line 283 of file APE.cpp.

References Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_session, and WallBC().

Referenced by DoOdeProjection().

285 {
286  std::string varName;
287  int nvariables = m_fields.num_elements();
288  int cnt = 0;
289 
290  // loop over Boundary Regions
291  for(int n = 0; n < m_fields[0]->GetBndConditions().num_elements(); ++n)
292  {
293  // Wall Boundary Condition
294  if (boost::iequals(m_fields[0]->GetBndConditions()[n]->GetUserDefined(),"Wall"))
295  {
296  WallBC(n, cnt, inarray);
297  }
298 
299  // Time Dependent Boundary Condition (specified in meshfile)
300  if (m_fields[0]->GetBndConditions()[n]->IsTimeDependent())
301  {
302  for (int i = 0; i < nvariables; ++i)
303  {
304  varName = m_session->GetVariable(i);
305  m_fields[i]->EvaluateBoundaryConditions(time, varName);
306  }
307  }
308  cnt +=m_fields[0]->GetBndCondExpansions()[n]->GetExpSize();
309  }
310 }
void WallBC(int bcRegion, int cnt, Array< OneD, Array< OneD, NekDouble > > &physarray)
Wall boundary conditions for the APE equations.
Definition: APE.cpp:316
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
void Nektar::APE::UpdateBasefield ( )
protected

Definition at line 450 of file APE.cpp.

References Nektar::SolverUtils::EquationSystem::EvaluateFunction(), m_basefield, m_basefield_names, and Nektar::SolverUtils::EquationSystem::m_time.

Referenced by GetFluxVector(), and v_ExtraFldOutput().

451 {
452  static NekDouble last_update = -1.0;
453 
454  if (m_time > last_update)
455  {
457  last_update = m_time;
458  }
459 }
NekDouble m_time
Current time of simulation.
std::vector< std::string > m_basefield_names
Definition: APE.h:80
Array< OneD, Array< OneD, NekDouble > > m_basefield
Definition: APE.h:78
double NekDouble
SOLVER_UTILS_EXPORT void EvaluateFunction(Array< OneD, Array< OneD, NekDouble > > &pArray, std::string pFunctionName, const NekDouble pTime=0.0, const int domain=0)
Evaluates a function as specified in the session file.
void Nektar::APE::UpdateSourceTerms ( )
protected

Definition at line 461 of file APE.cpp.

References Nektar::SolverUtils::EquationSystem::EvaluateFunction(), Nektar::SolverUtils::EquationSystem::GetNcoeffs(), Nektar::SolverUtils::EquationSystem::m_fields, m_sourceTerms, and Nektar::SolverUtils::EquationSystem::m_time.

Referenced by AddSource().

462 {
463  static NekDouble last_update = -1.0;
464 
465  if (m_time > last_update)
466  {
468 
469  EvaluateFunction("S", m_sourceTerms, "Source", m_time);
470 
471  m_fields[0]->IProductWRTBase(m_sourceTerms, sourceC);
472  m_fields[0]->MultiplyByElmtInvMass(sourceC, sourceC);
473  m_fields[0]->BwdTrans(sourceC, m_sourceTerms);
474 
475  last_update = m_time;
476  }
477 }
NekDouble m_time
Current time of simulation.
Array< OneD, NekDouble > m_sourceTerms
Definition: APE.h:79
double NekDouble
SOLVER_UTILS_EXPORT void EvaluateFunction(Array< OneD, Array< OneD, NekDouble > > &pArray, std::string pFunctionName, const NekDouble pTime=0.0, const int domain=0)
Evaluates a function as specified in the session file.
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
SOLVER_UTILS_EXPORT int GetNcoeffs()
void Nektar::APE::v_DoInitialise ( void  )
protectedvirtual

Sets up initial conditions.

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Definition at line 151 of file APE.cpp.

References Nektar::SolverUtils::EquationSystem::SetInitialConditions().

152 {
154 }
SOLVER_UTILS_EXPORT void SetInitialConditions(NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
Initialise the data in the dependent fields.
void Nektar::APE::v_ExtraFldOutput ( std::vector< Array< OneD, NekDouble > > &  fieldcoeffs,
std::vector< std::string > &  variables 
)
protectedvirtual

Reimplemented from Nektar::SolverUtils::EquationSystem.

Definition at line 391 of file APE.cpp.

