Nektar++
Public Member Functions | Static Public Member Functions | Static Public Attributes | Protected Member Functions | Protected Attributes | Private Member Functions | Friends | List of all members
Nektar::LinearSWE Class Reference

#include <LinearSWE.h>

Inheritance diagram for Nektar::LinearSWE:
Inheritance graph
[legend]
Collaboration diagram for Nektar::LinearSWE:
Collaboration graph
[legend]

Public Member Functions

virtual ~LinearSWE ()
 
- Public Member Functions inherited from Nektar::ShallowWaterSystem
virtual ~ShallowWaterSystem ()
 Destructor. More...
 
- Public Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
virtual SOLVER_UTILS_EXPORT ~UnsteadySystem ()
 Destructor. More...
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Calculate the larger time-step mantaining the problem stable. More...
 
- Public Member Functions inherited from Nektar::SolverUtils::EquationSystem
virtual SOLVER_UTILS_EXPORT ~EquationSystem ()
 Destructor. More...
 
SOLVER_UTILS_EXPORT void SetUpTraceNormals (void)
 
SOLVER_UTILS_EXPORT void InitObject ()
 Initialises the members of this object. More...
 
SOLVER_UTILS_EXPORT void DoInitialise ()
 Perform any initialisation necessary before solving the problem. More...
 
SOLVER_UTILS_EXPORT void DoSolve ()
 Solve the problem. More...
 
SOLVER_UTILS_EXPORT void TransCoeffToPhys ()
 Transform from coefficient to physical space. More...
 
SOLVER_UTILS_EXPORT void TransPhysToCoeff ()
 Transform from physical to coefficient space. More...
 
SOLVER_UTILS_EXPORT void Output ()
 Perform output operations after solve. More...
 
SOLVER_UTILS_EXPORT NekDouble LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Linf error computation. More...
 
SOLVER_UTILS_EXPORT std::string GetSessionName ()
 Get Session name. More...
 
template<class T >
boost::shared_ptr< T > as ()
 
SOLVER_UTILS_EXPORT void ResetSessionName (std::string newname)
 Reset Session name. More...
 
SOLVER_UTILS_EXPORT LibUtilities::SessionReaderSharedPtr GetSession ()
 Get Session name. More...
 
SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr GetPressure ()
 Get pressure field if available. More...
 
SOLVER_UTILS_EXPORT void PrintSummary (std::ostream &out)
 Print a summary of parameters and solver characteristics. More...
 
SOLVER_UTILS_EXPORT void SetLambda (NekDouble lambda)
 Set parameter m_lambda. More...
 
SOLVER_UTILS_EXPORT void EvaluateFunction (Array< OneD, Array< OneD, NekDouble > > &pArray, std::string pFunctionName, const NekDouble pTime=0.0, const int domain=0)
 Evaluates a function as specified in the session file. More...
 
SOLVER_UTILS_EXPORT void EvaluateFunction (std::vector< std::string > pFieldNames, Array< OneD, Array< OneD, NekDouble > > &pFields, const std::string &pName, const int domain=0)
 Populate given fields with the function from session. More...
 
SOLVER_UTILS_EXPORT void EvaluateFunction (std::vector< std::string > pFieldNames, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const std::string &pName, const int domain=0)
 Populate given fields with the function from session. More...
 
SOLVER_UTILS_EXPORT void EvaluateFunction (std::string pFieldName, Array< OneD, NekDouble > &pArray, const std::string &pFunctionName, const NekDouble &pTime=0.0, const int domain=0)
 
SOLVER_UTILS_EXPORT std::string DescribeFunction (std::string pFieldName, const std::string &pFunctionName, const int domain)
 Provide a description of a function for a given field name. More...
 
SOLVER_UTILS_EXPORT void InitialiseBaseFlow (Array< OneD, Array< OneD, NekDouble > > &base)
 Perform initialisation of the base flow. More...
 
SOLVER_UTILS_EXPORT void SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 Initialise the data in the dependent fields. More...
 
SOLVER_UTILS_EXPORT void EvaluateExactSolution (int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 Evaluates an exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln, bool Normalised=false)
 Compute the L2 error between fields and a given exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, bool Normalised=false)
 Compute the L2 error of the fields. More...
 
SOLVER_UTILS_EXPORT Array< OneD, NekDoubleErrorExtraPoints (unsigned int field)
 Compute error (L2 and L_inf) over an larger set of quadrature points return [L2 Linf]. More...
 
SOLVER_UTILS_EXPORT void WeakAdvectionGreensDivergenceForm (const Array< OneD, Array< OneD, NekDouble > > &F, Array< OneD, NekDouble > &outarray)
 Compute the inner product $ (\nabla \phi \cdot F) $. More...
 
SOLVER_UTILS_EXPORT void WeakAdvectionDivergenceForm (const Array< OneD, Array< OneD, NekDouble > > &F, Array< OneD, NekDouble > &outarray)
 Compute the inner product $ (\phi, \nabla \cdot F) $. More...
 
SOLVER_UTILS_EXPORT void WeakAdvectionNonConservativeForm (const Array< OneD, Array< OneD, NekDouble > > &V, const Array< OneD, const NekDouble > &u, Array< OneD, NekDouble > &outarray, bool UseContCoeffs=false)
 Compute the inner product $ (\phi, V\cdot \nabla u) $. More...
 
f SOLVER_UTILS_EXPORT void AdvectionNonConservativeForm (const Array< OneD, Array< OneD, NekDouble > > &V, const Array< OneD, const NekDouble > &u, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wk=NullNekDouble1DArray)
 Compute the non-conservative advection. More...
 
SOLVER_UTILS_EXPORT void WeakDGAdvection (const Array< OneD, Array< OneD, NekDouble > > &InField, Array< OneD, Array< OneD, NekDouble > > &OutField, bool NumericalFluxIncludesNormal=true, bool InFieldIsInPhysSpace=false, int nvariables=0)
 Calculate the weak discontinuous Galerkin advection. More...
 
SOLVER_UTILS_EXPORT void WeakDGDiffusion (const Array< OneD, Array< OneD, NekDouble > > &InField, Array< OneD, Array< OneD, NekDouble > > &OutField, bool NumericalFluxIncludesNormal=true, bool InFieldIsInPhysSpace=false)
 Calculate weak DG Diffusion in the LDG form. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n)
 Write checkpoint file of m_fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write checkpoint file of custom data fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_BaseFlow (const int n)
 Write base flow file of m_fields. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname)
 Write field data to the given filename. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write input fields to the given filename. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields)
 Input field data from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFldToMultiDomains (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const int ndomains)
 Input field data from the given file to multiple domains. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, std::vector< std::string > &fieldStr, Array< OneD, Array< OneD, NekDouble > > &coeffs)
 Output a field. Input field data into array from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, MultiRegions::ExpListSharedPtr &pField, std::string &pFieldName)
 Output a field. Input field data into ExpList from the given file. More...
 
SOLVER_UTILS_EXPORT void ScanForHistoryPoints ()
 Builds map of which element holds each history point. More...
 
SOLVER_UTILS_EXPORT void WriteHistoryData (std::ostream &out)
 Probe each history point and write to file. More...
 
SOLVER_UTILS_EXPORT void SessionSummary (SummaryList &vSummary)
 Write out a session summary. More...
 
SOLVER_UTILS_EXPORT Array< OneD, MultiRegions::ExpListSharedPtr > & UpdateFields ()
 
SOLVER_UTILS_EXPORT LibUtilities::FieldMetaDataMapUpdateFieldMetaDataMap ()
 Get hold of FieldInfoMap so it can be updated. More...
 
SOLVER_UTILS_EXPORT NekDouble GetFinalTime ()
 Return final time. More...
 
