Nektar++
Public Member Functions | Public Attributes | Protected Member Functions | Protected Attributes | Private Attributes | List of all members
Nektar::MultiRegions::ExpListHomogeneous2D Class Reference

Abstraction of a two-dimensional multi-elemental expansion which is merely a collection of local expansions. More...

#include <ExpListHomogeneous2D.h>

Inheritance diagram for Nektar::MultiRegions::ExpListHomogeneous2D:
Inheritance graph
[legend]
Collaboration diagram for Nektar::MultiRegions::ExpListHomogeneous2D:
Collaboration graph
[legend]

Public Member Functions

 ExpListHomogeneous2D ()
 Default constructor. More...
 
 ExpListHomogeneous2D (const LibUtilities::SessionReaderSharedPtr &pSession, const LibUtilities::BasisKey &HomoBasis_y, const LibUtilities::BasisKey &HomoBasis_z, const NekDouble ly, const NekDouble lz, const bool useFFT, const bool dealiasing)
 
 ExpListHomogeneous2D (const ExpListHomogeneous2D &In)
 Copy constructor. More...
 
virtual ~ExpListHomogeneous2D ()
 Destructor. More...
 
void Homogeneous2DTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool IsForwards, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
 
void HomogeneousFwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
 
void HomogeneousBwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
 
void DealiasedProd (const Array< OneD, NekDouble > &inarray1, const Array< OneD, NekDouble > &inarray2, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 
void SetPaddingBase (void)
 
void PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2)
 
void PhysDeriv (Direction edir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d)
 
- Public Member Functions inherited from Nektar::MultiRegions::ExpList
 ExpList ()
 The default constructor. More...
 
 ExpList (const LibUtilities::SessionReaderSharedPtr &pSession)
 The default constructor. More...
 
 ExpList (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 The default constructor. More...
 
 ExpList (const ExpList &in, const bool DeclareCoeffPhysArrays=true)
 The copy constructor. More...
 
virtual ~ExpList ()
 The default destructor. More...
 
int GetNcoeffs (void) const
 Returns the total number of local degrees of freedom $N_{\mathrm{eof}}=\sum_{e=1}^{{N_{\mathrm{el}}}}N^{e}_m$. More...
 
int GetNcoeffs (const int eid) const
 Returns the total number of local degrees of freedom for element eid. More...
 
ExpansionType GetExpType (void)
 Returns the type of the expansion. More...
 
void SetExpType (ExpansionType Type)
 Returns the type of the expansion. More...
 
int EvalBasisNumModesMax (void) const
 Evaulates the maximum number of modes in the elemental basis order over all elements. More...
 
const Array< OneD, int > EvalBasisNumModesMaxPerExp (void) const
 Returns the vector of the number of modes in the elemental basis order over all elements. More...
 
int GetTotPoints (void) const
 Returns the total number of quadrature points m_npoints $=Q_{\mathrm{tot}}$. More...
 
int GetTotPoints (const int eid) const
 Returns the total number of quadrature points for eid's element $=Q_{\mathrm{tot}}$. More...
 
int GetNpoints (void) const
 Returns the total number of quadrature points m_npoints $=Q_{\mathrm{tot}}$. More...
 
int Get1DScaledTotPoints (const NekDouble scale) const
 Returns the total number of qudature points scaled by the factor scale on each 1D direction. More...
 
void SetWaveSpace (const bool wavespace)
 Sets the wave space to the one of the possible configuration true or false. More...
 
void SetModifiedBasis (const bool modbasis)
 Set Modified Basis for the stability analysis. More...
 
void SetPhys (int i, NekDouble val)
 Set the i th value of m_phys to value val. More...
 
bool GetWaveSpace (void) const
 This function returns the third direction expansion condition, which can be in wave space (coefficient) or not It is stored in the variable m_WaveSpace. More...
 
void SetPhys (const Array< OneD, const NekDouble > &inarray)
 Fills the array m_phys. More...
 
void SetPhysArray (Array< OneD, NekDouble > &inarray)
 Sets the array m_phys. More...
 
void SetPhysState (const bool physState)
 This function manually sets whether the array of physical values $\boldsymbol{u}_l$ (implemented as m_phys) is filled or not. More...
 
bool GetPhysState (void) const
 This function indicates whether the array of physical values $\boldsymbol{u}_l$ (implemented as m_phys) is filled or not. More...
 
NekDouble PhysIntegral (void)
 This function integrates a function $f(\boldsymbol{x})$ over the domain consisting of all the elements of the expansion. More...
 
NekDouble PhysIntegral (const Array< OneD, const NekDouble > &inarray)
 This function integrates a function $f(\boldsymbol{x})$ over the domain consisting of all the elements of the expansion. More...
 
void IProductWRTBase_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function calculates the inner product of a function $f(\boldsymbol{x})$ with respect to all {local} expansion modes $\phi_n^e(\boldsymbol{x})$. More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 
void IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function calculates the inner product of a function $f(\boldsymbol{x})$ with respect to the derivative (in direction. More...
 
void IProductWRTDerivBase (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, NekDouble > &outarray)
 This function calculates the inner product of a function $f(\boldsymbol{x})$ with respect to the derivative (in direction. More...
 
void FwdTrans_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function elementally evaluates the forward transformation of a function $u(\boldsymbol{x})$ onto the global spectral/hp expansion. More...
 
void FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 
void MultiplyByElmtInvMass (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function elementally mulplies the coefficient space of Sin my the elemental inverse of the mass matrix. More...
 
void MultiplyByInvMassMatrix (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 
void SmoothField (Array< OneD, NekDouble > &field)
 Smooth a field across elements. More...
 
void HelmSolve (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const FlagList &flags, const StdRegions::ConstFactorMap &factors, const StdRegions::VarCoeffMap &varcoeff=StdRegions::NullVarCoeffMap, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
 Solve helmholtz problem. More...
 
void LinearAdvectionDiffusionReactionSolve (const Array< OneD, Array< OneD, NekDouble > > &velocity, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const NekDouble lambda, CoeffState coeffstate=eLocal, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
 Solve Advection Diffusion Reaction. More...
 
void LinearAdvectionReactionSolve (const Array< OneD, Array< OneD, NekDouble > > &velocity, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const NekDouble lambda, CoeffState coeffstate=eLocal, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
 Solve Advection Diffusion Reaction. More...
 
void FwdTrans_BndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void BwdTrans_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function elementally evaluates the backward transformation of the global spectral/hp element expansion. More...
 
void BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 
void GetCoords (Array< OneD, NekDouble > &coord_0, Array< OneD, NekDouble > &coord_1=NullNekDouble1DArray, Array< OneD, NekDouble > &coord_2=NullNekDouble1DArray)
 This function calculates the coordinates of all the elemental quadrature points $\boldsymbol{x}_i$. More...
 
void HomogeneousFwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
 
void HomogeneousBwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
 
void DealiasedProd (const Array< OneD, NekDouble > &inarray1, const Array< OneD, NekDouble > &inarray2, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 
void GetBCValues (Array< OneD, NekDouble > &BndVals, const Array< OneD, NekDouble > &TotField, int BndID)
 
void NormVectorIProductWRTBase (Array< OneD, const NekDouble > &V1, Array< OneD, const NekDouble > &V2, Array< OneD, NekDouble > &outarray, int BndID)
 
void ApplyGeomInfo ()
 Apply geometry information to each expansion. More...
 
void Reset ()
 Reset geometry information and reset matrices. More...
 
void WriteTecplotHeader (std::ostream &outfile, std::string var="")
 
void WriteTecplotZone (std::ostream &outfile, int expansion=-1)
 
void WriteTecplotField (std::ostream &outfile, int expansion=-1)
 
void WriteTecplotConnectivity (std::ostream &outfile, int expansion=-1)
 
void WriteVtkHeader (std::ostream &outfile)
 
void WriteVtkFooter (std::ostream &outfile)
 
void WriteVtkPieceHeader (std::ostream &outfile, int expansion, int istrip=0)
 
void WriteVtkPieceFooter (std::ostream &outfile, int expansion)
 
void WriteVtkPieceData (std::ostream &outfile, int expansion, std::string var="v")
 
int GetCoordim (int eid)
 This function returns the dimension of the coordinates of the element eid. More...
 
void SetCoeff (int i, NekDouble val)
 Set the i th coefficiient in m_coeffs to value val. More...
 
void SetCoeffs (int i, NekDouble val)
 Set the i th coefficiient in m_coeffs to value val. More...
 
void SetCoeffsArray (Array< OneD, NekDouble > &inarray)
 Set the m_coeffs array to inarray. More...
 
const Array< OneD, const NekDouble > & GetCoeffs () const
 This function returns (a reference to) the array $\boldsymbol{\hat{u}}_l$ (implemented as m_coeffs) containing all local expansion coefficients. More...
 
void ImposeDirichletConditions (Array< OneD, NekDouble > &outarray)
 Impose Dirichlet Boundary Conditions onto Array. More...
 
void FillBndCondFromField (void)
 Fill Bnd Condition expansion from the values stored in expansion. More...
 
void LocalToGlobal (void)
 Put the coefficients into global ordering using m_coeffs. More...
 
void GlobalToLocal (void)
 Put the coefficients into local ordering and place in m_coeffs. More...
 
NekDouble GetCoeff (int i)
 Get the i th value (coefficient) of m_coeffs. More...
 
NekDouble GetCoeffs (int i)
 Get the i th value (coefficient) of m_coeffs. More...
 
const Array< OneD, const NekDouble > & GetPhys () const
 This function returns (a reference to) the array $\boldsymbol{u}_l$ (implemented as m_phys) containing the function $u^{\delta}(\boldsymbol{x})$ evaluated at the quadrature points. More...
 
NekDouble Linf (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &soln=NullNekDouble1DArray)
 This function calculates the $L_\infty$ error of the global spectral/hp element approximation. More...
 
NekDouble L2 (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &soln=NullNekDouble1DArray)
 This function calculates the $L_2$ error with respect to soln of the global spectral/hp element approximation. More...
 
NekDouble H1 (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &soln=NullNekDouble1DArray)
 Calculates the $H^1$ error of the global spectral/hp element approximation. More...
 
NekDouble Integral (const Array< OneD, const NekDouble > &inarray)
 
Array< OneD, const NekDoubleHomogeneousEnergy (void)
 This function calculates the energy associated with each one of the modesof a 3D homogeneous nD expansion. More...
 
void SetHomo1DSpecVanVisc (Array< OneD, NekDouble > visc)
 This function sets the Spectral Vanishing Viscosity in homogeneous1D expansion. More...
 
Array< OneD, const unsigned int > GetZIDs (void)
 This function returns a vector containing the wave numbers in z-direction associated with the 3D homogenous expansion. Required if a parellelisation is applied in the Fourier direction. More...
 
LibUtilities::TranspositionSharedPtr GetTransposition (void)
 This function returns the transposition class associaed with the homogeneous expansion. More...
 
NekDouble GetHomoLen (void)
 This function returns the Width of homogeneous direction associaed with the homogeneous expansion. More...
 
Array< OneD, const unsigned int > GetYIDs (void)
 This function returns a vector containing the wave numbers in y-direction associated with the 3D homogenous expansion. Required if a parellelisation is applied in the Fourier direction. More...
 
void PhysInterp1DScaled (const NekDouble scale, const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function interpolates the physical space points in inarray to outarray using the same points defined in the expansion but where the number of points are rescaled by 1DScale. More...
 
void PhysGalerkinProjection1DScaled (const NekDouble scale, const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function Galerkin projects the physical space points in inarray to outarray where inarray is assumed to be defined in the expansion but where the number of points are rescaled by 1DScale. More...
 
int GetExpSize (void)
 This function returns the number of elements in the expansion. More...
 
int GetNumElmts (void)
 This function returns the number of elements in the expansion which may be different for a homogeoenous extended expansionp. More...
 
const boost::shared_ptr< LocalRegions::ExpansionVectorGetExp () const
 This function returns the vector of elements in the expansion. More...
 
LocalRegions::ExpansionSharedPtrGetExp (int n) const
 This function returns (a shared pointer to) the local elemental expansion of the $n^{\mathrm{th}}$ element. More...
 