References m_basefield, m_basefield_names, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_spacedim, and UpdateBasefield().

394 {
395  UpdateBasefield();
396 
397  const int nCoeffs = m_fields[0]->GetNcoeffs();
398 
399  for (int i = 0; i < m_spacedim + 2; i++)
400  {
401  variables.push_back(m_basefield_names[i]);
402 
403  Array<OneD, NekDouble> tmpFwd(nCoeffs);
404  m_fields[0]->FwdTrans(m_basefield[i], tmpFwd);
405  fieldcoeffs.push_back(tmpFwd);
406  }
407 }
std::vector< std::string > m_basefield_names
Definition: APE.h:80
Array< OneD, Array< OneD, NekDouble > > m_basefield
Definition: APE.h:78
void UpdateBasefield()
Definition: APE.cpp:450
int m_spacedim
Spatial dimension (>= expansion dim).
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
void Nektar::APE::v_InitObject ( )
protectedvirtual

Initialization object for the APE class.

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Definition at line 59 of file APE.cpp.

References ASSERTL0, Nektar::LibUtilities::NekFactory< tKey, tBase, >::CreateInstance(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineOdeRhs(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineProjection(), DoOdeProjection(), DoOdeRhs(), Nektar::MultiRegions::eDiscontinuous, Nektar::SolverUtils::GetAdvectionFactory(), GetBasefield(), GetFluxVector(), GetGamma(), GetNormals(), Nektar::SolverUtils::GetRiemannSolverFactory(), Nektar::SolverUtils::EquationSystem::GetTotPoints(), Nektar::SolverUtils::EquationSystem::GetTraceNpoints(), GetVecLocs(), m_advection, m_basefield, m_basefield_names, Nektar::SolverUtils::UnsteadySystem::m_explicitAdvection, Nektar::SolverUtils::EquationSystem::m_fields, m_gamma, Nektar::SolverUtils::UnsteadySystem::m_homoInitialFwd, Nektar::SolverUtils::UnsteadySystem::m_ode, Nektar::SolverUtils::EquationSystem::m_projectionType, m_riemannSolver, Nektar::SolverUtils::EquationSystem::m_session, m_sourceTerms, Nektar::SolverUtils::EquationSystem::m_spacedim, m_traceBasefield, and m_vecLocs.

