39 #include <boost/algorithm/string.hpp>
48 string EulerCFE::className =
50 "EulerCFE", EulerCFE::create,
51 "Euler equations in conservative variables without "
52 "artificial diffusion.");
64 if(
m_session->DefinesSolverInfo(
"PROBLEMTYPE"))
67 std::string ProblemTypeStr =
90 ASSERTL0(
false,
"Implicit CFE not set up.");
115 bool dumpInitialConditions,
150 int nvariables = inarray.num_elements();
158 for (i = 0; i < nvariables; ++i)
164 std::vector<SolverUtils::ForcingSharedPtr>::const_iterator x;
167 (*x)->Apply(
m_fields, inarray, outarray, time);
181 int nvariables = inarray.num_elements();
190 for(i = 0; i < nvariables; ++i)
200 ASSERTL0(
false,
"No Continuous Galerkin for Euler equations");
204 ASSERTL0(
false,
"Unknown projection scheme");
227 std::string userDefStr;
228 int nreg =
m_fields[0]->GetBndConditions().num_elements();
230 for (
int n = 0; n < nreg; ++n)
232 userDefStr =
m_fields[0]->GetBndConditions()[n]->GetUserDefined();
233 if(!userDefStr.empty())
235 if(boost::iequals(userDefStr,
"WallViscous"))
237 ASSERTL0(
false,
"WallViscous is a wrong bc for the "
240 else if(boost::iequals(userDefStr,
"IsentropicVortex"))
245 else if (boost::iequals(userDefStr,
"RinglebFlow"))
257 cnt +=
m_fields[0]->GetBndCondExpansions()[n]->GetExpSize();
298 int nq = x.num_elements();
308 NekDouble fac = 1.0/(16.0*gamma*M_PI*M_PI);
317 for (
int i = 0; i < nq; ++i)
319 xbar = x[i] - u0*time - x0;
320 ybar = y[i] - v0*time - y0;
321 r = sqrt(xbar*xbar + ybar*ybar);
322 tmp = beta*exp(1-r*r);
323 u[0][i+o] = pow(1.0 - (gamma-1.0)*tmp*tmp*fac, 1.0/(gamma-1.0));
324 u[1][i+o] = u[0][i+o]*(u0 - tmp*ybar/(2*M_PI));
325 u[2][i+o] = u[0][i+o]*(v0 + tmp*xbar/(2*M_PI));
326 u[
m_spacedim+1][i+o] = pow(u[0][i+o], gamma)/(gamma-1.0) +
327 0.5*(u[1][i+o]*u[1][i+o] + u[2][i+o]*u[2][i+o]) / u[0][i+o];
378 for(
int i = 0; i <
m_fields.num_elements(); ++i)
396 int nvariables = physarray.num_elements();
402 for (
int i = 0; i < nvariables; ++i)
405 m_fields[i]->ExtractTracePhys(physarray[i], Fwd[i]);
409 e_max =
m_fields[0]->GetBndCondExpansions()[bcRegion]->GetExpSize();
411 for(
int e = 0; e < e_max; ++e)
414 GetBndCondExpansions()[bcRegion]->GetExp(e)->GetTotPoints();
416 GetBndCondExpansions()[bcRegion]->GetPhys_Offset(e);
417 id2 =
m_fields[0]->GetTrace()->GetPhys_Offset(bndTraceMap[cnt++]);
423 m_fields[0]->GetBndCondExpansions()[bcRegion]->
424 GetExp(e)->GetCoords(x, y, z);
428 for (
int i = 0; i < nvariables; ++i)
431 &(
m_fields[i]->GetBndCondExpansions()[bcRegion]->
432 UpdatePhys())[id1], 1);
457 NekDouble c, k, phi, r, J, VV, pp, sint, P, ss;
471 NekDouble gamma_1_2 = (gamma - 1.0) / 2.0;
473 for (