SOLVER_UTILS_EXPORT int GetNcoeffs ()
 
SOLVER_UTILS_EXPORT int GetNcoeffs (const int eid)
 
SOLVER_UTILS_EXPORT int GetNumExpModes ()
 
SOLVER_UTILS_EXPORT const Array< OneD, int > GetNumExpModesPerExp ()
 
SOLVER_UTILS_EXPORT int GetNvariables ()
 
SOLVER_UTILS_EXPORT const std::string GetVariable (unsigned int i)
 
SOLVER_UTILS_EXPORT int GetTraceTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTraceNpoints ()
 
SOLVER_UTILS_EXPORT int GetExpSize ()
 
SOLVER_UTILS_EXPORT int GetPhys_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetCoeff_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTotPoints (int n)
 
SOLVER_UTILS_EXPORT int GetNpoints ()
 
SOLVER_UTILS_EXPORT int GetNumElmVelocity ()
 
SOLVER_UTILS_EXPORT int GetSteps ()
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep ()
 
SOLVER_UTILS_EXPORT void CopyFromPhysField (const int i, Array< OneD, NekDouble > &output)
 
SOLVER_UTILS_EXPORT void CopyToPhysField (const int i, Array< OneD, NekDouble > &output)
 
SOLVER_UTILS_EXPORT void SetStepsToOne ()
 
SOLVER_UTILS_EXPORT void ZeroPhysFields ()
 
SOLVER_UTILS_EXPORT void FwdTransFields ()
 
SOLVER_UTILS_EXPORT void GetFluxVector (const int i, Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &flux)
 
SOLVER_UTILS_EXPORT void GetFluxVector (const int i, Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &fluxX, Array< OneD, Array< OneD, NekDouble > > &fluxY)
 
SOLVER_UTILS_EXPORT void GetFluxVector (const int i, const int j, Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &flux)
 
SOLVER_UTILS_EXPORT void NumericalFlux (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numflux)
 
SOLVER_UTILS_EXPORT void NumericalFlux (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numfluxX, Array< OneD, Array< OneD, NekDouble > > &numfluxY)
 
SOLVER_UTILS_EXPORT void NumFluxforScalar (const Array< OneD, Array< OneD, NekDouble > > &ufield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &uflux)
 
SOLVER_UTILS_EXPORT void NumFluxforVector (const Array< OneD, Array< OneD, NekDouble > > &ufield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &qfield, Array< OneD, Array< OneD, NekDouble > > &qflux)
 
SOLVER_UTILS_EXPORT void SetModifiedBasis (const bool modbasis)
 
SOLVER_UTILS_EXPORT int NoCaseStringCompare (const string &s1, const string &s2)
 Perform a case-insensitive string comparison. More...
 
virtual SOLVER_UTILS_EXPORT bool v_NegatedOp ()
 Virtual function to identify if operator is negated in DoSolve. More...
 

Static Public Member Functions

static SolverUtils::EquationSystemSharedPtr create (const LibUtilities::SessionReaderSharedPtr &pSession)
 Creates an instance of this class. More...
 
- Static Public Member Functions inherited from Nektar::ShallowWaterSystem
static SolverUtils::EquationSystemSharedPtr create (const LibUtilities::SessionReaderSharedPtr &pSession)
 Creates an instance of this class. More...
 

Static Public Attributes

static std::string className
 Name of class. More...
 
- Static Public Attributes inherited from Nektar::ShallowWaterSystem
static std::string className
 Name of class. More...
 

Protected Member Functions

 LinearSWE (const LibUtilities::SessionReaderSharedPtr &pSession)
 
virtual void v_InitObject ()
 Init object for UnsteadySystem class. More...
 
void DoOdeRhs (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 
void DoOdeProjection (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 
void GetFluxVector (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &flux)
 
virtual void v_GenerateSummary (SolverUtils::SummaryList &s)
 Print a summary of time stepping parameters. More...
 
virtual void v_PrimitiveToConservative ()
 
virtual void v_ConservativeToPrimitive ()
 
const Array< OneD, NekDouble > & GetDepthFwd ()
 
const Array< OneD, NekDouble > & GetDepthBwd ()
 
- Protected Member Functions inherited from Nektar::ShallowWaterSystem
 ShallowWaterSystem (const LibUtilities::SessionReaderSharedPtr &pSession)
 Initialises UnsteadySystem class members. More...
 
void PrimitiveToConservative ()
 
void ConservativeToPrimitive ()
 
NekDouble GetGravity ()
 
const Array< OneD, const Array< OneD, NekDouble > > & GetVecLocs ()
 
const Array< OneD, const Array< OneD, NekDouble > > & GetNormals ()
 
const Array< OneD, NekDouble > & GetDepth ()
 
bool IsConstantDepth ()
 
void CopyBoundaryTrace (const Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd)
 
- Protected Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
SOLVER_UTILS_EXPORT UnsteadySystem (const LibUtilities::SessionReaderSharedPtr &pSession)
 Initialises UnsteadySystem class members. More...
 
SOLVER_UTILS_EXPORT NekDouble MaxTimeStepEstimator ()
 Get the maximum timestep estimator for cfl control. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoSolve ()
 Solves an unsteady problem. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoInitialise ()
 Sets up initial conditions. More...
 
virtual SOLVER_UTILS_EXPORT void v_AppendOutput1D (Array< OneD, Array< OneD, NekDouble > > &solution1D)
 Print the solution at each solution point in a txt file. More...
 
virtual SOLVER_UTILS_EXPORT void v_NumericalFlux (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numflux)
 
virtual SOLVER_UTILS_EXPORT void v_NumericalFlux (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numfluxX, Array< OneD, Array< OneD, NekDouble > > &numfluxY)
 
virtual SOLVER_UTILS_EXPORT void v_NumFluxforScalar (const Array< OneD, Array< OneD, NekDouble > > &ufield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &uflux)
 
virtual SOLVER_UTILS_EXPORT void v_NumFluxforVector (const Array< OneD, Array< OneD, NekDouble > > &ufield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &qfield, Array< OneD, Array< OneD, NekDouble > > &qflux)
 
virtual SOLVER_UTILS_EXPORT NekDouble v_GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Return the timestep to be used for the next step in the time-marching loop. More...
 
virtual SOLVER_UTILS_EXPORT bool v_PreIntegrate (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_PostIntegrate (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_SteadyStateCheck (int step)
 
SOLVER_UTILS_EXPORT void CheckForRestartTime (NekDouble &time)
 
- Protected Member Functions inherited from Nektar::SolverUtils::EquationSystem
SOLVER_UTILS_EXPORT EquationSystem (const LibUtilities::SessionReaderSharedPtr &pSession)
 Initialises EquationSystem class members. More...
 
int nocase_cmp (const string &s1, const string &s2)
 
SOLVER_UTILS_EXPORT void SetBoundaryConditions (NekDouble time)
 Evaluates the boundary conditions at the given time. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Virtual function for the L_inf error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray, bool Normalised=false)
 Virtual function for the L_2 error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransCoeffToPhys ()
 Virtual function for transformation to physical space. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransPhysToCoeff ()
 Virtual function for transformation to coefficient space. More...
 
virtual SOLVER_UTILS_EXPORT void v_SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 
virtual SOLVER_UTILS_EXPORT void v_EvaluateExactSolution (unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 
SOLVER_UTILS_EXPORT void SetUpBaseFields (SpatialDomains::MeshGraphSharedPtr &mesh)
 
SOLVER_UTILS_EXPORT void ImportFldBase (std::string pInfile, SpatialDomains::MeshGraphSharedPtr pGraph)
 
virtual SOLVER_UTILS_EXPORT void v_Output (void)
 
virtual SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr v_GetPressure (void)
 
virtual SOLVER_UTILS_EXPORT void v_ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 

Protected Attributes

Array< OneD, NekDoublem_dFwd
 Still water depth traces. More...
 