60 {
61  UnsteadySystem::v_InitObject();
62 
63  // TODO: We have a bug somewhere in the 1D boundary conditions. Therefore 1D
64  // problems are currently disabled. This should get fixed in the future.
65  ASSERTL0(m_spacedim > 1, "1D problems currently not supported by the APE class.");
66 
68  "Only Projection=DisContinuous supported by the APE class.");
69 
70  // Load isentropic coefficient, Ratio of specific heats
71  m_session->LoadParameter("Gamma", m_gamma, 1.4);
72 
73  // Define Baseflow fields
75  m_basefield_names.push_back("p0");
76  m_basefield_names.push_back("rho0");
77  m_basefield_names.push_back("u0");
78  m_basefield_names.push_back("v0");
79  m_basefield_names.push_back("w0");
80 
81  // Resize the advection velocities vector to dimension of the problem
82  m_basefield_names.resize(m_spacedim + 2);
83 
84  // Initialize the sourceterm
86 
87  // Do not forwards transform initial condition
88  m_homoInitialFwd = false;
89 
90  // Define the normal velocity fields
91  if (m_fields[0]->GetTrace())
92  {
94  for (int i = 0; i < m_spacedim + 2; i++)
95  {
97  }
98  }
99 
100  // Set up locations of velocity and base velocity vectors.
103  for (int i = 0; i < m_spacedim; ++i)
104  {
105  // u', v', w'
106  m_vecLocs[0][i] = 1 + i;
107  }
108 
109  string riemName;
110  m_session->LoadSolverInfo("UpwindType", riemName, "APEUpwind");
112  riemName);
113  m_riemannSolver->SetVector("N", &APE::GetNormals, this);
114  m_riemannSolver->SetVector("basefield", &APE::GetBasefield, this);
115  m_riemannSolver->SetAuxVec("vecLocs", &APE::GetVecLocs, this);
116  m_riemannSolver->SetParam("Gamma", &APE::GetGamma, this);
117 
118  // Set up advection operator
119  string advName;
120  m_session->LoadSolverInfo("AdvectionType", advName, "WeakDG");
122  .CreateInstance(advName, advName);
123  m_advection->SetFluxVector(&APE::GetFluxVector, this);
124  m_advection->SetRiemannSolver(m_riemannSolver);
125  m_advection->InitObject(m_session, m_fields);
126 
128  {
131  }
132  else
133  {
134  ASSERTL0(false, "Implicit APE not set up.");
135  }
136 }
const Array< OneD, const Array< OneD, NekDouble > > & GetNormals()
Get the normal vectors.
Definition: APE.cpp:413
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
SolverUtils::AdvectionSharedPtr m_advection
Definition: APE.h:72
bool m_homoInitialFwd
Flag to determine if simulation should start in homogeneous forward transformed state.
tBaseSharedPtr CreateInstance(tKey idKey BOOST_PP_COMMA_IF(MAX_PARAM) BOOST_PP_ENUM_BINARY_PARAMS(MAX_PARAM, tParam, x))
Create an instance of the class referred to by idKey.
Definition: NekFactory.hpp:162
std::vector< std::string > m_basefield_names
Definition: APE.h:80
LibUtilities::TimeIntegrationSchemeOperators m_ode
The time integration scheme operators to use.
Array< OneD, Array< OneD, NekDouble > > m_basefield
Definition: APE.h:78
Array< OneD, Array< OneD, NekDouble > > m_vecLocs
Definition: APE.h:75
enum MultiRegions::ProjectionType m_projectionType
Type of projection; e.g continuous or discontinuous.
void GetFluxVector(const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &flux)
Return the flux vector for the APE equations.
Definition: APE.cpp:163
SOLVER_UTILS_EXPORT int GetTotPoints()
Array< OneD, NekDouble > m_sourceTerms
Definition: APE.h:79
void DefineProjection(FuncPointerT func, ObjectPointerT obj)
NekDouble GetGamma()
Get the heat capacity ratio.
Definition: APE.cpp:444
bool m_explicitAdvection
Indicates if explicit or implicit treatment of advection is used.
const Array< OneD, const Array< OneD, NekDouble > > & GetVecLocs()
Get the locations of the components of the directed fields within the fields array.
Definition: APE.cpp:422
Array< OneD, Array< OneD, NekDouble > > m_traceBasefield
Definition: APE.h:74
void DefineOdeRhs(FuncPointerT func, ObjectPointerT obj)
void DoOdeRhs(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
Compute the right-hand side.
Definition: APE.cpp:230
RiemannSolverFactory & GetRiemannSolverFactory()
int m_spacedim
Spatial dimension (>= expansion dim).
AdvectionFactory & GetAdvectionFactory()
Gets the factory for initialising advection objects.
Definition: Advection.cpp:46
NekDouble m_gamma
Isentropic coefficient, Ratio of specific heats (APE)
Definition: APE.h:77
const Array< OneD, const Array< OneD, NekDouble > > & GetBasefield()
Get the baseflow field.
Definition: APE.cpp:431
SolverUtils::RiemannSolverSharedPtr m_riemannSolver
Definition: APE.h:73
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
SOLVER_UTILS_EXPORT int GetTraceNpoints()
void DoOdeProjection(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
Compute the projection and call the method for imposing the boundary conditions in case of discontinu...
Definition: APE.cpp:263
void Nektar::APE::WallBC ( int  bcRegion,
int  cnt,
Array< OneD, Array< OneD, NekDouble > > &  physarray 
)
private

Wall boundary conditions for the APE equations.

Definition at line 316 of file APE.cpp.

References Nektar::SolverUtils::EquationSystem::GetTraceTotPoints(), Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_spacedim, Nektar::SolverUtils::EquationSystem::m_traceNormals, Vmath::Smul(), Vmath::Vcopy(), and Vmath::Vvtvp().

Referenced by SetBoundaryConditions().