LocalRegions::ExpansionSharedPtrGetExp (const Array< OneD, const NekDouble > &gloCoord)
 This function returns (a shared pointer to) the local elemental expansion containing the arbitrary point given by gloCoord. More...
 
int GetExpIndex (const Array< OneD, const NekDouble > &gloCoord, NekDouble tol=0.0, bool returnNearestElmt=false)
 
int GetExpIndex (const Array< OneD, const NekDouble > &gloCoords, Array< OneD, NekDouble > &locCoords, NekDouble tol=0.0, bool returnNearestElmt=false)
 
int GetCoeff_Offset (int n) const
 Get the start offset position for a global list of m_coeffs correspoinding to element n. More...
 
int GetPhys_Offset (int n) const
 Get the start offset position for a global list of m_phys correspoinding to element n. More...
 
int GetOffset_Elmt_Id (int n) const
 Get the element id associated with the n th consecutive block of data in m_phys and m_coeffs. More...
 
Array< OneD, NekDouble > & UpdateCoeffs ()
 This function returns (a reference to) the array $\boldsymbol{\hat{u}}_l$ (implemented as m_coeffs) containing all local expansion coefficients. More...
 
Array< OneD, NekDouble > & UpdatePhys ()
 This function returns (a reference to) the array $\boldsymbol{u}_l$ (implemented as m_phys) containing the function $u^{\delta}(\boldsymbol{x})$ evaluated at the quadrature points. More...
 
void PhysDeriv (Direction edir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d)
 
void PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 This function discretely evaluates the derivative of a function $f(\boldsymbol{x})$ on the domain consisting of all elements of the expansion. More...
 
void PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d)
 
const Array< OneD, const boost::shared_ptr< ExpList > > & GetBndCondExpansions ()
 
boost::shared_ptr< ExpList > & UpdateBndCondExpansion (int i)
 
void Upwind (const Array< OneD, const Array< OneD, NekDouble > > &Vec, const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &Upwind)
 
void Upwind (const Array< OneD, const NekDouble > &Vn, const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &Upwind)
 
boost::shared_ptr< ExpList > & GetTrace ()
 
boost::shared_ptr< AssemblyMapDG > & GetTraceMap (void)
 
const Array< OneD, const int > & GetTraceBndMap (void)
 
void GetNormals (Array< OneD, Array< OneD, NekDouble > > &normals)
 
void AddTraceIntegral (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void AddTraceIntegral (const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
void AddFwdBwdTraceIntegral (const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &outarray)
 
void GetFwdBwdTracePhys (Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd)
 
void GetFwdBwdTracePhys (const Array< OneD, const NekDouble > &field, Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd)
 
void ExtractTracePhys (Array< OneD, NekDouble > &outarray)
 
void ExtractTracePhys (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
const Array< OneD, const SpatialDomains::BoundaryConditionShPtr > & GetBndConditions ()
 
Array< OneD, SpatialDomains::BoundaryConditionShPtr > & UpdateBndConditions ()
 
void EvaluateBoundaryConditions (const NekDouble time=0.0, const std::string varName="", const NekDouble=NekConstants::kNekUnsetDouble, const NekDouble=NekConstants::kNekUnsetDouble)
 
void GeneralMatrixOp (const GlobalMatrixKey &gkey, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 This function calculates the result of the multiplication of a matrix of type specified by mkey with a vector given by inarray. More...
 
void GeneralMatrixOp_IterPerExp (const GlobalMatrixKey &gkey, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void SetUpPhysNormals ()
 
void GetBoundaryToElmtMap (Array< OneD, int > &ElmtID, Array< OneD, int > &EdgeID)
 
void GeneralGetFieldDefinitions (std::vector< LibUtilities::FieldDefinitionsSharedPtr > &fielddef, int NumHomoDir=0, int NumHomoStrip=1, Array< OneD, LibUtilities::BasisSharedPtr > &HomoBasis=LibUtilities::NullBasisSharedPtr1DArray, std::vector< NekDouble > &HomoLen=LibUtilities::NullNekDoubleVector, std::vector< unsigned int > &HomoZIDs=LibUtilities::NullUnsignedIntVector, std::vector< unsigned int > &HomoYIDs=LibUtilities::NullUnsignedIntVector)
 
const NekOptimize::GlobalOptParamSharedPtrGetGlobalOptParam (void)
 
map< int, RobinBCInfoSharedPtrGetRobinBCInfo ()
 
void GetPeriodicEntities (PeriodicMap &periodicVerts, PeriodicMap &periodicEdges, PeriodicMap &periodicFaces=NullPeriodicMap)
 
std::vector< LibUtilities::FieldDefinitionsSharedPtrGetFieldDefinitions ()
 
void GetFieldDefinitions (std::vector< LibUtilities::FieldDefinitionsSharedPtr > &fielddef)
 
void AppendFieldData (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata)
 Append the element data listed in elements fielddef->m_ElementIDs onto fielddata. More...
 
void AppendFieldData (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, Array< OneD, NekDouble > &coeffs)
 Append the data in coeffs listed in elements fielddef->m_ElementIDs onto fielddata. More...
 
void ExtractElmtDataToCoeffs (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, std::string &field, Array< OneD, NekDouble > &coeffs)
 Extract the data in fielddata into the coeffs using the basic ExpList Elemental expansions rather than planes in homogeneous case. More...
 
void ExtractCoeffsToCoeffs (const boost::shared_ptr< ExpList > &fromExpList, const Array< OneD, const NekDouble > &fromCoeffs, Array< OneD, NekDouble > &toCoeffs)
 Extract the data from fromField using fromExpList the coeffs using the basic ExpList Elemental expansions rather than planes in homogeneous case. More...
 
void ExtractDataToCoeffs (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, std::string &field, Array< OneD, NekDouble > &coeffs)
 Extract the data in fielddata into the coeffs. More...
 
boost::shared_ptr< ExpListGetSharedThisPtr ()
 Returns a shared pointer to the current object. More...
 
boost::shared_ptr< LibUtilities::SessionReaderGetSession ()
 Returns the session object. More...
 
boost::shared_ptr< LibUtilities::CommGetComm ()
 Returns the comm object. More...
 
SpatialDomains::MeshGraphSharedPtr GetGraph ()
 
LibUtilities::BasisSharedPtr GetHomogeneousBasis (void)
 
boost::shared_ptr< ExpList > & GetPlane (int n)
 
void CreateCollections (Collections::ImplementationType ImpType=Collections::eNoImpType)
 Construct collections of elements containing a single element type and polynomial order from the list of expansions. More...
 

Public Attributes

bool m_useFFT
 FFT variables. More...
 
LibUtilities::NektarFFTSharedPtr m_FFT_y
 
LibUtilities::NektarFFTSharedPtr m_FFT_z
 
Array< OneD, NekDoublem_tmpIN
 
Array< OneD, NekDoublem_tmpOUT
 
LibUtilities::TranspositionSharedPtr m_transposition
 
LibUtilities::CommSharedPtr m_Ycomm
 
LibUtilities::CommSharedPtr m_Zcomm
 
- Public Attributes inherited from Nektar::MultiRegions::ExpList
ExpansionType m_expType
 

Protected Member Functions

DNekBlkMatSharedPtr GenHomogeneous2DBlockMatrix (Homogeneous2DMatType mattype, CoeffState coeffstate=eLocal) const
 
DNekBlkMatSharedPtr GetHomogeneous2DBlockMatrix (Homogeneous2DMatType mattype, CoeffState coeffstate=eLocal) const
 
virtual int v_GetNumElmts (void)
 
virtual void v_FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate)
 
virtual void v_FwdTrans_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate)
 
virtual void v_BwdTrans_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate)
 
virtual void v_IProductWRTBase_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual std::vector< LibUtilities::FieldDefinitionsSharedPtrv_GetFieldDefinitions (void)
 
virtual void v_GetFieldDefinitions (std::vector< LibUtilities::FieldDefinitionsSharedPtr > &fielddef)
 
virtual void v_AppendFieldData (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata)
 
virtual void v_AppendFieldData (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, Array< OneD, NekDouble > &coeffs)
 
virtual void v_ExtractDataToCoeffs (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, std::string &field, Array< OneD, NekDouble > &coeffs)
 Extract data from raw field data into expansion list. More...
 
virtual void v_HomogeneousFwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
 
virtual void v_HomogeneousBwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
 
virtual void v_DealiasedProd (const Array< OneD, NekDouble > &inarray1, const Array< OneD, NekDouble > &inarray2, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 
virtual void v_PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2)
 
virtual void v_PhysDeriv (Direction edir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d)
 
- Protected Member Functions inherited from Nektar::MultiRegions::ExpList
boost::shared_ptr< DNekMatGenGlobalMatrixFull (const GlobalLinSysKey &mkey, const boost::shared_ptr< AssemblyMapCG > &locToGloMap)
 
const DNekScalBlkMatSharedPtr GenBlockMatrix (const GlobalMatrixKey &gkey)
 This function assembles the block diagonal matrix of local matrices of the type mtype. More...
 
const DNekScalBlkMatSharedPtrGetBlockMatrix (const GlobalMatrixKey &gkey)
 
void MultiplyByBlockMatrix (const GlobalMatrixKey &gkey, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
boost::shared_ptr< GlobalMatrixGenGlobalMatrix (const GlobalMatrixKey &mkey, const boost::shared_ptr< AssemblyMapCG > &locToGloMap)
 Generates a global matrix from the given key and map. More...
 
void GlobalEigenSystem (const boost::shared_ptr< DNekMat > &Gmat, Array< OneD, NekDouble > &EigValsReal, Array< OneD, NekDouble > &EigValsImag, Array< OneD, NekDouble > &EigVecs=NullNekDouble1DArray)
 
boost::shared_ptr< GlobalLinSysGenGlobalLinSys (const GlobalLinSysKey &mkey, const boost::shared_ptr< AssemblyMapCG > &locToGloMap)
 This operation constructs the global linear system of type mkey. More...
 
boost::shared_ptr< GlobalLinSysGenGlobalBndLinSys (const GlobalLinSysKey &mkey, const AssemblyMapSharedPtr &locToGloMap)
 Generate a GlobalLinSys from information provided by the key "mkey" and the mapping provided in LocToGloBaseMap. More...
 
void ReadGlobalOptimizationParameters ()
 
virtual const Array< OneD, const boost::shared_ptr< ExpList > > & v_GetBndCondExpansions (void)
 
virtual boost::shared_ptr< ExpList > & v_UpdateBndCondExpansion (int i)
 
virtual void v_Upwind (const Array< OneD, const Array< OneD, NekDouble > > &Vec, const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &Upwind)
 
virtual void v_Upwind (const Array< OneD, const NekDouble > &Vn, const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &Upwind)
 
virtual boost::shared_ptr< ExpList > & v_GetTrace ()
 
virtual boost::shared_ptr< AssemblyMapDG > & v_GetTraceMap ()
 
virtual const Array< OneD, const int > & v_GetTraceBndMap ()
 
virtual void v_GetNormals (Array< OneD, Array< OneD, NekDouble > > &normals)
 
virtual void v_AddTraceIntegral (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddTraceIntegral (const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddFwdBwdTraceIntegral (const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &outarray)
 
virtual void v_GetFwdBwdTracePhys (Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd)
 
virtual void v_GetFwdBwdTracePhys (const Array< OneD, const NekDouble > &field, Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd)
 
virtual void v_ExtractTracePhys (Array< OneD, NekDouble > &outarray)
 
virtual void v_ExtractTracePhys (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_MultiplyByInvMassMatrix (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate)
 
virtual void v_HelmSolve (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const FlagList &flags, const StdRegions::ConstFactorMap &factors, const StdRegions::VarCoeffMap &varcoeff, const Array< OneD, const NekDouble > &dirForcing)
 
virtual void v_LinearAdvectionDiffusionReactionSolve (const Array< OneD, Array< OneD, NekDouble > > &velocity, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const NekDouble lambda, CoeffState coeffstate=eLocal, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
 
virtual void v_LinearAdvectionReactionSolve (const Array< OneD, Array< OneD, NekDouble > > &velocity, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const NekDouble lambda, CoeffState coeffstate=eLocal, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
 
virtual void v_ImposeDirichletConditions (Array< OneD, NekDouble > &outarray)
 
virtual void v_FillBndCondFromField ()
 
virtual void v_Reset ()
 Reset geometry information, metrics, matrix managers and geometry information. More...
 