Array< OneD, NekDoublem_dBwd
 
- Protected Attributes inherited from Nektar::ShallowWaterSystem
SolverUtils::RiemannSolverSharedPtr m_riemannSolver
 
SolverUtils::RiemannSolverSharedPtr m_riemannSolverLDG
 
SolverUtils::AdvectionSharedPtr m_advection
 
SolverUtils::DiffusionSharedPtr m_diffusion
 
bool m_primitive
 Indicates if variables are primitive or conservative. More...
 
bool m_constantDepth
 Indicates if constant depth case. More...
 
NekDouble m_g
 Acceleration of gravity. More...
 
Array< OneD, NekDoublem_depth
 Still water depth. More...
 
Array< OneD, Array< OneD, NekDouble > > m_bottomSlope
 
Array< OneD, NekDoublem_coriolis
 Coriolis force. More...
 
Array< OneD, Array< OneD, NekDouble > > m_vecLocs
 
- Protected Attributes inherited from Nektar::SolverUtils::UnsteadySystem
int m_infosteps
 Number of time steps between outputting status information. More...
 
LibUtilities::TimeIntegrationWrapperSharedPtr m_intScheme
 Wrapper to the time integration scheme. More...
 
LibUtilities::TimeIntegrationSchemeOperators m_ode
 The time integration scheme operators to use. More...
 
LibUtilities::TimeIntegrationSolutionSharedPtr m_intSoln
 
NekDouble m_epsilon
 
bool m_explicitDiffusion
 Indicates if explicit or implicit treatment of diffusion is used. More...
 
bool m_explicitAdvection
 Indicates if explicit or implicit treatment of advection is used. More...
 
bool m_explicitReaction
 Indicates if explicit or implicit treatment of reaction is used. More...
 
bool m_homoInitialFwd
 Flag to determine if simulation should start in homogeneous forward transformed state. More...
 
std::vector< int > m_intVariables
 
std::vector< FilterSharedPtrm_filters
 
- Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
LibUtilities::CommSharedPtr m_comm
 Communicator. More...
 
LibUtilities::SessionReaderSharedPtr m_session
 The session reader. More...
 
LibUtilities::FieldIOSharedPtr m_fld
 Field input/output. More...
 
map< std::string, Array< OneD, Array< OneD, float > > > m_interpWeights
 Map of the interpolation weights for a specific filename. More...
 
map< std::string, Array< OneD, Array< OneD, unsigned int > > > m_interpInds
 Map of the interpolation indices for a specific filename. More...
 
Array< OneD, MultiRegions::ExpListSharedPtrm_fields
 Array holding all dependent variables. More...
 
Array< OneD, MultiRegions::ExpListSharedPtrm_base
 Base fields. More...
 
Array< OneD, MultiRegions::ExpListSharedPtrm_derivedfields
 Array holding all dependent variables. More...
 
SpatialDomains::BoundaryConditionsSharedPtr m_boundaryConditions
 Pointer to boundary conditions object. More...
 
SpatialDomains::MeshGraphSharedPtr m_graph
 Pointer to graph defining mesh. More...
 
std::string m_sessionName
 Name of the session. More...
 
NekDouble m_time
 Current time of simulation. More...
 
NekDouble m_fintime
 Finish time of the simulation. More...
 
NekDouble m_timestep
 Time step size. More...
 
NekDouble m_lambda
 Lambda constant in real system if one required. More...
 
NekDouble m_checktime
 Time between checkpoints. More...
 
int m_steps
 Number of steps to take. More...
 
int m_checksteps
 Number of steps between checkpoints. More...
 
int m_spacedim
 Spatial dimension (>= expansion dim). More...
 
int m_expdim
 Expansion dimension. More...
 
bool m_singleMode
 Flag to determine if single homogeneous mode is used. More...
 
bool m_halfMode
 Flag to determine if half homogeneous mode is used. More...
 
bool m_multipleModes
 Flag to determine if use multiple homogenenous modes are used. More...
 
bool m_useFFT
 Flag to determine if FFT is used for homogeneous transform. More...
 
bool m_homogen_dealiasing
 Flag to determine if dealiasing is used for homogeneous simulations. More...
 
bool m_specHP_dealiasing
 Flag to determine if dealisising is usde for the Spectral/hp element discretisation. More...
 
enum MultiRegions::ProjectionType m_projectionType
 Type of projection; e.g continuous or discontinuous. More...
 
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
 Array holding trace normals for DG simulations in the forwards direction. More...
 
Array< OneD, Array< OneD, Array< OneD, NekDouble > > > m_gradtan
 1 x nvariable x nq More...
 
Array< OneD, Array< OneD, Array< OneD, NekDouble > > > m_tanbasis
 2 x m_spacedim x nq More...
 
Array< OneD, bool > m_checkIfSystemSingular
 Flag to indicate if the fields should be checked for singularity. More...
 
LibUtilities::FieldMetaDataMap m_fieldMetaDataMap
 Map to identify relevant solver info to dump in output fields. More...
 
int m_NumQuadPointsError
 Number of Quadrature points used to work out the error. More...
 
enum HomogeneousType m_HomogeneousType
 
NekDouble m_LhomX
 physical length in X direction (if homogeneous) More...
 
NekDouble m_LhomY
 physical length in Y direction (if homogeneous) More...
 
NekDouble m_LhomZ
 physical length in Z direction (if homogeneous) More...
 
int m_npointsX
 number of points in X direction (if homogeneous) More...
 
int m_npointsY
 number of points in Y direction (if homogeneous) More...
 
int m_npointsZ
 number of points in Z direction (if homogeneous) More...
 
int m_HomoDirec
 number of homogenous directions More...
 
int m_NumMode
 Mode to use in case of single mode analysis. More...
 

Private Member Functions

void NumericalFlux1D (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numfluxX)
 
void NumericalFlux2D (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numfluxX, Array< OneD, Array< OneD, NekDouble > > &numfluxY)
 
void SetBoundaryConditions (Array< OneD, Array< OneD, NekDouble > > &physarray, NekDouble time)
 
void WallBoundary2D (int bcRegion, int cnt, Array< OneD, Array< OneD, NekDouble > > &physarray)
 
void WallBoundary (int bcRegion, int cnt, Array< OneD, Array< OneD, NekDouble > > &physarray)
 Wall boundary condition. More...
 
void AddCoriolis (const Array< OneD, const Array< OneD, NekDouble > > &physarray, Array< OneD, Array< OneD, NekDouble > > &outarray)
 
void ConservativeToPrimitive (const Array< OneD, const Array< OneD, NekDouble > > &physin, Array< OneD, Array< OneD, NekDouble > > &physout)
 
void PrimitiveToConservative (const Array< OneD, const Array< OneD, NekDouble > > &physin, Array< OneD, Array< OneD, NekDouble > > &physout)
 
void GetVelocityVector (const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &velocity)
 Compute the velocity field $ \mathbf{v} $ given the momentum $ h\mathbf{v} $. More...
 

Friends

class MemoryManager< LinearSWE >
 

Additional Inherited Members

- Public Attributes inherited from Nektar::SolverUtils::UnsteadySystem
NekDouble m_cflSafetyFactor
 CFL safety factor (comprise between 0 to 1). More...
 
- Protected Types inherited from Nektar::SolverUtils::EquationSystem
enum  HomogeneousType { eHomogeneous1D, eHomogeneous2D, eHomogeneous3D, eNotHomogeneous }
 Parameter for homogeneous expansions. More...
 

Detailed Description

Definition at line 50 of file LinearSWE.h.

Constructor & Destructor Documentation

Nektar::LinearSWE::~LinearSWE ( )
virtual

Definition at line 166 of file LinearSWE.cpp.

167  {
168 
169  }
Nektar::LinearSWE::LinearSWE ( const LibUtilities::SessionReaderSharedPtr pSession)
protected

Definition at line 50 of file LinearSWE.cpp.