int i = 0; i < nTotQuadPoints; ++i)
475 while ((abs(errV) > toll) || (abs(errTheta) > toll))
479 c = sqrt(1.0 - gamma_1_2 * VV);
483 J = 1.0 / c + 1.0 / (3.0 * c * c * c) +
484 1.0 / (5.0 * c * c * c * c * c) -
485 0.5 * log((1.0 + c) / (1.0 - c));
487 r = pow(c, 1.0 / gamma_1_2);
488 xi = 1.0 / (2.0 * r) * (1.0 / VV - 2.0 * pp) + J / 2.0;
489 yi = phi / (r * V) * sqrt(1.0 - VV * pp);
490 par1 = 25.0 - 5.0 * VV;
496 J11 = 39062.5 / pow(par1, 3.5) * (1.0 / VV - 2.0 / VV * ss) *
497 V + 1562.5 / pow(par1, 2.5) * (-2.0 / (VV * V) + 4.0 /
498 (VV * V) * ss) + 12.5 / pow(par1, 1.5) * V + 312.5 /
499 pow(par1, 2.5) * V + 7812.5 / pow(par1, 3.5) * V -
500 0.25 * (-1.0 / pow(par1, 0.5) * V/(1.0 - 0.2 *
501 pow(par1, 0.5)) - (1.0 + 0.2 * pow(par1, 0.5)) /
502 pow((1.0 - 0.2 * pow(par1, 0.5)), 2.0) /
503 pow(par1, 0.5) * V) / (1.0 + 0.2 * pow(par1, 0.5)) *
504 (1.0 - 0.2 * pow(par1, 0.5));
506 J12 = -6250.0 / pow(par1, 2.5) / VV * sint * cos(theta);
507 J21 = -6250.0 / (VV * V) * sint /
508 pow(par1, 2.5) * pow((1.0 - ss), 0.5) +
509 78125.0 / V * sint / pow(par1, 3.5) *
510 pow((1.0 - ss), 0.5);
513 if(abs(y[i])<toll && abs(cos(theta))<toll)
515 J22 = -39062.5 / pow(par1, 3.5) / V + 3125 /
516 pow(par1, 2.5) / (VV * V) + 12.5 / pow(par1, 1.5) *
517 V + 312.5 / pow(par1, 2.5) * V + 7812.5 /
518 pow(par1, 3.5) * V - 0.25 * (-1.0 / pow(par1, 0.5) *
519 V / (1.0 - 0.2 * pow(par1, 0.5)) - (1.0 + 0.2 *
520 pow(par1, 0.5)) / pow((1.0 - 0.2 *
521 pow(par1, 0.5)), 2.0) / pow(par1, 0.5) * V) /
522 (1.0 + 0.2 * pow(par1, 0.5)) * (1.0 - 0.2 *
526 dV = -1.0 / J22 * Fx;
532 J22 = 3125.0 / VV * cos(theta) / pow(par1, 2.5) *
533 pow((1.0 - ss), 0.5) - 3125.0 / VV * ss /
534 pow(par1, 2.5) / pow((1.0 - ss), 0.5) * cos(theta);
536 det = -1.0 / (J11 * J22 - J12 * J21);
539 dV = det * ( J22 * Fx - J12 * Fy);
540 dtheta = det * (-J21 * Fx + J11 * Fy);
544 theta = theta + dtheta;
547 errTheta = abs(dtheta);
551 c = sqrt(1.0 - gamma_1_2 * VV);
552 r = pow(c, 1.0 / gamma_1_2);
555 rhou[i] = rho[i] * V * cos(theta);
556 rhov[i] = rho[i] * V * sin(theta);
557 P = (c * c) * rho[i] / gamma;
558 E[i] = P / (gamma - 1.0) + 0.5 *
559 (rhou[i] * rhou[i] / rho[i] + rhov[i] * rhov[i] / rho[i]);
583 ASSERTL0(
false,
"Error in variable number!");
594 int nbnd =
m_fields[0]->GetBndConditions().num_elements();
597 for(
int bcRegion=0; bcRegion < nbnd; ++bcRegion)
601 GetBndCondExpansions()[bcRegion]->GetNpoints();
612 m_fields[0]->GetBndCondExpansions()[bcRegion]->
613 GetCoords(x0, x1, x2);
616 NekDouble c, k, phi, r, J, VV, pp, sint, P, ss;
630 NekDouble gamma_1_2 = (gamma - 1.0) / 2.0;
633 for (
int j = 0; j < npoints; j++)
635 while ((abs(errV) > toll) || (abs(errTheta) > toll))