virtual void v_LocalToGlobal (void)
 
virtual void v_GlobalToLocal (void)
 
virtual void v_SmoothField (Array< OneD, NekDouble > &field)
 
virtual void v_GeneralMatrixOp (const GlobalMatrixKey &gkey, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate)
 
virtual void v_GetCoords (Array< OneD, NekDouble > &coord_0, Array< OneD, NekDouble > &coord_1, Array< OneD, NekDouble > &coord_2=NullNekDouble1DArray)
 
virtual void v_PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d)
 
virtual void v_GetBCValues (Array< OneD, NekDouble > &BndVals, const Array< OneD, NekDouble > &TotField, int BndID)
 
virtual void v_NormVectorIProductWRTBase (Array< OneD, const NekDouble > &V1, Array< OneD, const NekDouble > &V2, Array< OneD, NekDouble > &outarray, int BndID)
 
virtual void v_SetUpPhysNormals ()
 
virtual void v_GetBoundaryToElmtMap (Array< OneD, int > &ElmtID, Array< OneD, int > &EdgeID)
 
virtual void v_ReadGlobalOptimizationParameters ()
 
virtual void v_ExtractCoeffsToCoeffs (const boost::shared_ptr< ExpList > &fromExpList, const Array< OneD, const NekDouble > &fromCoeffs, Array< OneD, NekDouble > &toCoeffs)
 
virtual void v_WriteTecplotHeader (std::ostream &outfile, std::string var="")
 
virtual void v_WriteTecplotZone (std::ostream &outfile, int expansion)
 
virtual void v_WriteTecplotField (std::ostream &outfile, int expansion)
 
virtual void v_WriteTecplotConnectivity (std::ostream &outfile, int expansion)
 
virtual void v_WriteVtkPieceHeader (std::ostream &outfile, int expansion, int istrip)
 
virtual void v_WriteVtkPieceData (std::ostream &outfile, int expansion, std::string var)
 
virtual NekDouble v_L2 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &soln=NullNekDouble1DArray)
 
virtual NekDouble v_Integral (const Array< OneD, const NekDouble > &inarray)
 
virtual Array< OneD, const NekDoublev_HomogeneousEnergy (void)
 
virtual LibUtilities::TranspositionSharedPtr v_GetTransposition (void)
 
virtual NekDouble v_GetHomoLen (void)
 
virtual Array< OneD, const unsigned int > v_GetZIDs (void)
 
virtual Array< OneD, const unsigned int > v_GetYIDs (void)
 
virtual void v_PhysInterp1DScaled (const NekDouble scale, const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_PhysGalerkinProjection1DScaled (const NekDouble scale, const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void ExtractFileBCs (const std::string &fileName, const std::string &varName, const boost::shared_ptr< ExpList > locExpList)
 

Protected Attributes

LibUtilities::BasisSharedPtr m_homogeneousBasis_y
 Definition of the total number of degrees of freedom and quadrature points. Sets up the storage for m_coeff and m_phys. More...
 
LibUtilities::BasisSharedPtr m_homogeneousBasis_z
 Base expansion in z direction. More...
 
LibUtilities::BasisSharedPtr m_paddingBasis_y
 Base expansion in y direction. More...
 
LibUtilities::BasisSharedPtr m_paddingBasis_z
 Base expansion in z direction. More...
 
NekDouble m_lhom_y
 Width of homogeneous direction y. More...
 
NekDouble m_lhom_z
 Width of homogeneous direction z. More...
 
Homo2DBlockMatrixMapShPtr m_homogeneous2DBlockMat
 
Array< OneD, ExpListSharedPtrm_lines
 Vector of ExpList, will be filled with ExpList1D. More...
 
int m_ny
 Number of modes = number of poitns in y direction. More...
 
int m_nz
 Number of modes = number of poitns in z direction. More...
 
- Protected Attributes inherited from Nektar::MultiRegions::ExpList
LibUtilities::CommSharedPtr m_comm
 Communicator. More...
 
LibUtilities::SessionReaderSharedPtr m_session
 Session. More...
 
SpatialDomains::MeshGraphSharedPtr m_graph
 Mesh associated with this expansion list. More...
 
int m_ncoeffs
 The total number of local degrees of freedom. m_ncoeffs $=N_{\mathrm{eof}}=\sum_{e=1}^{{N_{\mathrm{el}}}}N^{e}_l$. More...
 
int m_npoints
 
Array< OneD, NekDoublem_coeffs
 Concatenation of all local expansion coefficients. More...
 
Array< OneD, NekDoublem_phys
 The global expansion evaluated at the quadrature points. More...
 
bool m_physState
 The state of the array m_phys. More...
 
boost::shared_ptr< LocalRegions::ExpansionVectorm_exp
 The list of local expansions. More...
 
Collections::CollectionVector m_collections
 
std::vector< int > m_coll_coeff_offset
 Offset of elemental data into the array m_coeffs. More...
 
std::vector< int > m_coll_phys_offset
 Offset of elemental data into the array m_phys. More...
 
Array< OneD, int > m_coeff_offset
 Offset of elemental data into the array m_coeffs. More...
 
Array< OneD, int > m_phys_offset
 Offset of elemental data into the array m_phys. More...
 
Array< OneD, int > m_offset_elmt_id
 Array containing the element id m_offset_elmt_id[n] that the n^th consecutive block of data in m_coeffs and m_phys is associated, i.e. for an array of constant expansion size and single shape elements m_phys[n*m_npoints] is the data related to m_exp[m_offset_elmt_id[n]];. More...
 
NekOptimize::GlobalOptParamSharedPtr m_globalOptParam
 
BlockMatrixMapShPtr m_blockMat
 
bool m_WaveSpace
 

Private Attributes

bool m_dealiasing
 
int m_padsize_y
 
int m_padsize_z
 
DNekMatSharedPtr MatFwdPAD
 
DNekMatSharedPtr MatBwdPAD
 

Additional Inherited Members

- Static Protected Member Functions inherited from Nektar::MultiRegions::ExpList
static SpatialDomains::BoundaryConditionShPtr GetBoundaryCondition (const SpatialDomains::BoundaryConditionCollection &collection, unsigned int index, const std::string &variable)
 

Detailed Description

Abstraction of a two-dimensional multi-elemental expansion which is merely a collection of local expansions.

Definition at line 81 of file ExpListHomogeneous2D.h.

Constructor & Destructor Documentation

Nektar::MultiRegions::ExpListHomogeneous2D::ExpListHomogeneous2D ( )

Default constructor.

Definition at line 47 of file ExpListHomogeneous2D.cpp.

47  :
48  ExpList(),
51  m_lhom_y(1),
52  m_lhom_z(1),
54  {
55  }
ExpList()
The default constructor.
Definition: ExpList.cpp:93
General purpose memory allocation routines with the ability to allocate from thread specific memory p...
static BasisSharedPtr NullBasisSharedPtr
Definition: Basis.h:358
NekDouble m_lhom_z
Width of homogeneous direction z.
LibUtilities::BasisSharedPtr m_homogeneousBasis_z
Base expansion in z direction.
NekDouble m_lhom_y
Width of homogeneous direction y.
LibUtilities::BasisSharedPtr m_homogeneousBasis_y
Definition of the total number of degrees of freedom and quadrature points. Sets up the storage for m...
Nektar::MultiRegions::ExpListHomogeneous2D::ExpListHomogeneous2D ( const LibUtilities::SessionReaderSharedPtr pSession,
const LibUtilities::BasisKey HomoBasis_y,
const LibUtilities::BasisKey HomoBasis_z,
const NekDouble  ly,
const NekDouble  lz,
const bool  useFFT,
const bool  dealiasing 
)

Definition at line 57 of file ExpListHomogeneous2D.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), ASSERTL0, ASSERTL2, Nektar::LibUtilities::BasisManager(), Nektar::LibUtilities::NekFactory< tKey, tBase, >::CreateInstance(), Nektar::LibUtilities::GetNektarFFTFactory(), Nektar::MultiRegions::ExpList::m_comm, m_dealiasing, m_FFT_y, m_FFT_z, m_homogeneousBasis_y, m_homogeneousBasis_z, m_lines, m_ny, m_nz, m_transposition, m_useFFT, m_Ycomm, m_Zcomm, Nektar::LibUtilities::NullBasisKey(), and SetPaddingBase().

63  :
64  ExpList(pSession),
65  m_useFFT(useFFT),
66  m_lhom_y(lhom_y),
67  m_lhom_z(lhom_z),
69  m_dealiasing(dealiasing)
70  {
71  ASSERTL2(HomoBasis_y != LibUtilities::NullBasisKey,
72  "Homogeneous Basis in y direction is a null basis");
73  ASSERTL2(HomoBasis_z != LibUtilities::NullBasisKey,
74  "Homogeneous Basis in z direction is a null basis");
75 
78 
80 
81  m_Ycomm = m_comm->GetColumnComm()->GetRowComm();
82  m_Zcomm = m_comm->GetColumnComm()->GetRowComm();
83 
84  m_ny = m_homogeneousBasis_y->GetNumPoints()/m_Ycomm->GetSize();
85  m_nz = m_homogeneousBasis_z->GetNumPoints()/m_Zcomm->GetSize();
86 
88 
89  if(m_useFFT)
90  {
93  }
94 
95  if(m_dealiasing)
96  {
97  ASSERTL0(m_comm->GetColumnComm()->GetSize() == 1,"Remove dealiasing if you want to run in parallel");
99  }
100  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
LibUtilities::TranspositionSharedPtr m_transposition
ExpList()
The default constructor.
Definition: ExpList.cpp:93
tBaseSharedPtr CreateInstance(tKey idKey BOOST_PP_COMMA_IF(MAX_PARAM) BOOST_PP_ENUM_BINARY_PARAMS(MAX_PARAM, tParam, x))
Create an instance of the class referred to by idKey.
Definition: NekFactory.hpp:162
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
General purpose memory allocation routines with the ability to allocate from thread specific memory p...
LibUtilities::NektarFFTSharedPtr m_FFT_z
NekDouble m_lhom_z
Width of homogeneous direction z.
NektarFFTFactory & GetNektarFFTFactory()
Definition: NektarFFT.cpp:69
Array< OneD, ExpListSharedPtr > m_lines
Vector of ExpList, will be filled with ExpList1D.
BasisManagerT & BasisManager(void)
LibUtilities::BasisSharedPtr m_homogeneousBasis_z
Base expansion in z direction.
NekDouble m_lhom_y
Width of homogeneous direction y.
int m_ny
Number of modes = number of poitns in y direction.
LibUtilities::BasisSharedPtr m_homogeneousBasis_y
Definition of the total number of degrees of freedom and quadrature points. Sets up the storage for m...
int m_nz
Number of modes = number of poitns in z direction.
LibUtilities::CommSharedPtr m_comm
Communicator.
Definition: ExpList.h:877
#define ASSERTL2(condition, msg)
Assert Level 2 – Debugging which is used FULLDEBUG compilation mode. This level assert is designed t...
Definition: ErrorUtil.hpp:213
static const BasisKey NullBasisKey(eNoBasisType, 0, NullPointsKey)
Defines a null basis with no type or points.
LibUtilities::NektarFFTSharedPtr m_FFT_y
Nektar::MultiRegions::ExpListHomogeneous2D::ExpListHomogeneous2D ( const ExpListHomogeneous2D In)

Copy constructor.

Parameters
InExpListHomogeneous2D object to copy.

Definition at line 106 of file ExpListHomogeneous2D.cpp.

References m_lines.