52  : ShallowWaterSystem(pSession)
53  {
54  }
ShallowWaterSystem(const LibUtilities::SessionReaderSharedPtr &pSession)
Initialises UnsteadySystem class members.

Member Function Documentation

void Nektar::LinearSWE::AddCoriolis ( const Array< OneD, const Array< OneD, NekDouble > > &  physarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray 
)
private

Definition at line 172 of file LinearSWE.cpp.

References ASSERTL0, Nektar::MultiRegions::eDiscontinuous, Nektar::MultiRegions::eGalerkin, Nektar::MultiRegions::eMixed_CG_Discontinuous, Nektar::SolverUtils::EquationSystem::GetNcoeffs(), Nektar::SolverUtils::EquationSystem::GetTotPoints(), Nektar::ShallowWaterSystem::m_coriolis, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_projectionType, Vmath::Neg(), Vmath::Vadd(), and Vmath::Vmul().

Referenced by DoOdeRhs().

174  {
175 
176  int ncoeffs = GetNcoeffs();
177  int nq = GetTotPoints();
178 
179  Array<OneD, NekDouble> tmp(nq);
180  Array<OneD, NekDouble> mod(ncoeffs);
181 
182  switch(m_projectionType)
183  {
185  {
186  // add to u equation
187  Vmath::Vmul(nq,m_coriolis,1,physarray[2],1,tmp,1);
188  m_fields[0]->IProductWRTBase(tmp,mod);
189  m_fields[0]->MultiplyByElmtInvMass(mod,mod);
190  m_fields[0]->BwdTrans(mod,tmp);
191  Vmath::Vadd(nq,tmp,1,outarray[1],1,outarray[1],1);
192 
193  // add to v equation
194  Vmath::Vmul(nq,m_coriolis,1,physarray[1],1,tmp,1);
195  Vmath::Neg(nq,tmp,1);
196  m_fields[0]->IProductWRTBase(tmp,mod);
197  m_fields[0]->MultiplyByElmtInvMass(mod,mod);
198  m_fields[0]->BwdTrans(mod,tmp);
199  Vmath::Vadd(nq,tmp,1,outarray[2],1,outarray[2],1);
200  }
201  break;
204  {
205  // add to u equation
206  Vmath::Vmul(nq,m_coriolis,1,physarray[2],1,tmp,1);
207  Vmath::Vadd(nq,tmp,1,outarray[1],1,outarray[1],1);
208 
209  // add to v equation
210  Vmath::Vmul(nq,m_coriolis,1,physarray[1],1,tmp,1);
211  Vmath::Neg(nq,tmp,1);
212  Vmath::Vadd(nq,tmp,1,outarray[2],1,outarray[2],1);
213  }
214  break;
215  default:
216  ASSERTL0(false,"Unknown projection scheme for the NonlinearSWE");
217  break;
218  }
219 
220 
221  }
Array< OneD, NekDouble > m_coriolis
Coriolis force.
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
enum MultiRegions::ProjectionType m_projectionType
Type of projection; e.g continuous or discontinuous.
SOLVER_UTILS_EXPORT int GetTotPoints()
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:382
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
SOLVER_UTILS_EXPORT int GetNcoeffs()
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:285
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
void Nektar::LinearSWE::ConservativeToPrimitive ( const Array< OneD, const Array< OneD, NekDouble > > &  physin,
Array< OneD, Array< OneD, NekDouble > > &  physout 
)
private

Definition at line 582 of file LinearSWE.cpp.

References Nektar::SolverUtils::EquationSystem::GetTotPoints(), Nektar::ShallowWaterSystem::m_depth, Vmath::Vcopy(), Vmath::Vdiv(), and Vmath::Vsub().

584  {
585  int nq = GetTotPoints();
586 
587  if(physin.get() == physout.get())
588  {
589  // copy indata and work with tmp array
591  for (int i = 0; i < 3; ++i)
592  {
593  // deep copy
594  tmp[i] = Array<OneD, NekDouble>(nq);
595  Vmath::Vcopy(nq,physin[i],1,tmp[i],1);
596  }
597 
598  // \eta = h - d
599  Vmath::Vsub(nq,tmp[0],1,m_depth,1,physout[0],1);
600 
601  // u = hu/h
602  Vmath::Vdiv(nq,tmp[1],1,tmp[0],1,physout[1],1);
603 
604  // v = hv/ v
605  Vmath::Vdiv(nq,tmp[2],1,tmp[0],1,physout[2],1);
606  }
607  else
608  {
609  // \eta = h - d
610  Vmath::Vsub(nq,physin[0],1,m_depth,1,physout[0],1);
611 
612  // u = hu/h
613  Vmath::Vdiv(nq,physin[1],1,physin[0],1,physout[1],1);
614 
615  // v = hv/ v
616  Vmath::Vdiv(nq,physin[2],1,physin[0],1,physout[2],1);
617  }
618  }
Array< OneD, NekDouble > m_depth
Still water depth.
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:227
SOLVER_UTILS_EXPORT int GetTotPoints()
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.cpp:329
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1038
static SolverUtils::EquationSystemSharedPtr Nektar::LinearSWE::create ( const LibUtilities::SessionReaderSharedPtr pSession)
inlinestatic

Creates an instance of this class.

Definition at line 56 of file LinearSWE.h.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr().

58  {
60  p->InitObject();
61  return p;
62  }
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
boost::shared_ptr< EquationSystem > EquationSystemSharedPtr
A shared pointer to an EquationSystem object.
void Nektar::LinearSWE::DoOdeProjection ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time 
)
protected

Definition at line 326 of file LinearSWE.cpp.

References ASSERTL0, Nektar::MultiRegions::eDiscontinuous, Nektar::MultiRegions::eGalerkin, Nektar::MultiRegions::eMixed_CG_Discontinuous, Nektar::SolverUtils::EquationSystem::GetNcoeffs(), Nektar::SolverUtils::EquationSystem::GetNpoints(), Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_projectionType, SetBoundaryConditions(), and Vmath::Vcopy().

Referenced by v_InitObject().

329  {
330  int i;
331  int nvariables = inarray.num_elements();
332 
333 
334  switch(m_projectionType)
335  {
337  {
338 
339  // Just copy over array
340  int npoints = GetNpoints();
341 
342  for(i = 0; i < nvariables; ++i)
343  {
344  Vmath::Vcopy(npoints, inarray[i], 1, outarray[i], 1);
345  }
346  SetBoundaryConditions(outarray, time);
347  break;
348  }
351  {
352 
353  EquationSystem::SetBoundaryConditions(time);
355 
356  for(i = 0; i < nvariables; ++i)
357  {
358  m_fields[i]->FwdTrans(inarray[i],coeffs);
359  m_fields[i]->BwdTrans_IterPerExp(coeffs,outarray[i]);
360  }
361  break;
362  }
363  default:
364  ASSERTL0(false,"Unknown projection scheme");
365  break;
366  }
367  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
enum MultiRegions::ProjectionType m_projectionType
Type of projection; e.g continuous or discontinuous.
void SetBoundaryConditions(Array< OneD, Array< OneD, NekDouble > > &physarray, NekDouble time)
Definition: LinearSWE.cpp:371
SOLVER_UTILS_EXPORT int GetNpoints()
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
SOLVER_UTILS_EXPORT int GetNcoeffs()
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1038
void Nektar::LinearSWE::DoOdeRhs ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time 
)
protected

Definition at line 223 of file LinearSWE.cpp.

References AddCoriolis(), ASSERTL0, Nektar::MultiRegions::DirCartesianMap, Nektar::MultiRegions::eDiscontinuous, Nektar::MultiRegions::eGalerkin, Nektar::MultiRegions::eMixed_CG_Discontinuous, GetFluxVector(), Nektar::SolverUtils::EquationSystem::GetTotPoints(), Nektar::ShallowWaterSystem::m_advection, Nektar::ShallowWaterSystem::m_coriolis, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_projectionType, Nektar::SolverUtils::EquationSystem::m_spacedim, Vmath::Neg(), and Vmath::Vadd().