640 c = sqrt(1.0 - gamma_1_2 * VV);
644 J = 1.0 / c + 1.0 / (3.0 * c * c * c) +
645 1.0 / (5.0 * c * c * c * c * c) -
646 0.5 * log((1.0 + c) / (1.0 - c));
648 r = pow(c, 1.0 / gamma_1_2);
649 xi = 1.0 / (2.0 * r) * (1.0 / VV - 2.0 * pp) + J / 2.0;
650 yi = phi / (r * V) * sqrt(1.0 - VV * pp);
651 par1 = 25.0 - 5.0 * VV;
657 J11 = 39062.5 / pow(par1, 3.5) *
658 (1.0 / VV - 2.0 / VV * ss) * V +
659 1562.5 / pow(par1, 2.5) * (-2.0 /
660 (VV * V) + 4.0 / (VV * V) * ss) +
661 12.5 / pow(par1, 1.5) * V +
662 312.5 / pow(par1, 2.5) * V +
663 7812.5 / pow(par1, 3.5) * V -
664 0.25 * (-1.0 / pow(par1, 0.5) * V /
665 (1.0 - 0.2 * pow(par1, 0.5)) - (1.0 + 0.2 *
666 pow(par1, 0.5)) / pow((1.0 - 0.2 *
667 pow(par1, 0.5)), 2.0) /
668 pow(par1, 0.5) * V) /
669 (1.0 + 0.2 * pow(par1, 0.5)) *
670 (1.0 - 0.2 * pow(par1, 0.5));
672 J12 = -6250.0 / pow(par1, 2.5) / VV * sint * cos(theta);
673 J21 = -6250.0 / (VV * V) * sint / pow(par1, 2.5) *
674 pow((1.0 - ss), 0.5) + 78125.0 / V * sint /
675 pow(par1, 3.5) * pow((1.0 - ss), 0.5);
678 if (abs(x1[j]) < toll && abs(cos(theta)) < toll)
681 J22 = -39062.5 / pow(par1, 3.5) / V +
682 3125 / pow(par1, 2.5) / (VV * V) + 12.5 /
683 pow(par1, 1.5) * V + 312.5 / pow(par1, 2.5) * V +
684 7812.5 / pow(par1, 3.5) * V -
685 0.25 * (-1.0 / pow(par1, 0.5) * V /
686 (1.0 - 0.2 * pow(par1, 0.5)) -
687 (1.0 + 0.2 * pow(par1, 0.5)) /
688 pow((1.0 - 0.2* pow(par1, 0.5)), 2.0) /
690 (1.0 + 0.2 * pow(par1, 0.5)) *
691 (1.0 - 0.2 * pow(par1, 0.5));
694 dV = -1.0 / J22 * Fx;
701 J22 = 3125.0 / VV * cos(theta) / pow(par1, 2.5) *
702 pow((1.0 - ss), 0.5) - 3125.0 / VV * ss /
703 pow(par1, 2.5) / pow((1.0 - ss), 0.5) *
706 det = -1.0 / (J11 * J22 - J12 * J21);
709 dV = det * ( J22 * Fx - J12 * Fy);
710 dtheta = det * (-J21 * Fx + J11 * Fy);
714 theta = theta + dtheta;
717 errTheta = abs(dtheta);
721 c = sqrt(1.0 - gamma_1_2 * VV);
722 rho[j] = pow(c, 1.0 / gamma_1_2) * exp(-1.0);
723 rhou[j] = rho[j] * V * cos(theta) * exp(-1.0);
724 rhov[j] = rho[j] * V * sin(theta) * exp(-1.0);
725 P = (c * c) * rho[j] / gamma;
726 E[j] = P / (gamma - 1.0) + 0.5 *
728 rho[j] + rhov[j] * rhov[j] / rho[j]);
732 V = kExt * sin(theta);
737 m_fields[0]->GetBndCondExpansions()[bcRegion]->SetPhys(rho);
738 m_fields[1]->GetBndCondExpansions()[bcRegion]->SetPhys(rhou);
739 m_fields[2]->GetBndCondExpansions()[bcRegion]->SetPhys(rhov);
740 m_fields[3]->GetBndCondExpansions()[bcRegion]->SetPhys(E);
743 for(
int i = 0; i <
m_fields.num_elements(); ++i)
745 m_fields[i]->GetBndCondExpansions()[bcRegion]->
746 FwdTrans_BndConstrained(
747 m_fields[i]->GetBndCondExpansions()[bcRegion]->