106  :
107  ExpList(In,false),
108  m_useFFT(In.m_useFFT),
109  m_FFT_y(In.m_FFT_y),
110  m_FFT_z(In.m_FFT_z),
111  m_transposition(In.m_transposition),
112  m_Ycomm(In.m_Ycomm),
113  m_Zcomm(In.m_Ycomm),
114  m_homogeneousBasis_y(In.m_homogeneousBasis_y),
115  m_homogeneousBasis_z(In.m_homogeneousBasis_z),
116  m_lhom_y(In.m_lhom_y),
117  m_lhom_z(In.m_lhom_z),
118  m_homogeneous2DBlockMat(In.m_homogeneous2DBlockMat),
119  m_ny(In.m_ny),
120  m_nz(In.m_nz),
121  m_dealiasing(In.m_dealiasing),
122  m_padsize_y(In.m_padsize_y),
123  m_padsize_z(In.m_padsize_z),
124  MatFwdPAD(In.MatFwdPAD),
125  MatBwdPAD(In.MatBwdPAD)
126  {
127  m_lines = Array<OneD, ExpListSharedPtr>(In.m_lines.num_elements());
128  }
LibUtilities::TranspositionSharedPtr m_transposition
ExpList()
The default constructor.
Definition: ExpList.cpp:93
LibUtilities::NektarFFTSharedPtr m_FFT_z
NekDouble m_lhom_z
Width of homogeneous direction z.
Array< OneD, ExpListSharedPtr > m_lines
Vector of ExpList, will be filled with ExpList1D.
LibUtilities::BasisSharedPtr m_homogeneousBasis_z
Base expansion in z direction.
NekDouble m_lhom_y
Width of homogeneous direction y.
int m_ny
Number of modes = number of poitns in y direction.
LibUtilities::BasisSharedPtr m_homogeneousBasis_y
Definition of the total number of degrees of freedom and quadrature points. Sets up the storage for m...
int m_nz
Number of modes = number of poitns in z direction.
LibUtilities::NektarFFTSharedPtr m_FFT_y
Nektar::MultiRegions::ExpListHomogeneous2D::~ExpListHomogeneous2D ( )
virtual

Destructor.

Destructor

Definition at line 133 of file ExpListHomogeneous2D.cpp.

134  {
135  }

Member Function Documentation

void Nektar::MultiRegions::ExpListHomogeneous2D::DealiasedProd ( const Array< OneD, NekDouble > &  inarray1,
const Array< OneD, NekDouble > &  inarray2,
Array< OneD, NekDouble > &  outarray,
CoeffState  coeffstate = eLocal 
)
inline

Definition at line 254 of file ExpListHomogeneous2D.h.

References v_DealiasedProd().

258  {
259  v_DealiasedProd(inarray1,inarray2,outarray,coeffstate);
260  }
virtual void v_DealiasedProd(const Array< OneD, NekDouble > &inarray1, const Array< OneD, NekDouble > &inarray2, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
DNekBlkMatSharedPtr Nektar::MultiRegions::ExpListHomogeneous2D::GenHomogeneous2DBlockMatrix ( Homogeneous2DMatType  mattype,
CoeffState  coeffstate = eLocal 
) const
protected

Definition at line 493 of file ExpListHomogeneous2D.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), Nektar::MultiRegions::eBackwardsCoeffSpaceY1D, Nektar::MultiRegions::eBackwardsCoeffSpaceZ1D, Nektar::MultiRegions::eBackwardsPhysSpaceY1D, Nektar::StdRegions::eBwdTrans, Nektar::eDIAGONAL, Nektar::MultiRegions::eForwardsCoeffSpaceY1D, Nektar::MultiRegions::eForwardsCoeffSpaceZ1D, Nektar::MultiRegions::eForwardsPhysSpaceY1D, Nektar::MultiRegions::eForwardsPhysSpaceZ1D, Nektar::StdRegions::eFwdTrans, m_homogeneousBasis_y, m_homogeneousBasis_z, and m_lines.

Referenced by GetHomogeneous2DBlockMatrix().

494  {
495  int i;
496  int n_exp = 0;
497 
498  DNekMatSharedPtr loc_mat;
499  DNekBlkMatSharedPtr BlkMatrix;
500 
502 
503  int NumPoints = 0;
504  int NumModes = 0;
505  int NumPencils = 0;
506 
507  if((mattype == eForwardsCoeffSpaceY1D) || (mattype == eBackwardsCoeffSpaceY1D)
508  ||(mattype == eForwardsPhysSpaceY1D) || (mattype == eBackwardsPhysSpaceY1D))
509  {
510  Basis = m_homogeneousBasis_y;
511  NumPoints = m_homogeneousBasis_y->GetNumModes();
512  NumModes = m_homogeneousBasis_y->GetNumPoints();
513  NumPencils = m_homogeneousBasis_z->GetNumPoints();
514  }
515  else
516  {
517  Basis = m_homogeneousBasis_z;
518  NumPoints = m_homogeneousBasis_z->GetNumModes();
519  NumModes = m_homogeneousBasis_z->GetNumPoints();
520  NumPencils = m_homogeneousBasis_y->GetNumPoints();
521  }
522 
523  if((mattype == eForwardsCoeffSpaceY1D) || (mattype == eForwardsCoeffSpaceZ1D)
524  ||(mattype == eBackwardsCoeffSpaceY1D)||(mattype == eBackwardsCoeffSpaceZ1D))
525  {
526  n_exp = m_lines[0]->GetNcoeffs();
527  }
528  else
529  {
530  n_exp = m_lines[0]->GetTotPoints(); // will operatore on m_phys
531  }
532 
533  Array<OneD,unsigned int> nrows(n_exp);
534  Array<OneD,unsigned int> ncols(n_exp);
535 
536  if((mattype == eForwardsCoeffSpaceY1D)||(mattype == eForwardsPhysSpaceY1D) ||
537  (mattype == eForwardsCoeffSpaceZ1D)||(mattype == eForwardsPhysSpaceZ1D))
538  {
539  nrows = Array<OneD, unsigned int>(n_exp*NumPencils,NumModes);
540  ncols = Array<OneD, unsigned int>(n_exp*NumPencils,NumPoints);
541  }
542  else
543  {
544  nrows = Array<OneD, unsigned int>(n_exp*NumPencils,NumPoints);
545  ncols = Array<OneD, unsigned int>(n_exp*NumPencils,NumModes);
546  }
547 
548  MatrixStorage blkmatStorage = eDIAGONAL;
549  BlkMatrix = MemoryManager<DNekBlkMat>::AllocateSharedPtr(nrows,ncols,blkmatStorage);
550 
551  StdRegions::StdSegExp StdSeg(Basis->GetBasisKey());
552 
553  if((mattype == eForwardsCoeffSpaceY1D)||(mattype == eForwardsPhysSpaceY1D) ||
554  (mattype == eForwardsCoeffSpaceZ1D)||(mattype == eForwardsPhysSpaceZ1D))
555  {
557  StdSeg.DetShapeType(),
558  StdSeg);
559 
560  loc_mat = StdSeg.GetStdMatrix(matkey);
561  }
562  else
563  {
565  StdSeg.DetShapeType(),
566  StdSeg);
567 
568  loc_mat = StdSeg.GetStdMatrix(matkey);
569  }
570 
571  // set up array of block matrices.
572  for(i = 0; i < (n_exp*NumPencils); ++i)
573  {
574  BlkMatrix->SetBlock(i,i,loc_mat);
575  }
576 
577  return BlkMatrix;
578  }
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
boost::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:70
Array< OneD, ExpListSharedPtr > m_lines
Vector of ExpList, will be filled with ExpList1D.
Class representing a segment element in reference space.
Definition: StdSegExp.h:54
LibUtilities::BasisSharedPtr m_homogeneousBasis_z
Base expansion in z direction.
LibUtilities::BasisSharedPtr m_homogeneousBasis_y
Definition of the total number of degrees of freedom and quadrature points. Sets up the storage for m...
boost::shared_ptr< DNekBlkMat > DNekBlkMatSharedPtr
Definition: NekTypeDefs.hpp:72
boost::shared_ptr< Basis > BasisSharedPtr
DNekBlkMatSharedPtr Nektar::MultiRegions::ExpListHomogeneous2D::GetHomogeneous2DBlockMatrix ( Homogeneous2DMatType  mattype,
CoeffState  coeffstate = eLocal 
) const
protected

Definition at line 478 of file ExpListHomogeneous2D.cpp.

References GenHomogeneous2DBlockMatrix(), Nektar::iterator, and m_homogeneous2DBlockMat.

Referenced by Homogeneous2DTrans().

479  {
480  Homo2DBlockMatrixMap::iterator matrixIter = m_homogeneous2DBlockMat->find(mattype);
481 
482  if(matrixIter == m_homogeneous2DBlockMat->end())
483  {
484  return ((*m_homogeneous2DBlockMat)[mattype] =
485  GenHomogeneous2DBlockMatrix(mattype,coeffstate));
486  }
487  else
488  {
489  return matrixIter->second;
490  }
491  }
DNekBlkMatSharedPtr GenHomogeneous2DBlockMatrix(Homogeneous2DMatType mattype, CoeffState coeffstate=eLocal) const
StandardMatrixTag boost::call_traits< LhsDataType >::const_reference rhs typedef NekMatrix< LhsDataType, StandardMatrixTag >::iterator iterator
void Nektar::MultiRegions::ExpListHomogeneous2D::Homogeneous2DTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
bool  IsForwards,
CoeffState  coeffstate = eLocal,
bool  Shuff = true,
bool  UnShuff = true 
)

Definition at line 355 of file ExpListHomogeneous2D.cpp.

References Nektar::MultiRegions::eBackwardsCoeffSpaceY1D, Nektar::MultiRegions::eBackwardsCoeffSpaceZ1D, Nektar::MultiRegions::eBackwardsPhysSpaceY1D, Nektar::MultiRegions::eBackwardsPhysSpaceZ1D, Nektar::MultiRegions::eForwardsCoeffSpaceY1D, Nektar::MultiRegions::eForwardsCoeffSpaceZ1D, Nektar::MultiRegions::eForwardsPhysSpaceY1D, Nektar::MultiRegions::eForwardsPhysSpaceZ1D, Nektar::eWrapper, Nektar::LibUtilities::eXtoYZ, Nektar::LibUtilities::eYZtoX, Nektar::LibUtilities::eYZtoZY, Nektar::LibUtilities::eZYtoYZ, GetHomogeneous2DBlockMatrix(), m_FFT_y, m_FFT_z, m_lines, Nektar::MultiRegions::ExpList::m_npoints, m_ny, m_nz, m_tmpIN, m_tmpOUT, m_transposition, and m_useFFT.

Referenced by v_HomogeneousBwdTrans(), and v_HomogeneousFwdTrans().