Referenced by v_InitObject().

226  {
227  int i, j;
228  int ndim = m_spacedim;
229  int nvariables = inarray.num_elements();
230  int nq = GetTotPoints();
231 
232 
233  switch(m_projectionType)
234  {
236  {
237 
238  //-------------------------------------------------------
239  // Compute the DG advection including the numerical flux
240  // by using SolverUtils/Advection
241  // Input and output in physical space
243 
244  m_advection->Advect(nvariables, m_fields, advVel, inarray,
245  outarray, time);
246  //-------------------------------------------------------
247 
248 
249  //-------------------------------------------------------
250  // negate the outarray since moving terms to the rhs
251  for(i = 0; i < nvariables; ++i)
252  {
253  Vmath::Neg(nq,outarray[i],1);
254  }
255  //-------------------------------------------------------
256 
257 
258  //-------------------------------------------------
259  // Add "source terms"
260  // Input and output in physical space
261 
262  // Coriolis forcing
263  if (m_coriolis.num_elements() != 0)
264  {
265  AddCoriolis(inarray,outarray);
266  }
267  //-------------------------------------------------
268 
269  }
270  break;
273  {
274 
275  //-------------------------------------------------------
276  // Compute the fluxvector in physical space
278  fluxvector(nvariables);
279 
280  for (i = 0; i < nvariables; ++i)
281  {
282  fluxvector[i] = Array<OneD, Array<OneD, NekDouble> >(ndim);
283  for(j = 0; j < ndim; ++j)
284  {
285  fluxvector[i][j] = Array<OneD, NekDouble>(nq);
286  }
287  }
288 
289  LinearSWE::GetFluxVector(inarray, fluxvector);
290  //-------------------------------------------------------
291 
292 
293  //-------------------------------------------------------
294  // Take the derivative of the flux terms
295  // and negate the outarray since moving terms to the rhs
296  Array<OneD,NekDouble> tmp(nq);
297  Array<OneD, NekDouble>tmp1(nq);
298 
299  for(i = 0; i < nvariables; ++i)
300  {
301  m_fields[i]->PhysDeriv(MultiRegions::DirCartesianMap[0],fluxvector[i][0],tmp);
302  m_fields[i]->PhysDeriv(MultiRegions::DirCartesianMap[1],fluxvector[i][1],tmp1);
303  Vmath::Vadd(nq,tmp,1,tmp1,1,outarray[i],1);
304  Vmath::Neg(nq,outarray[i],1);
305  }
306 
307  //-------------------------------------------------
308  // Add "source terms"
309  // Input and output in physical space
310 
311  // Coriolis forcing
312  if (m_coriolis.num_elements() != 0)
313  {
314  AddCoriolis(inarray,outarray);
315  }
316  //-------------------------------------------------
317  }
318  break;
319  default:
320  ASSERTL0(false,"Unknown projection scheme for the NonlinearSWE");
321  break;
322  }
323  }
Array< OneD, NekDouble > m_coriolis
Coriolis force.
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
void GetFluxVector(const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &flux)
Definition: LinearSWE.cpp:548
enum MultiRegions::ProjectionType m_projectionType
Type of projection; e.g continuous or discontinuous.
void AddCoriolis(const Array< OneD, const Array< OneD, NekDouble > > &physarray, Array< OneD, Array< OneD, NekDouble > > &outarray)
Definition: LinearSWE.cpp:172
SolverUtils::AdvectionSharedPtr m_advection
SOLVER_UTILS_EXPORT int GetTotPoints()
int m_spacedim
Spatial dimension (>= expansion dim).
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:382
MultiRegions::Direction const DirCartesianMap[]
Definition: ExpList.h:86
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:285
const Array<OneD, NekDouble>& Nektar::LinearSWE::GetDepthBwd ( )
inlineprotected

Definition at line 100 of file LinearSWE.h.

References m_dBwd.

Referenced by v_InitObject().

101  {
102  return m_dBwd;
103  }
Array< OneD, NekDouble > m_dBwd
Definition: LinearSWE.h:76
const Array<OneD, NekDouble>& Nektar::LinearSWE::GetDepthFwd ( )
inlineprotected

Definition at line 96 of file LinearSWE.h.

References m_dFwd.

Referenced by v_InitObject().

97  {
98  return m_dFwd;
99  }
Array< OneD, NekDouble > m_dFwd
Still water depth traces.
Definition: LinearSWE.h:75
void Nektar::LinearSWE::GetFluxVector ( const Array< OneD, const Array< OneD, NekDouble > > &  physfield,
Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &  flux 
)
protected

Definition at line 548 of file LinearSWE.cpp.

References Nektar::ShallowWaterSystem::m_depth, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::ShallowWaterSystem::m_g, Nektar::SolverUtils::EquationSystem::m_spacedim, Vmath::Smul(), Vmath::Vadd(), Vmath::Vmul(), and Vmath::Zero().

Referenced by DoOdeRhs(), and v_InitObject().

551  {
552  int i, j;
553  int nq = m_fields[0]->GetTotPoints();
554 
555  NekDouble g = m_g;
556 
557  // Flux vector for the mass equation
558  for (i = 0; i < m_spacedim; ++i)
559  {
560  Vmath::Vmul(nq, m_depth, 1, physfield[i+1], 1, flux[0][i], 1);
561  }
562 
563  // Put (g eta) in tmp
564  Array<OneD, NekDouble> tmp(nq);
565  Vmath::Smul(nq, g, physfield[0], 1, tmp, 1);
566 
567  // Flux vector for the momentum equations
568  for (i = 0; i < m_spacedim; ++i)
569  {
570  for (j = 0; j < m_spacedim; ++j)
571  {
572  // must zero fluxes as not initialised to zero in AdvectionWeakDG ...
573  Vmath::Zero(nq, flux[i+1][j], 1);
574  }
575 
576  // Add (g eta) to appropriate field
577  Vmath::Vadd(nq, flux[i+1][i], 1, tmp, 1, flux[i+1][i], 1);
578  }
579 
580  }
Array< OneD, NekDouble > m_depth
Still water depth.
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
int m_spacedim
Spatial dimension (>= expansion dim).
double NekDouble
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:359
NekDouble m_g
Acceleration of gravity.
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:285
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
void Nektar::LinearSWE::GetVelocityVector ( const Array< OneD, Array< OneD, NekDouble > > &  physfield,
Array< OneD, Array< OneD, NekDouble > > &  velocity 
)
private

Compute the velocity field $ \mathbf{v} $ given the momentum $ h\mathbf{v} $.

Parameters
physfieldVelocity field.
velocityVelocity field.

Definition at line 699 of file LinearSWE.cpp.

References Nektar::SolverUtils::EquationSystem::m_spacedim, npts, and Vmath::Vcopy().

702  {
703  const int npts = physfield[0].num_elements();
704 
705  for (int i = 0; i < m_spacedim; ++i)
706  {
707  Vmath::Vcopy(npts, physfield[1+i], 1, velocity[i], 1);
708  }
709  }
static std::string npts
Definition: InputFld.cpp:43
int m_spacedim
Spatial dimension (>= expansion dim).
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1038
void Nektar::LinearSWE::NumericalFlux1D ( Array< OneD, Array< OneD, NekDouble > > &  physfield,
Array< OneD, Array< OneD, NekDouble > > &  numfluxX 
)
private
void Nektar::LinearSWE::NumericalFlux2D ( Array< OneD, Array< OneD, NekDouble > > &  physfield,
Array< OneD, Array< OneD, NekDouble > > &  numfluxX,
Array< OneD, Array< OneD, NekDouble > > &  numfluxY 
)
private
void Nektar::LinearSWE::PrimitiveToConservative ( const Array< OneD, const Array< OneD, NekDouble > > &  physin,
Array< OneD, Array< OneD, NekDouble > > &  physout 
)
private

Definition at line 635 of file LinearSWE.cpp.