749 m_fields[i]->GetBndCondExpansions()[bcRegion]->
767 for(
int j = 0; j < nq; j++)
778 for (
int bcRegion = 0; bcRegion < nbnd; ++bcRegion)
782 GetBndCondExpansions()[bcRegion]->GetNpoints();
788 m_fields[0]->GetBndCondExpansions()[bcRegion]->
789 GetCoords(xb0, xb1, xb2);
791 for (
int k = 0; k < npoints; k++)
793 Dist = sqrt((xb0[k] - x0[j]) * (xb0[k] - x0[j]) +
794 (xb1[k] - x1[j]) * (xb1[k] - x1[j]));
798 GetBndCondExpansions()[bcRegion]->GetPhys())[k];
800 GetBndCondExpansions()[bcRegion]->GetPhys())[k];
802 GetBndCondExpansions()[bcRegion]->GetPhys())[k];
804 GetBndCondExpansions()[bcRegion]->GetPhys())[k];
809 rhou = rhou / SumDist;
810 rhov = rhov / SumDist;
813 (
m_fields[0]->UpdatePhys())[j] = rho;
814 (
m_fields[1]->UpdatePhys())[j] = rhou;
815 (
m_fields[2]->UpdatePhys())[j] = rhov;
820 for (
int i = 0 ; i <
m_fields.num_elements(); i++)
841 int nvariables = physarray.num_elements();
849 int nPointsTot =
m_fields[0]->GetTotPoints();
850 int nPointsTot_plane =
m_fields[0]->GetPlane(0)->GetTotPoints();
851 n_planes = nPointsTot/nPointsTot_plane;
852 nTraceNumPoints = nTraceNumPoints * n_planes;
856 for (
int i = 0; i < nvariables; ++i)
859 m_fields[i]->ExtractTracePhys(physarray[i], Fwd[i]);
862 int id2, id2_plane, e_max;
864 e_max =
m_fields[0]->GetBndCondExpansions()[bcRegion]->GetExpSize();
866 for(
int e = 0; e < e_max; ++e)
869 GetBndCondExpansions()[bcRegion]->GetExp(e)->GetTotPoints();
871 GetBndCondExpansions()[bcRegion]->GetPhys_Offset(e);
876 int cnt_plane = cnt/n_planes;
878 int e_max_plane = e_max/n_planes;
881 int planeID = floor((e + 0.5 )/ e_max_plane );
882 e_plane = e - e_max_plane*planeID;
884 id2_plane =
m_fields[0]->GetTrace()->GetPhys_Offset(
886 GetBndCondCoeffsToGlobalCoeffsMap(
887 cnt_plane + e_plane));
888 id2 = id2_plane + planeID*nTracePts_plane;
893 GetTrace()->GetPhys_Offset(
m_fields[0]->GetTraceMap()->
894 GetBndCondTraceToGlobalTraceMap(cnt++));
901 m_fields[0]->GetBndCondExpansions()[bcRegion]->
902 GetExp(e)->GetCoords(x0, x1, x2);
905 NekDouble c, k, phi, r, J, VV, pp, sint, P, ss;
919 NekDouble gamma_1_2 = (gamma - 1.0) / 2.0;
922 for (
int j = 0; j < npoints; j++)
925 while ((abs(errV) > toll) || (abs(errTheta) > toll))
929 c = sqrt(1.0 - gamma_1_2 * VV);
933 J = 1.0 / c + 1.0 / (3.0 * c * c * c) +
934 1.0 / (5.0 * c * c * c * c * c) -
935 0.5 * log((1.0 + c) / (1.0 - c));
937 r = pow(c, 1.0 / gamma_1_2);
938 xi = 1.0 / (2.0 * r) * (1.0 / VV - 2.0 * pp) + J / 2.0;
939 yi = phi / (r * V) * sqrt(1.0 - VV * pp);
940 par1 = 25.0 - 5.0 * VV;
946 J11 = 39062.5 / pow(par1, 3.5) *
947 (1.0 / VV - 2.0 / VV * ss) * V + 1562.5 /
948 pow(par1, 2.5) * (-2.0 / (VV * V) + 4.0 /