361  {
362  if(m_useFFT)
363  {
364 
365  int n = m_lines.num_elements(); //number of Fourier points in the Fourier directions (x-z grid)
366  int s = inarray.num_elements(); //number of total points = n. of Fourier points * n. of points per line
367  int p = s/n; //number of points per line = n of Fourier transform required
368 
369  Array<OneD, NekDouble> fft_in(s);
370  Array<OneD, NekDouble> fft_out(s);
371 
372  m_transposition->Transpose(inarray,fft_in,false,LibUtilities::eXtoYZ);
373 
374  if(IsForwards)
375  {
376  for(int i=0;i<(p*m_nz);i++)
377  {
378  m_FFT_y->FFTFwdTrans(m_tmpIN = fft_in + i*m_ny, m_tmpOUT = fft_out + i*m_ny);
379  }
380 
381  }
382  else
383  {
384  for(int i=0;i<(p*m_nz);i++)
385  {
386  m_FFT_y->FFTBwdTrans(m_tmpIN = fft_in + i*m_ny, m_tmpOUT = fft_out + i*m_ny);
387  }
388  }
389 
390  m_transposition->Transpose(fft_out,fft_in,false,LibUtilities::eYZtoZY);
391 
392  if(IsForwards)
393  {
394  for(int i=0;i<(p*m_ny);i++)
395  {
396  m_FFT_z->FFTFwdTrans(m_tmpIN = fft_in + i*m_nz, m_tmpOUT = fft_out + i*m_nz);
397  }
398 
399  }
400  else
401  {
402  for(int i=0;i<(p*m_ny);i++)
403  {
404  m_FFT_z->FFTBwdTrans(m_tmpIN = fft_in + i*m_nz, m_tmpOUT = fft_out + i*m_nz);
405  }
406  }
407 
408  //TODO: required ZYtoX routine
409  m_transposition->Transpose(fft_out,fft_in,false,LibUtilities::eZYtoYZ);
410 
411  m_transposition->Transpose(fft_in,outarray,false,LibUtilities::eYZtoX);
412 
413  }
414  else
415  {
416  DNekBlkMatSharedPtr blkmatY;
417  DNekBlkMatSharedPtr blkmatZ;
418 
419  if(inarray.num_elements() == m_npoints) //transform phys space
420  {
421  if(IsForwards)
422  {
425  }
426  else
427  {
430  }
431  }
432  else
433  {
434  if(IsForwards)
435  {
438  }
439  else
440  {
443  }
444  }
445 
446  int nrowsY = blkmatY->GetRows();
447  int ncolsY = blkmatY->GetColumns();
448 
449  Array<OneD, NekDouble> sortedinarrayY(ncolsY);
450  Array<OneD, NekDouble> sortedoutarrayY(nrowsY);
451 
452  int nrowsZ = blkmatZ->GetRows();
453  int ncolsZ = blkmatZ->GetColumns();
454 
455  Array<OneD, NekDouble> sortedinarrayZ(ncolsZ);
456  Array<OneD, NekDouble> sortedoutarrayZ(nrowsZ);
457 
458  NekVector<NekDouble> inY (ncolsY,sortedinarrayY,eWrapper);
459  NekVector<NekDouble> outY(nrowsY,sortedoutarrayY,eWrapper);
460 
461  NekVector<NekDouble> inZ (ncolsZ,sortedinarrayZ,eWrapper);
462  NekVector<NekDouble> outZ(nrowsZ,sortedoutarrayZ,eWrapper);
463 
464  m_transposition->Transpose(inarray,sortedinarrayY,!IsForwards,LibUtilities::eXtoYZ);
465 
466  outY = (*blkmatY)*inY;
467 
468  m_transposition->Transpose(sortedoutarrayY,sortedinarrayZ,false,LibUtilities::eYZtoZY);
469 
470  outZ = (*blkmatZ)*inZ;
471 
472  m_transposition->Transpose(sortedoutarrayZ,sortedoutarrayY,false,LibUtilities::eZYtoYZ);
473 
474  m_transposition->Transpose(sortedoutarrayY,outarray,false,LibUtilities::eYZtoX);
475  }
476  }
LibUtilities::TranspositionSharedPtr m_transposition
LibUtilities::NektarFFTSharedPtr m_FFT_z
Array< OneD, ExpListSharedPtr > m_lines
Vector of ExpList, will be filled with ExpList1D.
int m_ny
Number of modes = number of poitns in y direction.
int m_nz
Number of modes = number of poitns in z direction.
boost::shared_ptr< DNekBlkMat > DNekBlkMatSharedPtr
Definition: NekTypeDefs.hpp:72
LibUtilities::NektarFFTSharedPtr m_FFT_y
DNekBlkMatSharedPtr GetHomogeneous2DBlockMatrix(Homogeneous2DMatType mattype, CoeffState coeffstate=eLocal) const
void Nektar::MultiRegions::ExpListHomogeneous2D::HomogeneousBwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
CoeffState  coeffstate = eLocal,
bool  Shuff = true,
bool  UnShuff = true 
)
inline

Definition at line 245 of file ExpListHomogeneous2D.h.

References v_HomogeneousBwdTrans().

Referenced by v_BwdTrans(), v_BwdTrans_IterPerExp(), v_DealiasedProd(), and v_PhysDeriv().

250  {
251  v_HomogeneousBwdTrans(inarray,outarray,coeffstate,Shuff,UnShuff);
252  }
virtual void v_HomogeneousBwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
void Nektar::MultiRegions::ExpListHomogeneous2D::HomogeneousFwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
CoeffState  coeffstate = eLocal,
bool  Shuff = true,
bool  UnShuff = true 
)
inline

Definition at line 236 of file ExpListHomogeneous2D.h.

References v_HomogeneousFwdTrans().

Referenced by v_DealiasedProd(), v_FwdTrans(), v_FwdTrans_IterPerExp(), Nektar::MultiRegions::ContField3DHomogeneous2D::v_HelmSolve(), Nektar::MultiRegions::DisContField3DHomogeneous2D::v_HelmSolve(), and v_PhysDeriv().

241  {
242  v_HomogeneousFwdTrans(inarray,outarray,coeffstate,Shuff,UnShuff);
243  }
virtual void v_HomogeneousFwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
void Nektar::MultiRegions::ExpListHomogeneous2D::PhysDeriv ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out_d0,
Array< OneD, NekDouble > &  out_d1,
Array< OneD, NekDouble > &  out_d2 
)

Definition at line 892 of file ExpListHomogeneous2D.cpp.

References v_PhysDeriv().

897  {
898  v_PhysDeriv(inarray,out_d0,out_d1,out_d2);
899  }
virtual void v_PhysDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2)
void Nektar::MultiRegions::ExpListHomogeneous2D::PhysDeriv ( Direction  edir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out_d 
)

Definition at line 901 of file ExpListHomogeneous2D.cpp.

References v_PhysDeriv().

904  {
905  //convert int into enum
906  v_PhysDeriv(edir,inarray,out_d);
907  }
virtual void v_PhysDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2)
void Nektar::MultiRegions::ExpListHomogeneous2D::SetPaddingBase ( void  )

Definition at line 909 of file ExpListHomogeneous2D.cpp.

References Nektar::LibUtilities::BasisManager(), Nektar::StdRegions::eBwdTrans, Nektar::LibUtilities::eFourier, Nektar::LibUtilities::eFourierEvenlySpaced, Nektar::StdRegions::eFwdTrans, m_ny, m_nz, m_paddingBasis_y, m_paddingBasis_z, m_padsize_y, m_padsize_z, MatBwdPAD, and MatFwdPAD.

Referenced by ExpListHomogeneous2D().

910  {
911  NekDouble size_y = 1.5*m_ny;
912  NekDouble size_z = 1.5*m_nz;
913  m_padsize_y = int(size_y);
914  m_padsize_z = int(size_z);
915 
918 
921 
924 
925  StdRegions::StdQuadExp StdQuad(m_paddingBasis_y->GetBasisKey(),m_paddingBasis_z->GetBasisKey());
926 
927  StdRegions::StdMatrixKey matkey1(StdRegions::eFwdTrans,StdQuad.DetShapeType(),StdQuad);
928  StdRegions::StdMatrixKey matkey2(StdRegions::eBwdTrans,StdQuad.DetShapeType(),StdQuad);
929 
930  MatFwdPAD = StdQuad.GetStdMatrix(matkey1);
931  MatBwdPAD = StdQuad.GetStdMatrix(matkey2);
932  }
LibUtilities::BasisSharedPtr m_paddingBasis_z
Base expansion in z direction.
Fourier Expansion .
Definition: BasisType.h:52
BasisManagerT & BasisManager(void)
1D Evenly-spaced points using Fourier Fit
Definition: PointsType.h:64
Defines a specification for a set of points.
Definition: Points.h:58
double NekDouble
int m_ny
Number of modes = number of poitns in y direction.
int m_nz
Number of modes = number of poitns in z direction.
LibUtilities::BasisSharedPtr m_paddingBasis_y
Base expansion in y direction.
Describes the specification for a Basis.
Definition: Basis.h:50
void Nektar::MultiRegions::ExpListHomogeneous2D::v_AppendFieldData ( LibUtilities::FieldDefinitionsSharedPtr fielddef,
std::vector< NekDouble > &  fielddata 
)
protectedvirtual

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 639 of file ExpListHomogeneous2D.cpp.

References Nektar::MultiRegions::ExpList::m_coeffs.

640  {
641  v_AppendFieldData(fielddef,fielddata,m_coeffs);
642  }
Array< OneD, NekDouble > m_coeffs
Concatenation of all local expansion coefficients.
Definition: ExpList.h:909
virtual void v_AppendFieldData(LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata)
void Nektar::MultiRegions::ExpListHomogeneous2D::v_AppendFieldData ( LibUtilities::FieldDefinitionsSharedPtr fielddef,
std::vector< NekDouble > &  fielddata,
Array< OneD, NekDouble > &  coeffs 
)
protectedvirtual

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 610 of file ExpListHomogeneous2D.cpp.

References Nektar::MultiRegions::ExpList::m_coeff_offset, m_homogeneousBasis_y, m_homogeneousBasis_z, and m_lines.

611  {
612  int i,k;
613 
614  int NumMod_y = m_homogeneousBasis_y->GetNumModes();
615  int NumMod_z = m_homogeneousBasis_z->GetNumModes();
616 
617  int ncoeffs_per_line = m_lines[0]->GetNcoeffs();
618 
619  // Determine mapping from element ids to location in
620  // expansion list
621  map<int, int> ElmtID_to_ExpID;
622  for(i = 0; i < m_lines[0]->GetExpSize(); ++i)
623  {
624  ElmtID_to_ExpID[(*m_exp)[i]->GetGeom()->GetGlobalID()] = i;
625  }
626 
627  for(i = 0; i < fielddef->m_elementIDs.size(); ++i)
628  {
629  int eid = ElmtID_to_ExpID[fielddef->m_elementIDs[i]];
630  int datalen = (*m_exp)[eid]->GetNcoeffs();
631 
632  for(k = 0; k < (NumMod_y*NumMod_z); ++k)
633  {
634  fielddata.insert(fielddata.end(),&coeffs[m_coeff_offset[eid]+k*ncoeffs_per_line],&coeffs[m_coeff_offset[eid]+k*ncoeffs_per_line]+datalen);
635  }
636  }
637  }
Array< OneD, ExpListSharedPtr > m_lines
Vector of ExpList, will be filled with ExpList1D.
Array< OneD, int > m_coeff_offset
Offset of elemental data into the array m_coeffs.
Definition: ExpList.h:958
LibUtilities::BasisSharedPtr m_homogeneousBasis_z
Base expansion in z direction.
LibUtilities::BasisSharedPtr m_homogeneousBasis_y
Definition of the total number of degrees of freedom and quadrature points. Sets up the storage for m...
void Nektar::MultiRegions::ExpListHomogeneous2D::v_BwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
CoeffState  coeffstate 
)
protectedvirtual

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 286 of file ExpListHomogeneous2D.cpp.

References HomogeneousBwdTrans(), m_lines, and Nektar::MultiRegions::ExpList::m_WaveSpace.

287  {
288  int cnt = 0, cnt1 = 0;
289  Array<OneD, NekDouble> tmparray;
290  int nlines = m_lines.num_elements();
291 
292  for(int n = 0; n < nlines; ++n)
293  {
294  m_lines[n]->BwdTrans(inarray+cnt, tmparray = outarray + cnt1,
295  coeffstate);
296  cnt += m_lines[n]->GetNcoeffs();
297  cnt1 += m_lines[n]->GetTotPoints();
298  }
299  if(!m_WaveSpace)
300  {
301  HomogeneousBwdTrans(outarray,outarray);
302  }
303  }
Array< OneD, ExpListSharedPtr > m_lines
Vector of ExpList, will be filled with ExpList1D.
void HomogeneousBwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
void Nektar::MultiRegions::ExpListHomogeneous2D::v_BwdTrans_IterPerExp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Given the elemental coefficients $\hat{u}_n^e$ of an expansion, this function evaluates the spectral/hp expansion $u^{\delta}(\boldsymbol{x})$ at the quadrature points $\boldsymbol{x}_i$. The operation is evaluated locally by the elemental function StdRegions::StdExpansion::BwdTrans.

Parameters
inarrayAn array of size $N_{\mathrm{eof}}$ containing the local coefficients $\hat{u}_n^e$.
outarrayThe resulting physical values at the quadrature points $u^{\delta}(\boldsymbol{x}_i)$ will be stored in this array of size $Q_{\mathrm{tot}}$.

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 305 of file ExpListHomogeneous2D.cpp.

References HomogeneousBwdTrans(), m_lines, and Nektar::MultiRegions::ExpList::m_WaveSpace.