References Nektar::SolverUtils::EquationSystem::GetTotPoints(), Nektar::ShallowWaterSystem::m_depth, Vmath::Vadd(), Vmath::Vcopy(), and Vmath::Vmul().

637  {
638 
639  int nq = GetTotPoints();
640 
641  if(physin.get() == physout.get())
642  {
643  // copy indata and work with tmp array
645  for (int i = 0; i < 3; ++i)
646  {
647  // deep copy
648  tmp[i] = Array<OneD, NekDouble>(nq);
649  Vmath::Vcopy(nq,physin[i],1,tmp[i],1);
650  }
651 
652  // h = \eta + d
653  Vmath::Vadd(nq,tmp[0],1,m_depth,1,physout[0],1);
654 
655  // hu = h * u
656  Vmath::Vmul(nq,physout[0],1,tmp[1],1,physout[1],1);
657 
658  // hv = h * v
659  Vmath::Vmul(nq,physout[0],1,tmp[2],1,physout[2],1);
660 
661  }
662  else
663  {
664  // h = \eta + d
665  Vmath::Vadd(nq,physin[0],1,m_depth,1,physout[0],1);
666 
667  // hu = h * u
668  Vmath::Vmul(nq,physout[0],1,physin[1],1,physout[1],1);
669 
670  // hv = h * v
671  Vmath::Vmul(nq,physout[0],1,physin[2],1,physout[2],1);
672 
673  }
674 
675  }
Array< OneD, NekDouble > m_depth
Still water depth.
SOLVER_UTILS_EXPORT int GetTotPoints()
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1038
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:285
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
void Nektar::LinearSWE::SetBoundaryConditions ( Array< OneD, Array< OneD, NekDouble > > &  physarray,
NekDouble  time 
)
private

Definition at line 371 of file LinearSWE.cpp.

References Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_session, and WallBoundary2D().

Referenced by DoOdeProjection().

374  {
375  std::string varName;
376  int nvariables = m_fields.num_elements();
377  int cnt = 0;
378 
379  // loop over Boundary Regions
380  for(int n = 0; n < m_fields[0]->GetBndConditions().num_elements(); ++n)
381  {
382  // Wall Boundary Condition
383  if (boost::iequals(m_fields[0]->GetBndConditions()[n]->GetUserDefined(),"Wall"))
384  {
385  WallBoundary2D(n, cnt, inarray);
386  }
387 
388  // Time Dependent Boundary Condition (specified in meshfile)
389  if (m_fields[0]->GetBndConditions()[n]->IsTimeDependent())
390  {
391  for (int i = 0; i < nvariables; ++i)
392  {
393  varName = m_session->GetVariable(i);
394  m_fields[i]->EvaluateBoundaryConditions(time, varName);
395  }
396  }
397  cnt += m_fields[0]->GetBndCondExpansions()[n]->GetExpSize();
398  }
399  }
void WallBoundary2D(int bcRegion, int cnt, Array< OneD, Array< OneD, NekDouble > > &physarray)
Definition: LinearSWE.cpp:474
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
void Nektar::LinearSWE::v_ConservativeToPrimitive ( )
protectedvirtual

Reimplemented from Nektar::ShallowWaterSystem.

Definition at line 621 of file LinearSWE.cpp.

References Nektar::SolverUtils::EquationSystem::GetTotPoints(), Nektar::ShallowWaterSystem::m_depth, Nektar::SolverUtils::EquationSystem::m_fields, Vmath::Vdiv(), and Vmath::Vsub().

622  {
623  int nq = GetTotPoints();
624 
625  // u = hu/h
626  Vmath::Vdiv(nq,m_fields[1]->GetPhys(),1,m_fields[0]->GetPhys(),1,m_fields[1]->UpdatePhys(),1);
627 
628  // v = hv/ v
629  Vmath::Vdiv(nq,m_fields[2]->GetPhys(),1,m_fields[0]->GetPhys(),1,m_fields[2]->UpdatePhys(),1);
630 
631  // \eta = h - d
632  Vmath::Vsub(nq,m_fields[0]->GetPhys(),1,m_depth,1,m_fields[0]->UpdatePhys(),1);
633  }
Array< OneD, NekDouble > m_depth
Still water depth.
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:227
SOLVER_UTILS_EXPORT int GetTotPoints()
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.cpp:329
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
void Nektar::LinearSWE::v_GenerateSummary ( SolverUtils::SummaryList s)
protectedvirtual

Print a summary of time stepping parameters.

Reimplemented from Nektar::ShallowWaterSystem.

Definition at line 712 of file LinearSWE.cpp.

References Nektar::SolverUtils::AddSummaryItem(), Nektar::SolverUtils::EquationSystem::m_session, and Nektar::ShallowWaterSystem::v_GenerateSummary().

713  {
715  if (m_session->DefinesSolverInfo("UpwindType"))
716  {
717  std::string UpwindType;
718  UpwindType = m_session->GetSolverInfo("UpwindType");
719  if (UpwindType == "LinearAverage")
720  {
721  SolverUtils::AddSummaryItem(s, "Riemann Solver", "Linear Average");
722  }
723  if (UpwindType == "LinearHLL")
724  {
725  SolverUtils::AddSummaryItem(s, "Riemann Solver", "Linear HLL");
726  }
727  }
728  SolverUtils::AddSummaryItem(s, "Variables", "eta should be in field[0]");
729  SolverUtils::AddSummaryItem(s, "", "u should be in field[1]");
730  SolverUtils::AddSummaryItem(s, "", "v should be in field[2]");
731  }
void AddSummaryItem(SummaryList &l, const std::string &name, const std::string &value)
Adds a summary item to the summary info list.
Definition: Misc.cpp:50
virtual void v_GenerateSummary(SolverUtils::SummaryList &s)
Print a summary of time stepping parameters.
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
void Nektar::LinearSWE::v_InitObject ( )
protectedvirtual

Init object for UnsteadySystem class.

Initialization object for UnsteadySystem class.

Reimplemented from Nektar::ShallowWaterSystem.

Definition at line 56 of file LinearSWE.cpp.

References ASSERTL0, Nektar::ShallowWaterSystem::CopyBoundaryTrace(), Nektar::LibUtilities::NekFactory< tKey, tBase, >::CreateInstance(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineOdeRhs(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineProjection(), DoOdeProjection(), DoOdeRhs(), Nektar::MultiRegions::eDiscontinuous, Nektar::MultiRegions::eGalerkin, Nektar::SolverUtils::GetAdvectionFactory(), GetDepthBwd(), GetDepthFwd(), GetFluxVector(), Nektar::ShallowWaterSystem::GetGravity(), Nektar::ShallowWaterSystem::GetNormals(), Nektar::SolverUtils::GetRiemannSolverFactory(), Nektar::ShallowWaterSystem::GetVecLocs(), Nektar::ShallowWaterSystem::m_advection, Nektar::ShallowWaterSystem::m_constantDepth, m_dBwd, Nektar::ShallowWaterSystem::m_depth, m_dFwd, Nektar::SolverUtils::UnsteadySystem::m_explicitAdvection, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::UnsteadySystem::m_ode, Nektar::SolverUtils::EquationSystem::m_projectionType, Nektar::ShallowWaterSystem::m_riemannSolver, Nektar::SolverUtils::EquationSystem::m_session, and Nektar::ShallowWaterSystem::v_InitObject().