949 (VV * V) * ss) + 12.5 / pow(par1, 1.5) * V +
950 312.5 / pow(par1, 2.5) * V + 7812.5 /
951 pow(par1, 3.5) * V - 0.25 *
952 (-1.0 / pow(par1, 0.5) * V / (1.0 - 0.2 *
953 pow(par1, 0.5)) - (1.0 + 0.2 * pow(par1, 0.5)) /
954 pow((1.0 - 0.2 * pow(par1, 0.5)), 2.0) /
955 pow(par1, 0.5) * V) / (1.0 + 0.2 * pow(par1, 0.5)) *
956 (1.0 - 0.2 * pow(par1, 0.5));
958 J12 = -6250.0 / pow(par1, 2.5) / VV * sint * cos(theta);
959 J21 = -6250.0 / (VV * V) * sint / pow(par1, 2.5) *
960 pow((1.0 - ss), 0.5) + 78125.0 / V * sint /
961 pow(par1, 3.5) * pow((1.0 - ss), 0.5);
964 if (abs(x1[j]) < toll && abs(cos(theta)) < toll)
966 J22 = -39062.5 / pow(par1, 3.5) / V + 3125 /
967 pow(par1, 2.5) / (VV * V) + 12.5 /
968 pow(par1, 1.5) * V + 312.5 / pow(par1, 2.5) *
969 V + 7812.5 / pow(par1, 3.5) * V - 0.25 *
970 (-1.0 / pow(par1, 0.5) * V / (1.0 - 0.2 *
971 pow(par1, 0.5)) - (1.0 + 0.2 * pow(par1, 0.5)) /
972 pow((1.0 - 0.2 * pow(par1, 0.5)), 2.0) /
973 pow(par1, 0.5) * V) / (1.0 + 0.2 *
974 pow(par1, 0.5)) * (1.0 - 0.2 * pow(par1, 0.5));
977 dV = -1.0 / J22 * Fx;
983 J22 = 3125.0 / VV * cos(theta) / pow(par1, 2.5) *
984 pow((1.0 - ss), 0.5) - 3125.0 / VV * ss /
985 pow(par1, 2.5) / pow((1.0 - ss), 0.5) *
988 det = -1.0 / (J11 * J22 - J12 * J21);
991 dV = det * ( J22 * Fx - J12 * Fy);
992 dtheta = det * (-J21 * Fx + J11 * Fy);
996 theta = theta + dtheta;
999 errTheta = abs(dtheta);
1002 c = sqrt(1.0 - gamma_1_2 * VV);
1005 std::string restartstr =
"RESTART";
1006 if (time<timeramp &&
1007 !(
m_session->DefinesFunction(
"InitialConditions") &&
1008 m_session->GetFunctionType(
"InitialConditions", 0) ==
1011 Fwd[0][kk] = pow(c, 1.0 / gamma_1_2) *
1012 exp(-1.0 + time /timeramp);
1014 Fwd[1][kk] = Fwd[0][kk] * V * cos(theta) *
1015 exp(-1 + time / timeramp);
1017 Fwd[2][kk] = Fwd[0][kk] * V * sin(theta) *
1018 exp(-1 + time / timeramp);
1022 Fwd[0][kk] = pow(c, 1.0 / gamma_1_2);
1023 Fwd[1][kk] = Fwd[0][kk] * V * cos(theta);
1024 Fwd[2][kk] = Fwd[0][kk] * V * sin(theta);
1027 P = (c * c) * Fwd[0][kk] / gamma;
1028 Fwd[3][kk] = P / (gamma - 1.0) + 0.5 *
1029 (Fwd[1][kk] * Fwd[1][kk] / Fwd[0][kk] +
1030 Fwd[2][kk] * Fwd[2][kk] / Fwd[0][kk]);
1035 V = kExt * sin(theta);
1038 for (
int i = 0; i < nvariables; ++i)
1041 &(
m_fields[i]->GetBndCondExpansions()[bcRegion]->
1042 UpdatePhys())[id1],1);
#define ASSERTL0(condition, msg)
virtual void v_SetInitialConditions(NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
Set the initial conditions.
virtual void v_InitObject()
Initialization object for CompressibleFlowSystem class.
virtual void v_GenerateSummary(SolverUtils::SummaryList &s)
Print a summary of time stepping parameters.