306  {
307  int cnt = 0, cnt1 = 0;
308  Array<OneD, NekDouble> tmparray;
309  int nlines = m_lines.num_elements();
310 
311  for(int n = 0; n < nlines; ++n)
312  {
313  m_lines[n]->BwdTrans_IterPerExp(inarray+cnt, tmparray = outarray + cnt1);
314 
315  cnt += m_lines[n]->GetNcoeffs();
316  cnt1 += m_lines[n]->GetTotPoints();
317  }
318  if(!m_WaveSpace)
319  {
320  HomogeneousBwdTrans(outarray,outarray);
321  }
322  }
Array< OneD, ExpListSharedPtr > m_lines
Vector of ExpList, will be filled with ExpList1D.
void HomogeneousBwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
void Nektar::MultiRegions::ExpListHomogeneous2D::v_DealiasedProd ( const Array< OneD, NekDouble > &  inarray1,
const Array< OneD, NekDouble > &  inarray2,
Array< OneD, NekDouble > &  outarray,
CoeffState  coeffstate = eLocal 
)
protectedvirtual

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 157 of file ExpListHomogeneous2D.cpp.

References Nektar::eWrapper, Nektar::LibUtilities::eXtoYZ, Nektar::LibUtilities::eYZtoX, HomogeneousBwdTrans(), HomogeneousFwdTrans(), m_lines, m_ny, m_nz, m_padsize_y, m_padsize_z, m_transposition, Nektar::MultiRegions::ExpList::m_WaveSpace, Vmath::Vcopy(), and Vmath::Vmul().

Referenced by DealiasedProd().

161  {
162  int npoints = outarray.num_elements(); // number of total physical points
163  int nlines = m_lines.num_elements(); // number of lines == number of Fourier modes = number of Fourier coeff = number of points per slab
164  int nslabs = npoints/nlines; // number of slabs = numebr of physical points per line
165 
166  Array<OneD, NekDouble> V1(npoints);
167  Array<OneD, NekDouble> V2(npoints);
168  Array<OneD, NekDouble> V1V2(npoints);
169  Array<OneD, NekDouble> ShufV1(npoints);
170  Array<OneD, NekDouble> ShufV2(npoints);
171  Array<OneD, NekDouble> ShufV1V2(npoints);
172 
173  if(m_WaveSpace)
174  {
175  V1 = inarray1;
176  V2 = inarray2;
177  }
178  else
179  {
180  HomogeneousFwdTrans(inarray1,V1,coeffstate);
181  HomogeneousFwdTrans(inarray2,V2,coeffstate);
182  }
183 
184  m_transposition->Transpose(V1,ShufV1,false,LibUtilities::eXtoYZ);
185  m_transposition->Transpose(V2,ShufV2,false,LibUtilities::eXtoYZ);
186 
187  Array<OneD, NekDouble> PadV1_slab_coeff(m_padsize_y*m_padsize_z,0.0);
188  Array<OneD, NekDouble> PadV2_slab_coeff(m_padsize_y*m_padsize_z,0.0);
189  Array<OneD, NekDouble> PadRe_slab_coeff(m_padsize_y*m_padsize_z,0.0);
190 
191  Array<OneD, NekDouble> PadV1_slab_phys(m_padsize_y*m_padsize_z,0.0);
192  Array<OneD, NekDouble> PadV2_slab_phys(m_padsize_y*m_padsize_z,0.0);
193  Array<OneD, NekDouble> PadRe_slab_phys(m_padsize_y*m_padsize_z,0.0);
194 
195  NekVector<NekDouble> PadIN_V1(m_padsize_y*m_padsize_z,PadV1_slab_coeff,eWrapper);
196  NekVector<NekDouble> PadOUT_V1(m_padsize_y*m_padsize_z,PadV1_slab_phys,eWrapper);
197 
198  NekVector<NekDouble> PadIN_V2(m_padsize_y*m_padsize_z,PadV2_slab_coeff,eWrapper);
199  NekVector<NekDouble> PadOUT_V2(m_padsize_y*m_padsize_z,PadV2_slab_phys,eWrapper);
200 
201  NekVector<NekDouble> PadIN_Re(m_padsize_y*m_padsize_z,PadRe_slab_phys,eWrapper);
202  NekVector<NekDouble> PadOUT_Re(m_padsize_y*m_padsize_z,PadRe_slab_coeff,eWrapper);
203 
204  //Looping on the slabs
205  for(int j = 0 ; j< nslabs ; j++)
206  {
207  //Copying the j-th slab of size N*M into a bigger slab of lenght 2*N*M
208  //We are in Fourier space
209  for(int i = 0 ; i< m_nz ; i++)
210  {
211  Vmath::Vcopy(m_ny,&(ShufV1[i*m_ny + j*nlines]),1,&(PadV1_slab_coeff[i*2*m_ny]),1);
212  Vmath::Vcopy(m_ny,&(ShufV2[i*m_ny + j*nlines]),1,&(PadV2_slab_coeff[i*2*m_ny]),1);
213  }
214 
215  //Moving to physical space using the padded system
216  PadOUT_V1 = (*MatBwdPAD)*PadIN_V1;
217  PadOUT_V2 = (*MatBwdPAD)*PadIN_V2;
218 
219  //Perfroming the vectors multiplication in physical
220  //space on the padded system
221  Vmath::Vmul(m_padsize_y*m_padsize_z,PadV1_slab_phys,1,PadV2_slab_phys,1,PadRe_slab_phys,1);
222 
223  //Moving back the result (V1*V2)_phys in Fourier
224  //space, padded system
225  PadOUT_Re = (*MatFwdPAD)*PadIN_Re;
226 
227  //Copying the first half of the padded pencil in the
228  //full vector (Fourier space)
229  for (int i = 0; i < m_nz; i++)
230  {
231  Vmath::Vcopy(m_ny,&(PadRe_slab_coeff[i*2*m_ny]),1,&(ShufV1V2[i*m_ny + j*nlines]),1);
232  }
233  }
234 
235  if(m_WaveSpace)
236  {
237  m_transposition->Transpose(ShufV1V2,outarray,false,LibUtilities::eYZtoX);
238  }
239  else
240  {
241  m_transposition->Transpose(ShufV1V2,V1V2,false,LibUtilities::eYZtoX);
242 
243  //Moving the results in physical space for the output
244  HomogeneousBwdTrans(V1V2,outarray,coeffstate);
245  }
246  }
LibUtilities::TranspositionSharedPtr m_transposition
void HomogeneousFwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
Array< OneD, ExpListSharedPtr > m_lines
Vector of ExpList, will be filled with ExpList1D.
int m_ny
Number of modes = number of poitns in y direction.
int m_nz
Number of modes = number of poitns in z direction.
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1038
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
void HomogeneousBwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
void Nektar::MultiRegions::ExpListHomogeneous2D::v_ExtractDataToCoeffs ( LibUtilities::FieldDefinitionsSharedPtr fielddef,
std::vector< NekDouble > &  fielddata,
std::string &  field,
Array< OneD, NekDouble > &  coeffs 
)
protectedvirtual

Extract data from raw field data into expansion list.

Parameters
fielddefField definitions.
fielddataData for associated field.
fieldField variable name.
coeffsResulting coefficient array.

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 645 of file ExpListHomogeneous2D.cpp.

References ASSERTL0, Nektar::MultiRegions::ExpList::m_coeff_offset, m_homogeneousBasis_y, m_homogeneousBasis_z, m_lines, and Vmath::Vcopy().

646  {
647  int i,k;
648  int offset = 0;
649  int datalen = fielddata.size()/fielddef->m_fields.size();
650  int ncoeffs_per_line = m_lines[0]->GetNcoeffs();
651  int NumMod_y = m_homogeneousBasis_y->GetNumModes();
652  int NumMod_z = m_homogeneousBasis_z->GetNumModes();
653 
654  // Find data location according to field definition
655  for(i = 0; i < fielddef->m_fields.size(); ++i)
656  {
657  if(fielddef->m_fields[i] == field)
658  {
659  break;
660  }
661  offset += datalen;
662  }
663 
664  ASSERTL0(i!= fielddef->m_fields.size(),"Field not found in data file");
665 
666  // Determine mapping from element ids to location in
667  // expansion list
668  map<int, int> ElmtID_to_ExpID;
669  for(i = 0; i < m_lines[0]->GetExpSize(); ++i)
670  {
671  ElmtID_to_ExpID[(*m_exp)[i]->GetGeom()->GetGlobalID()] = i;
672  }
673 
674  for(i = 0; i < fielddef->m_elementIDs.size(); ++i)
675  {
676  int eid = ElmtID_to_ExpID[fielddef->m_elementIDs[i]];
677  int datalen = (*m_exp)[eid]->GetNcoeffs();
678 
679  for(k = 0; k < (NumMod_y*NumMod_z); ++k)
680  {
681  Vmath::Vcopy(datalen,&fielddata[offset],1,&coeffs[m_coeff_offset[eid] + k*ncoeffs_per_line],1);
682  offset += datalen;
683  }
684  }
685  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
Array< OneD, ExpListSharedPtr > m_lines
Vector of ExpList, will be filled with ExpList1D.
Array< OneD, int > m_coeff_offset
Offset of elemental data into the array m_coeffs.
Definition: ExpList.h:958
LibUtilities::BasisSharedPtr m_homogeneousBasis_z
Base expansion in z direction.
LibUtilities::BasisSharedPtr m_homogeneousBasis_y
Definition of the total number of degrees of freedom and quadrature points. Sets up the storage for m...
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1038
void Nektar::MultiRegions::ExpListHomogeneous2D::v_FwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
CoeffState  coeffstate 
)
protectedvirtual

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 248 of file ExpListHomogeneous2D.cpp.

References HomogeneousFwdTrans(), m_lines, and Nektar::MultiRegions::ExpList::m_WaveSpace.

249  {
250  int cnt = 0, cnt1 = 0;
251  Array<OneD, NekDouble> tmparray;
252  int nlines = m_lines.num_elements();
253 
254  for(int n = 0; n < nlines; ++n)
255  {
256  m_lines[n]->FwdTrans(inarray+cnt, tmparray = outarray + cnt1,
257  coeffstate);
258  cnt += m_lines[n]->GetTotPoints();
259  cnt1 += m_lines[n]->GetNcoeffs();
260  }
261  if(!m_WaveSpace)
262  {
263  HomogeneousFwdTrans(outarray,outarray,coeffstate);
264  }
265  }
void HomogeneousFwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
Array< OneD, ExpListSharedPtr > m_lines
Vector of ExpList, will be filled with ExpList1D.
void Nektar::MultiRegions::ExpListHomogeneous2D::v_FwdTrans_IterPerExp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Given a function $u(\boldsymbol{x})$ defined at the quadrature points, this function determines the transformed elemental coefficients $\hat{u}_n^e$ employing a discrete elemental Galerkin projection from physical space to coefficient space. For each element, the operation is evaluated locally by the function StdRegions::StdExpansion::IproductWRTBase followed by a call to #MultiRegions#MultiplyByElmtInvMass.

Parameters
inarrayAn array of size $Q_{\mathrm{tot}}$ containing the values of the function $f(\boldsymbol{x})$ at the quadrature points $\boldsymbol{x}_i$.
outarrayThe resulting coefficients $\hat{u}_n^e$ will be stored in this array of size $N_{\mathrm{eof}}$.

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 267 of file ExpListHomogeneous2D.cpp.

References HomogeneousFwdTrans(), m_lines, and Nektar::MultiRegions::ExpList::m_WaveSpace.

268  {
269  int cnt = 0, cnt1 = 0;
270  Array<OneD, NekDouble> tmparray;
271  int nlines = m_lines.num_elements();
272 
273  for(int n = 0; n < nlines; ++n)
274  {
275  m_lines[n]->FwdTrans_IterPerExp(inarray+cnt, tmparray = outarray + cnt1);
276 
277  cnt += m_lines[n]->GetTotPoints();
278  cnt1 += m_lines[n]->GetNcoeffs();
279  }
280  if(!m_WaveSpace)
281  {
282  HomogeneousFwdTrans(outarray,outarray);
283  }
284  }
void HomogeneousFwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
Array< OneD, ExpListSharedPtr > m_lines
Vector of ExpList, will be filled with ExpList1D.
std::vector< LibUtilities::FieldDefinitionsSharedPtr > Nektar::MultiRegions::ExpListHomogeneous2D::v_GetFieldDefinitions ( void  )
protectedvirtual

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 580 of file ExpListHomogeneous2D.cpp.