57  {
59 
61  {
64  }
65  else
66  {
67  ASSERTL0(false, "Implicit SWE not set up.");
68  }
69 
70  // Type of advection class to be used
71  switch(m_projectionType)
72  {
73  // Continuous field
75  {
76  // Do nothing
77  break;
78  }
79  // Discontinuous field
81  {
82  string advName;
83  string diffName;
84  string riemName;
85 
86  //---------------------------------------------------------------
87  // Setting up advection and diffusion operators
88  // NB: diffusion not set up for SWE at the moment
89  // but kept here for future use ...
90  m_session->LoadSolverInfo("AdvectionType", advName, "WeakDG");
91  // m_session->LoadSolverInfo("DiffusionType", diffName, "LDGEddy");
93  .CreateInstance(advName, advName);
94  // m_diffusion = SolverUtils::GetDiffusionFactory()
95  // .CreateInstance(diffName, diffName);
96 
97  m_advection->SetFluxVector(&LinearSWE::GetFluxVector, this);
98  // m_diffusion->SetFluxVectorNS(&ShallowWaterSystem::
99  // GetEddyViscosityFluxVector, this);
100 
101  // Setting up Riemann solver for advection operator
102  m_session->LoadSolverInfo("UpwindType", riemName, "NoSolver");
103  if ((riemName == "LinearHLL") && (m_constantDepth != true))
104  {
105  ASSERTL0(false,"LinearHLL only valid for constant depth");
106  }
108  .CreateInstance(riemName);
109 
110  // Setting up upwind solver for diffusion operator
111  // m_riemannSolverLDG = SolverUtils::GetRiemannSolverFactory()
112  // .CreateInstance("UpwindLDG");
113 
114  // Setting up parameters for advection operator Riemann solver
115  m_riemannSolver->SetParam (
116  "gravity",
117  &LinearSWE::GetGravity, this);
118  m_riemannSolver->SetAuxVec(
119  "vecLocs",
120  &LinearSWE::GetVecLocs, this);
121  m_riemannSolver->SetVector(
122  "N",
123  &LinearSWE::GetNormals, this);
124 
125  // The numerical flux for linear SWE requires depth information
126  int nTracePointsTot = m_fields[0]->GetTrace()->GetTotPoints();
127  m_dFwd = Array<OneD, NekDouble>(nTracePointsTot);
128  m_dBwd = Array<OneD, NekDouble>(nTracePointsTot);
129  m_fields[0]->GetFwdBwdTracePhys(m_depth, m_dFwd, m_dBwd);
130  CopyBoundaryTrace(m_dFwd,m_dBwd);
131  m_riemannSolver->SetScalar(
132  "depthFwd",
133  &LinearSWE::GetDepthFwd, this);
134  m_riemannSolver->SetScalar(
135  "depthBwd",
136  &LinearSWE::GetDepthBwd, this);
137 
138  // Setting up parameters for diffusion operator Riemann solver
139  // m_riemannSolverLDG->AddParam (
140  // "gravity",
141  // &NonlinearSWE::GetGravity, this);
142  // m_riemannSolverLDG->SetAuxVec(
143  // "vecLocs",
144  // &NonlinearSWE::GetVecLocs, this);
145  // m_riemannSolverLDG->AddVector(
146  // "N",
147  // &NonlinearSWE::GetNormals, this);
148 
149  // Concluding initialisation of advection / diffusion operators
150  m_advection->SetRiemannSolver (m_riemannSolver);
151  //m_diffusion->SetRiemannSolver (m_riemannSolverLDG);
152  m_advection->InitObject (m_session, m_fields);
153  //m_diffusion->InitObject (m_session, m_fields);
154  break;
155  }
156  default:
157  {
158  ASSERTL0(false, "Unsupported projection type.");
159  break;
160  }
161  }
162 
163 
164  }
const Array< OneD, NekDouble > & GetDepthFwd()
Definition: LinearSWE.h:96
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
tBaseSharedPtr CreateInstance(tKey idKey BOOST_PP_COMMA_IF(MAX_PARAM) BOOST_PP_ENUM_BINARY_PARAMS(MAX_PARAM, tParam, x))
Create an instance of the class referred to by idKey.
Definition: NekFactory.hpp:162
Array< OneD, NekDouble > m_depth
Still water depth.
Array< OneD, NekDouble > m_dFwd
Still water depth traces.
Definition: LinearSWE.h:75
void GetFluxVector(const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &flux)
Definition: LinearSWE.cpp:548
LibUtilities::TimeIntegrationSchemeOperators m_ode
The time integration scheme operators to use.
enum MultiRegions::ProjectionType m_projectionType
Type of projection; e.g continuous or discontinuous.
const Array< OneD, const Array< OneD, NekDouble > > & GetVecLocs()
SolverUtils::AdvectionSharedPtr m_advection
const Array< OneD, const Array< OneD, NekDouble > > & GetNormals()
void DefineProjection(FuncPointerT func, ObjectPointerT obj)
bool m_explicitAdvection
Indicates if explicit or implicit treatment of advection is used.
void DefineOdeRhs(FuncPointerT func, ObjectPointerT obj)
virtual void v_InitObject()
Init object for UnsteadySystem class.
RiemannSolverFactory & GetRiemannSolverFactory()
SolverUtils::RiemannSolverSharedPtr m_riemannSolver
void CopyBoundaryTrace(const Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd)
AdvectionFactory & GetAdvectionFactory()
Gets the factory for initialising advection objects.
Definition: Advection.cpp:46
Array< OneD, NekDouble > m_dBwd
Definition: LinearSWE.h:76
void DoOdeProjection(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
Definition: LinearSWE.cpp:326
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
bool m_constantDepth
Indicates if constant depth case.
const Array< OneD, NekDouble > & GetDepthBwd()
Definition: LinearSWE.h:100
void DoOdeRhs(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
Definition: LinearSWE.cpp:223
void Nektar::LinearSWE::v_PrimitiveToConservative ( )
protectedvirtual

Reimplemented from Nektar::ShallowWaterSystem.

Definition at line 677 of file LinearSWE.cpp.

References Nektar::SolverUtils::EquationSystem::GetTotPoints(), Nektar::ShallowWaterSystem::m_depth, Nektar::SolverUtils::EquationSystem::m_fields, Vmath::Vadd(), and Vmath::Vmul().

678  {
679  int nq = GetTotPoints();
680 
681  // h = \eta + d
682  Vmath::Vadd(nq,m_fields[0]->GetPhys(),1,m_depth,1,m_fields[0]->UpdatePhys(),1);
683 
684  // hu = h * u
685  Vmath::Vmul(nq,m_fields[0]->GetPhys(),1,m_fields[1]->GetPhys(),1,m_fields[1]->UpdatePhys(),1);
686 
687  // hv = h * v
688  Vmath::Vmul(nq,m_fields[0]->GetPhys(),1,m_fields[2]->GetPhys(),1,m_fields[2]->UpdatePhys(),1);
689  }
Array< OneD, NekDouble > m_depth
Still water depth.
SOLVER_UTILS_EXPORT int GetTotPoints()
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:285
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
void Nektar::LinearSWE::WallBoundary ( int  bcRegion,
int  cnt,
Array< OneD, Array< OneD, NekDouble > > &  physarray 
)
private

Wall boundary condition.

Definition at line 405 of file LinearSWE.cpp.

References Nektar::SolverUtils::EquationSystem::GetPhys_Offset(), Nektar::SolverUtils::EquationSystem::GetTraceTotPoints(), Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_spacedim, Nektar::SolverUtils::EquationSystem::m_traceNormals, npts, Vmath::Smul(), Vmath::Vcopy(), and Vmath::Vvtvp().