LibUtilities::TimeIntegrationSchemeOperators m_ode
The time integration scheme operators to use.
std::vector< std::pair< std::string, std::string > > SummaryList
void SetInitialIsentropicVortex(NekDouble initialtime)
Set the initial condition for the isentropic vortex problem.
int m_expdim
Expansion dimension.
SOLVER_UTILS_EXPORT void Checkpoint_Output(const int n)
Write checkpoint file of m_fields.
void EvaluateIsentropicVortex(const Array< OneD, NekDouble > &x, const Array< OneD, NekDouble > &y, const Array< OneD, NekDouble > &z, Array< OneD, Array< OneD, NekDouble > > &u, NekDouble time, const int o=0)
Isentropic Vortex Test Case.
enum MultiRegions::ProjectionType m_projectionType
Type of projection; e.g continuous or discontinuous.
std::string m_sessionName
Name of the session.
void SetInitialRinglebFlow(void)
Set the initial condition for the Ringleb flow problem.
boost::shared_ptr< SessionReader > SessionReaderSharedPtr
int m_checksteps
Number of steps between checkpoints.
virtual ~EulerCFE()
problem type selector
SOLVER_UTILS_EXPORT int GetTotPoints()
virtual void v_GenerateSummary(SolverUtils::SummaryList &s)
Print a summary of time stepping parameters.
void SetCommonBC(const std::string &userDefStr, const int n, const NekDouble time, int &cnt, Array< OneD, Array< OneD, NekDouble > > &inarray)
Set boundary conditions which can be: a) Wall and Symmerty BCs implemented at CompressibleFlowSystem ...
void DefineProjection(FuncPointerT func, ObjectPointerT obj)
void DoOdeProjection(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
Compute the projection and call the method for imposing the boundary conditions in case of discontinu...
bool m_explicitAdvection
Indicates if explicit or implicit treatment of advection is used.
void SetBoundaryRinglebFlow(int bcRegion, NekDouble time, int cnt, Array< OneD, Array< OneD, NekDouble > > &physarray)
Set the boundary conditions for the Ringleb flow problem.
void DefineOdeRhs(FuncPointerT func, ObjectPointerT obj)
void AddSummaryItem(SummaryList &l, const std::string &name, const std::string &value)
Adds a summary item to the summary info list.
int m_spacedim
Spatial dimension (>= expansion dim).
void Neg(int n, T *x, const int incx)
Negate x = -x.
virtual SOLVER_UTILS_EXPORT void v_SetInitialConditions(NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
void DoOdeRhs(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
Compute the right-hand side.
void GetExactIsentropicVortex(int field, Array< OneD, NekDouble > &outarray, NekDouble time)
Compute the exact solution for the isentropic vortex problem.
void GetExactRinglebFlow(int field, Array< OneD, NekDouble > &outarray)
Ringleb Flow Test Case.
EquationSystemFactory & GetEquationSystemFactory()
SolverUtils::AdvectionSharedPtr m_advection
SOLVER_UTILS_EXPORT int GetTraceTotPoints()
SOLVER_UTILS_EXPORT void WriteFld(const std::string &outname)
Write field data to the given filename.
virtual void v_EvaluateExactSolution(unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time=0.0)
Get the exact solutions for isentropic vortex and Ringleb flow problems.
SOLVER_UTILS_EXPORT int GetNpoints()
ProblemType m_problemType
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
virtual void v_SetInitialConditions(NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
virtual void v_InitObject()
Initialization object for CompressibleFlowSystem class.
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
void Zero(int n, T *x, const int incx)
Zero vector.
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
std::vector< SolverUtils::ForcingSharedPtr > m_forcing
virtual SOLVER_UTILS_EXPORT void v_EvaluateExactSolution(unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
void SetBoundaryConditions(Array< OneD, Array< OneD, NekDouble > > &physarray, NekDouble time)
Set boundary conditions which can be: a) Wall and Symmerty BCs implemented at CompressibleFlowSystem ...
void SetBoundaryIsentropicVortex(int bcRegion, NekDouble time, int cnt, Array< OneD, Array< OneD, NekDouble > > &physarray)
Set the boundary conditions for the isentropic vortex problem.
enum HomogeneousType m_HomogeneousType
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, tDescription pDesc="")
Register a class with the factory.
const char *const ProblemTypeMap[]