318 {
319  int nTracePts = GetTraceTotPoints();
320  int nVariables = physarray.num_elements();
321 
322  const Array<OneD, const int> &traceBndMap = m_fields[0]->GetTraceBndMap();
323 
324  // Get physical values of the forward trace
325  Array<OneD, Array<OneD, NekDouble> > Fwd(nVariables);
326  for (int i = 0; i < nVariables; ++i)
327  {
328  Fwd[i] = Array<OneD, NekDouble>(nTracePts);
329  m_fields[i]->ExtractTracePhys(physarray[i], Fwd[i]);
330  }
331 
332  // Adjust the physical values of the trace to take
333  // user defined boundaries into account
334  int id1, id2, nBCEdgePts;
335  int eMax = m_fields[0]->GetBndCondExpansions()[bcRegion]->GetExpSize();
336 
337  for (int e = 0; e < eMax; ++e)
338  {
339  nBCEdgePts = m_fields[0]->GetBndCondExpansions()[bcRegion]->
340  GetExp(e)->GetTotPoints();
341  id1 = m_fields[0]->GetBndCondExpansions()[bcRegion]->GetPhys_Offset(e);
342  id2 = m_fields[0]->GetTrace()->GetPhys_Offset(traceBndMap[cnt+e]);
343 
344  // For 2D/3D, define: v* = v - 2(v.n)n
345  Array<OneD, NekDouble> tmp(nBCEdgePts, 0.0);
346 
347  // Calculate (v.n)
348  for (int i = 0; i < m_spacedim; ++i)
349  {
350  Vmath::Vvtvp(nBCEdgePts,
351  &Fwd[1+i][id2], 1,
352  &m_traceNormals[i][id2], 1,
353  &tmp[0], 1,
354  &tmp[0], 1);
355  }
356 
357  // Calculate 2.0(v.n)
358  Vmath::Smul(nBCEdgePts, -2.0, &tmp[0], 1, &tmp[0], 1);
359 
360  // Calculate v* = v - 2.0(v.n)n
361  for (int i = 0; i < m_spacedim; ++i)
362  {
363  Vmath::Vvtvp(nBCEdgePts,
364  &tmp[0], 1,
365  &m_traceNormals[i][id2], 1,
366  &Fwd[1+i][id2], 1,
367  &Fwd[1+i][id2], 1);
368  }
369 
370  // Copy boundary adjusted values into the boundary expansion
371  for (int i = 0; i < nVariables; ++i)
372  {
373  Vmath::Vcopy(nBCEdgePts,
374  &Fwd[i][id2], 1,
375  &(m_fields[i]->GetBndCondExpansions()[bcRegion]->UpdatePhys())[id1], 1);
376  }
377  }
378 }
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:428
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
Array holding trace normals for DG simulations in the forwards direction.
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
int m_spacedim
Spatial dimension (>= expansion dim).
SOLVER_UTILS_EXPORT int GetTraceTotPoints()
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1038

Friends And Related Function Documentation

friend class MemoryManager< APE >
friend

Definition at line 53 of file APE.h.

Member Data Documentation

string Nektar::APE::className
static
Initial value:
"APE", APE::create,
"APE1/APE4 (Acoustic Perturbation Equations)")

Name of class.

Definition at line 64 of file APE.h.

SolverUtils::AdvectionSharedPtr Nektar::APE::m_advection
protected

Definition at line 72 of file APE.h.

Referenced by DoOdeRhs(), and v_InitObject().

Array<OneD, Array<OneD, NekDouble> > Nektar::APE::m_basefield
protected
std::vector<std::string> Nektar::APE::m_basefield_names
protected

Definition at line 80 of file APE.h.

Referenced by UpdateBasefield(), v_ExtraFldOutput(), and v_InitObject().

NekDouble Nektar::APE::m_gamma
protected

Isentropic coefficient, Ratio of specific heats (APE)

Definition at line 77 of file APE.h.

Referenced by DoOdeRhs(), GetFluxVector(), GetGamma(), and v_InitObject().

SolverUtils::RiemannSolverSharedPtr Nektar::APE::m_riemannSolver
protected

Definition at line 73 of file APE.h.

Referenced by v_InitObject().

Array<OneD, NekDouble> Nektar::APE::m_sourceTerms
protected

Definition at line 79 of file APE.h.

Referenced by AddSource(), UpdateSourceTerms(), and v_InitObject().

Array<OneD, Array<OneD, NekDouble> > Nektar::APE::m_traceBasefield
protected

Definition at line 74 of file APE.h.

Referenced by GetBasefield(), and v_InitObject().

Array<OneD, Array<OneD, NekDouble> > Nektar::APE::m_vecLocs
protected

Definition at line 75 of file APE.h.

Referenced by GetVecLocs(), and v_InitObject().