References m_homogeneousBasis_y, m_homogeneousBasis_z, m_lhom_y, m_lhom_z, and m_lines.

581  {
582  std::vector<LibUtilities::FieldDefinitionsSharedPtr> returnval;
583  // Set up Homogeneous length details.
585  HomoBasis[0] = m_homogeneousBasis_y;
586  HomoBasis[1] = m_homogeneousBasis_z;
587 
588  std::vector<NekDouble> HomoLen(2);
589  HomoLen[0] = m_lhom_y;
590  HomoLen[1] = m_lhom_z;
591 
592  m_lines[0]->GeneralGetFieldDefinitions(returnval, 2, 1, HomoBasis, HomoLen);
593  return returnval;
594  }
NekDouble m_lhom_z
Width of homogeneous direction z.
Array< OneD, ExpListSharedPtr > m_lines
Vector of ExpList, will be filled with ExpList1D.
LibUtilities::BasisSharedPtr m_homogeneousBasis_z
Base expansion in z direction.
NekDouble m_lhom_y
Width of homogeneous direction y.
LibUtilities::BasisSharedPtr m_homogeneousBasis_y
Definition of the total number of degrees of freedom and quadrature points. Sets up the storage for m...
void Nektar::MultiRegions::ExpListHomogeneous2D::v_GetFieldDefinitions ( std::vector< LibUtilities::FieldDefinitionsSharedPtr > &  fielddef)
protectedvirtual

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 596 of file ExpListHomogeneous2D.cpp.

References m_homogeneousBasis_y, m_homogeneousBasis_z, m_lhom_y, m_lhom_z, and m_lines.

597  {
598  // Set up Homogeneous length details.
600  HomoBasis[0] = m_homogeneousBasis_y;
601  HomoBasis[1] = m_homogeneousBasis_z;
602  std::vector<NekDouble> HomoLen(2);
603  HomoLen[0] = m_lhom_y;
604  HomoLen[1] = m_lhom_z;
605 
606  // enforce NumHomoDir == 1 by direct call
607  m_lines[0]->GeneralGetFieldDefinitions(fielddef, 2, 1, HomoBasis, HomoLen);
608  }
NekDouble m_lhom_z
Width of homogeneous direction z.
Array< OneD, ExpListSharedPtr > m_lines
Vector of ExpList, will be filled with ExpList1D.
LibUtilities::BasisSharedPtr m_homogeneousBasis_z
Base expansion in z direction.
NekDouble m_lhom_y
Width of homogeneous direction y.
LibUtilities::BasisSharedPtr m_homogeneousBasis_y
Definition of the total number of degrees of freedom and quadrature points. Sets up the storage for m...
virtual int Nektar::MultiRegions::ExpListHomogeneous2D::v_GetNumElmts ( void  )
inlineprotectedvirtual

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 168 of file ExpListHomogeneous2D.h.

169  {
170  return m_lines[0]->GetExpSize();
171  }
Array< OneD, ExpListSharedPtr > m_lines
Vector of ExpList, will be filled with ExpList1D.
void Nektar::MultiRegions::ExpListHomogeneous2D::v_HomogeneousBwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
CoeffState  coeffstate = eLocal,
bool  Shuff = true,
bool  UnShuff = true 
)
protectedvirtual

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 147 of file ExpListHomogeneous2D.cpp.

References Homogeneous2DTrans().

Referenced by HomogeneousBwdTrans().

152  {
153  // Backwards trans
154  Homogeneous2DTrans(inarray,outarray,false,coeffstate,Shuff,UnShuff);
155  }
void Homogeneous2DTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool IsForwards, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
void Nektar::MultiRegions::ExpListHomogeneous2D::v_HomogeneousFwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
CoeffState  coeffstate = eLocal,
bool  Shuff = true,
bool  UnShuff = true 
)
protectedvirtual

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 137 of file ExpListHomogeneous2D.cpp.

References Homogeneous2DTrans().

Referenced by HomogeneousFwdTrans().

142  {
143  // Forwards trans
144  Homogeneous2DTrans(inarray,outarray,true,coeffstate,Shuff,UnShuff);
145  }
void Homogeneous2DTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool IsForwards, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
void Nektar::MultiRegions::ExpListHomogeneous2D::v_IProductWRTBase ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
CoeffState  coeffstate 
)
protectedvirtual

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 325 of file ExpListHomogeneous2D.cpp.

References m_lines.

326  {
327  int cnt = 0, cnt1 = 0;
328  Array<OneD, NekDouble> tmparray;
329  int nlines = m_lines.num_elements();
330 
331  for(int n = 0; n < nlines; ++n)
332  {
333  m_lines[n]->IProductWRTBase(inarray+cnt, tmparray = outarray + cnt1,coeffstate);
334 
335  cnt += m_lines[n]->GetNcoeffs();
336  cnt1 += m_lines[n]->GetTotPoints();
337  }
338  }
Array< OneD, ExpListSharedPtr > m_lines
Vector of ExpList, will be filled with ExpList1D.
void Nektar::MultiRegions::ExpListHomogeneous2D::v_IProductWRTBase_IterPerExp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

The operation is evaluated locally for every element by the function StdRegions::StdExpansion::IProductWRTBase.

Parameters
inarrayAn array of size $Q_{\mathrm{tot}}$ containing the values of the function $f(\boldsymbol{x})$ at the quadrature points $\boldsymbol{x}_i$.
outarrayAn array of size $N_{\mathrm{eof}}$ used to store the result.

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 340 of file ExpListHomogeneous2D.cpp.

References m_lines.

341  {
342  int cnt = 0, cnt1 = 0;
343  Array<OneD, NekDouble> tmparray;
344  int nlines = m_lines.num_elements();
345 
346  for(int n = 0; n < nlines; ++n)
347  {
348  m_lines[n]->IProductWRTBase_IterPerExp(inarray+cnt, tmparray = outarray + cnt1);
349 
350  cnt += m_lines[n]->GetNcoeffs();
351  cnt1 += m_lines[n]->GetTotPoints();
352  }
353  }
Array< OneD, ExpListSharedPtr > m_lines
Vector of ExpList, will be filled with ExpList1D.
void Nektar::MultiRegions::ExpListHomogeneous2D::v_PhysDeriv ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out_d0,
Array< OneD, NekDouble > &  out_d1,
Array< OneD, NekDouble > &  out_d2 
)
protectedvirtual

Given a function $f(\boldsymbol{x})$ evaluated at the quadrature points, this function calculates the derivatives $\frac{d}{dx_1}$, $\frac{d}{dx_2}$ and $\frac{d}{dx_3}$ of the function $f(\boldsymbol{x})$ at the same quadrature points. The local distribution of the quadrature points allows an elemental evaluation of the derivative. This is done by a call to the function StdRegions::StdExpansion::PhysDeriv.

Parameters
inarrayAn array of size $Q_{\mathrm{tot}}$ containing the values of the function $f(\boldsymbol{x})$ at the quadrature points $\boldsymbol{x}_i$.
out_d0The discrete evaluation of the derivative $\frac{d}{dx_1}$ will be stored in this array of size $Q_{\mathrm{tot}}$.
out_d1The discrete evaluation of the derivative $\frac{d}{dx_2}$ will be stored in this array of size $Q_{\mathrm{tot}}$. Note that if no memory is allocated for out_d1, the derivative $\frac{d}{dx_2}$ will not be calculated.
out_d2The discrete evaluation of the derivative $\frac{d}{dx_3}$ will be stored in this array of size $Q_{\mathrm{tot}}$. Note that if no memory is allocated for out_d2, the derivative $\frac{d}{dx_3}$ will not be calculated.

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 687 of file ExpListHomogeneous2D.cpp.

References ASSERTL0, Nektar::LibUtilities::eFourier, Nektar::LibUtilities::eXtoYZ, Nektar::LibUtilities::eYZtoX, HomogeneousBwdTrans(), HomogeneousFwdTrans(), m_homogeneousBasis_y, m_homogeneousBasis_z, m_lhom_y, m_lhom_z, m_lines, m_ny, m_nz, m_transposition, Nektar::MultiRegions::ExpList::m_WaveSpace, sign, and Vmath::Smul().

Referenced by PhysDeriv().

692  {
693  int nyzlines = m_lines.num_elements(); //number of Fourier points in the Fourier directions (nF_pts)
694  int npoints = inarray.num_elements(); //number of total points = n. of Fourier points * n. of points per line (nT_pts)
695  int n_points_line = npoints/nyzlines; //number of points per line
696 
697  Array<OneD, NekDouble> temparray(npoints);
698  Array<OneD, NekDouble> temparray1(npoints);
699  Array<OneD, NekDouble> temparray2(npoints);
703 
704  for( int i=0 ; i<nyzlines ; i++ )
705  {
706  m_lines[i]->PhysDeriv( tmp1 = inarray + i*n_points_line ,tmp2 = out_d0 + i*n_points_line);
707  }
708 
710  {
711  if(m_WaveSpace)
712  {
713  temparray = inarray;
714  }
715  else
716  {
717  HomogeneousFwdTrans(inarray,temparray);
718  }
719  NekDouble sign = -1.0;
720  NekDouble beta;
721 
722  //along y
723  for(int i = 0; i < m_ny; i++)
724  {
725  beta = -sign*2*M_PI*(i/2)/m_lhom_y;
726 
727  for(int j = 0; j < m_nz; j++)
728  {
729  Vmath::Smul(n_points_line,beta,tmp1 = temparray + n_points_line*(i+j*m_ny),1, tmp2 = temparray1 + n_points_line*((i-int(sign))+j*m_ny),1);
730  }
731 
732  sign = -1.0*sign;
733  }
734 
735  //along z
736  sign = -1.0;
737  for(int i = 0; i < m_nz; i++)
738  {
739  beta = -sign*2*M_PI*(i/2)/m_lhom_z;
740  Vmath::Smul(m_ny*n_points_line,beta,tmp1 = temparray + i*m_ny*n_points_line,1,tmp2 = temparray2 + (i-int(sign))*m_ny*n_points_line,1);
741  sign = -1.0*sign;
742  }
743  if(m_WaveSpace)
744  {
745  out_d1 = temparray1;
746  out_d2 = temparray2;
747  }
748  else
749  {
750  HomogeneousBwdTrans(temparray1,out_d1);
751  HomogeneousBwdTrans(temparray2,out_d2);
752  }
753  }
754  else
755  {
756  if(m_WaveSpace)
757  {
758  ASSERTL0(false,"Semi-phyisical time-stepping not implemented yet for non-Fourier basis")
759  }
760  else
761  {
762  StdRegions::StdQuadExp StdQuad(m_homogeneousBasis_y->GetBasisKey(),m_homogeneousBasis_z->GetBasisKey());
763 
764  m_transposition->Transpose(inarray,temparray,false,LibUtilities::eXtoYZ);
765 
766  for(int i = 0; i < n_points_line; i++)
767  {
768  StdQuad.PhysDeriv(tmp1 = temparray + i*nyzlines, tmp2 = temparray1 + i*nyzlines, tmp3 = temparray2 + i*nyzlines);
769  }
770 
771  m_transposition->Transpose(temparray1,out_d1,false,LibUtilities::eYZtoX);
772  m_transposition->Transpose(temparray2,out_d2,false,LibUtilities::eYZtoX);
773  Vmath::Smul(npoints,2.0/m_lhom_y,out_d1,1,out_d1,1);
774  Vmath::Smul(npoints,2.0/m_lhom_z,out_d2,1,out_d2,1);
775  }
776  }
777  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
LibUtilities::TranspositionSharedPtr m_transposition
void HomogeneousFwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
#define sign(a, b)
return the sign(b)*a
Definition: Polylib.cpp:22
Fourier Expansion .
Definition: BasisType.h:52
NekDouble m_lhom_z
Width of homogeneous direction z.
Array< OneD, ExpListSharedPtr > m_lines
Vector of ExpList, will be filled with ExpList1D.
LibUtilities::BasisSharedPtr m_homogeneousBasis_z
Base expansion in z direction.
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
NekDouble m_lhom_y
Width of homogeneous direction y.
double NekDouble
int m_ny
Number of modes = number of poitns in y direction.
LibUtilities::BasisSharedPtr m_homogeneousBasis_y
Definition of the total number of degrees of freedom and quadrature points. Sets up the storage for m...
int m_nz
Number of modes = number of poitns in z direction.
void HomogeneousBwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
void Nektar::MultiRegions::ExpListHomogeneous2D::v_PhysDeriv ( Direction  edir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out_d 
)
protectedvirtual

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 779 of file ExpListHomogeneous2D.cpp.