409  {
410  int i;
411  int nTracePts = GetTraceTotPoints();
412  int nvariables = physarray.num_elements();
413 
414  // get physical values of the forward trace
415  Array<OneD, Array<OneD, NekDouble> > Fwd(nvariables);
416  for (i = 0; i < nvariables; ++i)
417  {
418  Fwd[i] = Array<OneD, NekDouble>(nTracePts);
419  m_fields[i]->ExtractTracePhys(physarray[i], Fwd[i]);
420  }
421 
422  // Adjust the physical values of the trace to take
423  // user defined boundaries into account
424  int e, id1, id2, npts;
425 
426  for (e = 0; e < m_fields[0]->GetBndCondExpansions()[bcRegion]
427  ->GetExpSize(); ++e)
428  {
429  npts = m_fields[0]->GetBndCondExpansions()[bcRegion]->
430  GetExp(e)->GetTotPoints();
431  id1 = m_fields[0]->GetBndCondExpansions()[bcRegion]->
432  GetPhys_Offset(e);
433  id2 = m_fields[0]->GetTrace()->GetPhys_Offset(
434  m_fields[0]->GetTraceMap()->
435  GetBndCondCoeffsToGlobalCoeffsMap(cnt+e));
436 
437  // For 2D/3D, define: v* = v - 2(v.n)n
438  Array<OneD, NekDouble> tmp(npts, 0.0);
439 
440  // Calculate (v.n)
441  for (i = 0; i < m_spacedim; ++i)
442  {
443  Vmath::Vvtvp(npts,
444  &Fwd[1+i][id2], 1,
445  &m_traceNormals[i][id2], 1,
446  &tmp[0], 1,
447  &tmp[0], 1);
448  }
449 
450  // Calculate 2.0(v.n)
451  Vmath::Smul(npts, -2.0, &tmp[0], 1, &tmp[0], 1);
452 
453  // Calculate v* = v - 2.0(v.n)n
454  for (i = 0; i < m_spacedim; ++i)
455  {
456  Vmath::Vvtvp(npts,
457  &tmp[0], 1,
458  &m_traceNormals[i][id2], 1,
459  &Fwd[1+i][id2], 1,
460  &Fwd[1+i][id2], 1);
461  }
462 
463  // copy boundary adjusted values into the boundary expansion
464  for (i = 0; i < nvariables; ++i)
465  {
466  Vmath::Vcopy(npts, &Fwd[i][id2], 1,
467  &(m_fields[i]->GetBndCondExpansions()[bcRegion]->
468  UpdatePhys())[id1], 1);
469  }
470  }
471  }
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:428
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
Array holding trace normals for DG simulations in the forwards direction.
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
static std::string npts
Definition: InputFld.cpp:43
int m_spacedim
Spatial dimension (>= expansion dim).
SOLVER_UTILS_EXPORT int GetTraceTotPoints()
SOLVER_UTILS_EXPORT int GetPhys_Offset(int n)
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1038
void Nektar::LinearSWE::WallBoundary2D ( int  bcRegion,
int  cnt,
Array< OneD, Array< OneD, NekDouble > > &  physarray 
)
private

Definition at line 474 of file LinearSWE.cpp.

References ASSERTL0, Nektar::SolverUtils::EquationSystem::GetTraceTotPoints(), Nektar::SolverUtils::EquationSystem::m_expdim, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_traceNormals, Vmath::Neg(), npts, Vmath::Vcopy(), Vmath::Vmul(), Vmath::Vvtvm(), and Vmath::Vvtvp().

Referenced by SetBoundaryConditions().

475  {
476 
477  int i;
478  int nTraceNumPoints = GetTraceTotPoints();
479  int nvariables = physarray.num_elements();
480 
481  // get physical values of the forward trace
482  Array<OneD, Array<OneD, NekDouble> > Fwd(nvariables);
483  for (i = 0; i < nvariables; ++i)
484  {
485  Fwd[i] = Array<OneD, NekDouble>(nTraceNumPoints);
486  m_fields[i]->ExtractTracePhys(physarray[i],Fwd[i]);
487  }
488 
489  // Adjust the physical values of the trace to take
490  // user defined boundaries into account
491  int e, id1, id2, npts;
492 
493  for(e = 0; e < m_fields[0]->GetBndCondExpansions()[bcRegion]->GetExpSize(); ++e)
494  {
495  npts = m_fields[0]->GetBndCondExpansions()[bcRegion]->GetExp(e)->GetNumPoints(0);
496  id1 = m_fields[0]->GetBndCondExpansions()[bcRegion]->GetPhys_Offset(e) ;
497  id2 = m_fields[0]->GetTrace()->GetPhys_Offset(m_fields[0]->GetTraceMap()->GetBndCondCoeffsToGlobalCoeffsMap(cnt+e));
498 
499  switch(m_expdim)
500  {
501  case 1:
502  {
503  // negate the forward flux
504  Vmath::Neg(npts,&Fwd[1][id2],1);
505  }
506  break;
507  case 2:
508  {
509  Array<OneD, NekDouble> tmp_n(npts);
510  Array<OneD, NekDouble> tmp_t(npts);
511 
512  Vmath::Vmul(npts,&Fwd[1][id2],1,&m_traceNormals[0][id2],1,&tmp_n[0],1);
513  Vmath::Vvtvp(npts,&Fwd[2][id2],1,&m_traceNormals[1][id2],1,&tmp_n[0],1,&tmp_n[0],1);
514 
515  Vmath::Vmul(npts,&Fwd[1][id2],1,&m_traceNormals[1][id2],1,&tmp_t[0],1);
516  Vmath::Vvtvm(npts,&Fwd[2][id2],1,&m_traceNormals[0][id2],1,&tmp_t[0],1,&tmp_t[0],1);
517 
518  // negate the normal flux
519  Vmath::Neg(npts,tmp_n,1);
520 
521  // rotate back to Cartesian
522  Vmath::Vmul(npts,&tmp_t[0],1,&m_traceNormals[1][id2],1,&Fwd[1][id2],1);
523  Vmath::Vvtvm(npts,&tmp_n[0],1,&m_traceNormals[0][id2],1,&Fwd[1][id2],1,&Fwd[1][id2],1);
524 
525  Vmath::Vmul(npts,&tmp_t[0],1,&m_traceNormals[0][id2],1,&Fwd[2][id2],1);
526  Vmath::Vvtvp(npts,&tmp_n[0],1,&m_traceNormals[1][id2],1,&Fwd[2][id2],1,&Fwd[2][id2],1);
527  }
528  break;
529  case 3:
530  ASSERTL0(false,"3D not implemented for Shallow Water Equations");
531  break;
532  default:
533  ASSERTL0(false,"Illegal expansion dimension");
534  }
535 
536 
537 
538  // copy boundary adjusted values into the boundary expansion
539  for (i = 0; i < nvariables; ++i)
540  {
541  Vmath::Vcopy(npts,&Fwd[i][id2], 1,&(m_fields[i]->GetBndCondExpansions()[bcRegion]->UpdatePhys())[id1],1);
542  }
543  }
544  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
int m_expdim
Expansion dimension.
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:428
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
Array holding trace normals for DG simulations in the forwards direction.
static std::string npts
Definition: InputFld.cpp:43
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:382
SOLVER_UTILS_EXPORT int GetTraceTotPoints()
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
void Vvtvm(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvm (vector times vector plus vector): z = w*x - y
Definition: Vmath.cpp:451
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1038
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169

Friends And Related Function Documentation

friend class MemoryManager< LinearSWE >
friend

Definition at line 53 of file LinearSWE.h.

Member Data Documentation

string Nektar::LinearSWE::className
static
Initial value:
=
"LinearSWE", LinearSWE::create,
"Linear shallow water equation in primitive variables.")

Name of class.

Definition at line 64 of file LinearSWE.h.

Array<OneD, NekDouble> Nektar::LinearSWE::m_dBwd
protected

Definition at line 76 of file LinearSWE.h.

Referenced by GetDepthBwd(), and v_InitObject().

Array<OneD, NekDouble> Nektar::LinearSWE::m_dFwd
protected

Still water depth traces.

Definition at line 75 of file LinearSWE.h.

Referenced by GetDepthFwd(), and v_InitObject().