References ASSERTL0, Nektar::LibUtilities::eFourier, Nektar::LibUtilities::eXtoYZ, Nektar::LibUtilities::eYZtoX, HomogeneousBwdTrans(), HomogeneousFwdTrans(), m_homogeneousBasis_y, m_homogeneousBasis_z, m_lhom_y, m_lhom_z, m_lines, m_ny, m_nz, m_transposition, Nektar::MultiRegions::ExpList::m_WaveSpace, sign, and Vmath::Smul().

783  {
784  int nyzlines = m_lines.num_elements(); //number of Fourier points in the Fourier directions (nF_pts)
785  int npoints = inarray.num_elements(); //number of total points = n. of Fourier points * n. of points per line (nT_pts)
786  int n_points_line = npoints/nyzlines; //number of points per line
787  //convert enum into int
788  int dir = (int)edir;
789 
790  Array<OneD, NekDouble> temparray(npoints);
791  Array<OneD, NekDouble> temparray1(npoints);
792  Array<OneD, NekDouble> temparray2(npoints);
796 
797  if (dir < 1)
798  {
799  for( int i=0 ; i<nyzlines ; i++)
800  {
801  m_lines[i]->PhysDeriv( tmp1 = inarray + i*n_points_line ,tmp2 = out_d + i*n_points_line);
802  }
803  }
804  else
805  {
807  {
808  if(m_WaveSpace)
809  {
810  temparray = inarray;
811  }
812  else
813  {
814  HomogeneousFwdTrans(inarray,temparray);
815  }
816  NekDouble sign = -1.0;
817  NekDouble beta;
818 
819  if (dir == 1)
820  {
821  //along y
822  for(int i = 0; i < m_ny; i++)
823  {
824  beta = -sign*2*M_PI*(i/2)/m_lhom_y;
825 
826  for(int j = 0; j < m_nz; j++)
827  {
828  Vmath::Smul(n_points_line,beta,tmp1 = temparray + n_points_line*(i+j*m_ny),1, tmp2 = temparray1 + n_points_line*((i-int(sign))+j*m_ny),1);
829  }
830  sign = -1.0*sign;
831  }
832  if(m_WaveSpace)
833  {
834  out_d = temparray1;
835  }
836  else
837  {
838  HomogeneousBwdTrans(temparray1,out_d);
839  }
840  }
841  else
842  {
843  //along z
844  for(int i = 0; i < m_nz; i++)
845  {
846  beta = -sign*2*M_PI*(i/2)/m_lhom_z;
847  Vmath::Smul(m_ny*n_points_line,beta,tmp1 = temparray + i*m_ny*n_points_line,1,tmp2 = temparray2 + (i-int(sign))*m_ny*n_points_line,1);
848  sign = -1.0*sign;
849  }
850  if(m_WaveSpace)
851  {
852  out_d = temparray2;
853  }
854  else
855  {
856  HomogeneousBwdTrans(temparray2,out_d);
857  }
858  }
859  }
860  else
861  {
862  if(m_WaveSpace)
863  {
864  ASSERTL0(false,"Semi-phyisical time-stepping not implemented yet for non-Fourier basis")
865  }
866  else
867  {
868  StdRegions::StdQuadExp StdQuad(m_homogeneousBasis_y->GetBasisKey(),m_homogeneousBasis_z->GetBasisKey());
869 
870  m_transposition->Transpose(inarray,temparray,false,LibUtilities::eXtoYZ);
871 
872  for(int i = 0; i < n_points_line; i++)
873  {
874  StdQuad.PhysDeriv(tmp1 = temparray + i*nyzlines, tmp2 = temparray1 + i*nyzlines, tmp3 = temparray2 + i*nyzlines);
875  }
876 
877  if (dir == 1)
878  {
879  m_transposition->Transpose(temparray1,out_d,false,LibUtilities::eYZtoX);
880  Vmath::Smul(npoints,2.0/m_lhom_y,out_d,1,out_d,1);
881  }
882  else
883  {
884  m_transposition->Transpose(temparray2,out_d,false,LibUtilities::eYZtoX);
885  Vmath::Smul(npoints,2.0/m_lhom_z,out_d,1,out_d,1);
886  }
887  }
888  }
889  }
890  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
LibUtilities::TranspositionSharedPtr m_transposition
void HomogeneousFwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
#define sign(a, b)
return the sign(b)*a
Definition: Polylib.cpp:22
Fourier Expansion .
Definition: BasisType.h:52
NekDouble m_lhom_z
Width of homogeneous direction z.
Array< OneD, ExpListSharedPtr > m_lines
Vector of ExpList, will be filled with ExpList1D.
LibUtilities::BasisSharedPtr m_homogeneousBasis_z
Base expansion in z direction.
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
NekDouble m_lhom_y
Width of homogeneous direction y.
double NekDouble
int m_ny
Number of modes = number of poitns in y direction.
LibUtilities::BasisSharedPtr m_homogeneousBasis_y
Definition of the total number of degrees of freedom and quadrature points. Sets up the storage for m...
int m_nz
Number of modes = number of poitns in z direction.
void HomogeneousBwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)

Member Data Documentation

bool Nektar::MultiRegions::ExpListHomogeneous2D::m_dealiasing
private

Definition at line 229 of file ExpListHomogeneous2D.h.

Referenced by ExpListHomogeneous2D().

LibUtilities::NektarFFTSharedPtr Nektar::MultiRegions::ExpListHomogeneous2D::m_FFT_y

Definition at line 138 of file ExpListHomogeneous2D.h.

Referenced by ExpListHomogeneous2D(), and Homogeneous2DTrans().

LibUtilities::NektarFFTSharedPtr Nektar::MultiRegions::ExpListHomogeneous2D::m_FFT_z

Definition at line 139 of file ExpListHomogeneous2D.h.

Referenced by ExpListHomogeneous2D(), and Homogeneous2DTrans().

Homo2DBlockMatrixMapShPtr Nektar::MultiRegions::ExpListHomogeneous2D::m_homogeneous2DBlockMat
protected

Definition at line 158 of file ExpListHomogeneous2D.h.

Referenced by GetHomogeneous2DBlockMatrix().

LibUtilities::BasisSharedPtr Nektar::MultiRegions::ExpListHomogeneous2D::m_homogeneousBasis_y
protected
LibUtilities::BasisSharedPtr Nektar::MultiRegions::ExpListHomogeneous2D::m_homogeneousBasis_z
protected
NekDouble Nektar::MultiRegions::ExpListHomogeneous2D::m_lhom_y
protected
NekDouble Nektar::MultiRegions::ExpListHomogeneous2D::m_lhom_z
protected
Array<OneD, ExpListSharedPtr> Nektar::MultiRegions::ExpListHomogeneous2D::m_lines
protected

Vector of ExpList, will be filled with ExpList1D.

Definition at line 159 of file ExpListHomogeneous2D.h.

Referenced by Nektar::MultiRegions::ContField3DHomogeneous2D::ContField3DHomogeneous2D(), Nektar::MultiRegions::DisContField3DHomogeneous2D::DisContField3DHomogeneous2D(), Nektar::MultiRegions::DisContField3DHomogeneous2D::EvaluateBoundaryConditions(), Nektar::MultiRegions::ExpList1DHomogeneous2D::ExpList1DHomogeneous2D(), Nektar::MultiRegions::ExpList3DHomogeneous2D::ExpList3DHomogeneous2D(), ExpListHomogeneous2D(), GenHomogeneous2DBlockMatrix(), Nektar::MultiRegions::DisContField3DHomogeneous2D::GetBoundaryToElmtMap(), Nektar::MultiRegions::ExpList1DHomogeneous2D::GetCoords(), Homogeneous2DTrans(), Nektar::MultiRegions::ExpList1DHomogeneous2D::SetCoeffPhys(), Nektar::MultiRegions::ExpList3DHomogeneous2D::SetCoeffPhys(), Nektar::MultiRegions::DisContField3DHomogeneous2D::SetupBoundaryConditions(), v_AppendFieldData(), v_BwdTrans(), v_BwdTrans_IterPerExp(), v_DealiasedProd(), v_ExtractDataToCoeffs(), v_FwdTrans(), v_FwdTrans_IterPerExp(), Nektar::MultiRegions::ExpList1DHomogeneous2D::v_GetCoords(), Nektar::MultiRegions::ExpList3DHomogeneous2D::v_GetCoords(), v_GetFieldDefinitions(), Nektar::MultiRegions::ContField3DHomogeneous2D::v_GlobalToLocal(), Nektar::MultiRegions::ContField3DHomogeneous2D::v_HelmSolve(), Nektar::MultiRegions::DisContField3DHomogeneous2D::v_HelmSolve(), Nektar::MultiRegions::ContField3DHomogeneous2D::v_ImposeDirichletConditions(), v_IProductWRTBase(), v_IProductWRTBase_IterPerExp(), Nektar::MultiRegions::ExpList3DHomogeneous2D::v_L2(), Nektar::MultiRegions::ContField3DHomogeneous2D::v_LocalToGlobal(), and v_PhysDeriv().

int Nektar::MultiRegions::ExpListHomogeneous2D::m_ny
protected
int Nektar::MultiRegions::ExpListHomogeneous2D::m_nz
protected
LibUtilities::BasisSharedPtr Nektar::MultiRegions::ExpListHomogeneous2D::m_paddingBasis_y
protected

Base expansion in y direction.

Definition at line 154 of file ExpListHomogeneous2D.h.

Referenced by SetPaddingBase().

LibUtilities::BasisSharedPtr Nektar::MultiRegions::ExpListHomogeneous2D::m_paddingBasis_z
protected

Base expansion in z direction.

Definition at line 155 of file ExpListHomogeneous2D.h.

Referenced by SetPaddingBase().

int Nektar::MultiRegions::ExpListHomogeneous2D::m_padsize_y
private

Definition at line 230 of file ExpListHomogeneous2D.h.

Referenced by SetPaddingBase(), and v_DealiasedProd().

int Nektar::MultiRegions::ExpListHomogeneous2D::m_padsize_z
private

Definition at line 231 of file ExpListHomogeneous2D.h.

Referenced by SetPaddingBase(), and v_DealiasedProd().

Array<OneD,NekDouble> Nektar::MultiRegions::ExpListHomogeneous2D::m_tmpIN

Definition at line 140 of file ExpListHomogeneous2D.h.

Referenced by Homogeneous2DTrans().

Array<OneD,NekDouble> Nektar::MultiRegions::ExpListHomogeneous2D::m_tmpOUT

Definition at line 141 of file ExpListHomogeneous2D.h.

Referenced by Homogeneous2DTrans().

LibUtilities::TranspositionSharedPtr Nektar::MultiRegions::ExpListHomogeneous2D::m_transposition
bool Nektar::MultiRegions::ExpListHomogeneous2D::m_useFFT
LibUtilities::CommSharedPtr Nektar::MultiRegions::ExpListHomogeneous2D::m_Ycomm

Definition at line 144 of file ExpListHomogeneous2D.h.

Referenced by ExpListHomogeneous2D().

LibUtilities::CommSharedPtr Nektar::MultiRegions::ExpListHomogeneous2D::m_Zcomm

Definition at line 145 of file ExpListHomogeneous2D.h.

Referenced by ExpListHomogeneous2D().

DNekMatSharedPtr Nektar::MultiRegions::ExpListHomogeneous2D::MatBwdPAD
private

Definition at line 233 of file ExpListHomogeneous2D.h.

Referenced by SetPaddingBase().

DNekMatSharedPtr Nektar::MultiRegions::ExpListHomogeneous2D::MatFwdPAD
private

Definition at line 232 of file ExpListHomogeneous2D.h.

Referenced by SetPaddingBase().