Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
NavierStokesAdvection.cpp
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // File NavierStokesAdvection.cpp
4 //
5 // For more information, please see: http://www.nektar.info
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // License for the specific language governing rights and limitations under
14 // Permission is hereby granted, free of charge, to any person obtaining a
15 // copy of this software and associated documentation files (the "Software"),
16 // to deal in the Software without restriction, including without limitation
17 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
18 // and/or sell copies of the Software, and to permit persons to whom the
19 // Software is furnished to do so, subject to the following conditions:
20 //
21 // The above copyright notice and this permission notice shall be included
22 // in all copies or substantial portions of the Software.
23 //
24 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
25 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
26 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
27 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
28 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
29 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
30 // DEALINGS IN THE SOFTWARE.
31 //
32 // Description: Evaluation of the Navier Stokes advective term
33 //
34 ///////////////////////////////////////////////////////////////////////////////
35 
37 
38 using namespace std;
39 
40 namespace Nektar
41 {
42  string NavierStokesAdvection::className = SolverUtils::GetAdvectionFactory().RegisterCreatorFunction("Convective", NavierStokesAdvection::create);
43  string NavierStokesAdvection::className2 = SolverUtils::GetAdvectionFactory().RegisterCreatorFunction("NonConservative", NavierStokesAdvection::create);
44 
45  /**
46  * Constructor. Creates ...
47  *
48  * \param
49  * \param
50  */
51 
52  NavierStokesAdvection::NavierStokesAdvection():
53  Advection()
54 
55  {
56 
57  }
58 
60  {
61  }
62 
63 
67  {
69  m_homogen_dealiasing = pSession->DefinesSolverInfo("dealiasing");
70 
71  pSession->MatchSolverInfo("SPECTRALHPDEALIASING","True",m_specHP_dealiasing,false);
72  if(m_specHP_dealiasing == false)
73  {
74  pSession->MatchSolverInfo("SPECTRALHPDEALIASING","On",m_specHP_dealiasing,false);
75  }
76  pSession->MatchSolverInfo("ModeType","SingleMode",m_SingleMode,false);
77  pSession->MatchSolverInfo("ModeType","HalfMode",m_HalfMode,false);
78 
79  Advection::v_InitObject(pSession, pFields);
80  }
81 
82 
84  const int nConvectiveFields,
86  const Array<OneD, Array<OneD, NekDouble> > &advVel,
87  const Array<OneD, Array<OneD, NekDouble> > &inarray,
88  Array<OneD, Array<OneD, NekDouble> > &outarray,
89  const NekDouble &time)
90  {
91  int nqtot = fields[0]->GetTotPoints();
92  ASSERTL1(nConvectiveFields == inarray.num_elements(),"Number of convective fields and Inarray are not compatible");
93 
94  Array<OneD, NekDouble > Deriv(nqtot*nConvectiveFields);
95 
96  for(int n = 0; n < nConvectiveFields; ++n)
97  {
98  // use dimension of Velocity vector to dictate dimension of operation
99  int ndim = advVel.num_elements();
100  Array<OneD, Array<OneD, NekDouble> > AdvVel (advVel.num_elements());
101  Array<OneD, NekDouble> Outarray;
102 
103 
104  int nPointsTot = fields[0]->GetNpoints();
105  Array<OneD, NekDouble> grad0,grad1,grad2,wkSp;
106 
107  NekDouble OneDptscale = 1.5; // factor to rescale 1d points in dealiasing
108 
110  {
111  // Get number of points to dealias a quadratic non-linearity
112  nPointsTot = fields[0]->Get1DScaledTotPoints(OneDptscale);
113  }
114 
115  grad0 = Array<OneD, NekDouble> (nPointsTot);
116 
117  // interpolate Advection velocity
118  int nadv = advVel.num_elements();
119  if(m_specHP_dealiasing) // interpolate advection field to higher space.
120  {
121  AdvVel[0] = Array<OneD, NekDouble> (nPointsTot*(nadv+1));
122  for(int i = 0; i < nadv; ++i)
123  {
124  if(i)
125  {
126  AdvVel[i] = AdvVel[i-1]+nPointsTot;
127  }
128  // interpolate infield to 3/2 dimension
129  fields[0]->PhysInterp1DScaled(OneDptscale,advVel[i],AdvVel[i]);
130  }
131 
132  Outarray = AdvVel[nadv-1] + nPointsTot;
133  }
134  else
135  {
136  for(int i = 0; i < nadv; ++i)
137  {
138  AdvVel[i] = advVel[i];
139  }
140 
141  Outarray = outarray[n];
142  }
143 
144  wkSp = Array<OneD, NekDouble> (nPointsTot);
145 
146 
147  // Evaluate V\cdot Grad(u)
148  switch(ndim)
149  {
150  case 1:
151  fields[0]->PhysDeriv(inarray[n],grad0);
152  Vmath::Vmul(nPointsTot,grad0,1,advVel[0],1,outarray[n],1);
153  break;
154  case 2:
155  {
156  grad1 = Array<OneD, NekDouble> (nPointsTot);
157  fields[0]->PhysDeriv(inarray[n],grad0,grad1);
158 
159  if(m_specHP_dealiasing) // interpolate gradient field
160  {
161  fields[0]->PhysInterp1DScaled(OneDptscale,grad0,wkSp);
162  Vmath::Vcopy(nPointsTot,wkSp,1,grad0,1);
163  fields[0]->PhysInterp1DScaled(OneDptscale,grad1,wkSp);
164  Vmath::Vcopy(nPointsTot,wkSp,1,grad1,1);
165  }
166 
167  Vmath::Vmul (nPointsTot,grad0,1,AdvVel[0],1,Outarray,1);
168  Vmath::Vvtvp(nPointsTot,grad1,1,AdvVel[1],1,Outarray,1,Outarray,1);
169 
170  if(m_specHP_dealiasing) // Galerkin project solution back to origianl space
171  {
172  fields[0]->PhysGalerkinProjection1DScaled(OneDptscale,Outarray,outarray[n]);
173  }
174 
175  }
176  break;
177  case 3:
178  grad1 = Array<OneD, NekDouble> (fields[0]->GetNpoints());
179  grad2 = Array<OneD, NekDouble> (fields[0]->GetNpoints());
180 
181  if(fields[0]->GetWaveSpace() == false && m_homogen_dealiasing == true )
182  {
183  ASSERTL0(m_specHP_dealiasing == false,"Spectral/hp element dealaising is not set up for this option");
184 
185  fields[0]->PhysDeriv(inarray[n],grad0,grad1,grad2);
186 
187  fields[0]->DealiasedProd(advVel[0],grad0,grad0,m_CoeffState);
188  fields[0]->DealiasedProd(advVel[1],grad1,grad1,m_CoeffState);
189  fields[0]->DealiasedProd(advVel[2],grad2,grad2,m_CoeffState);
190  Vmath::Vadd(nPointsTot,grad0,1,grad1,1,outarray[n],1);
191  Vmath::Vadd(nPointsTot,grad2,1,outarray[n],1,outarray[n],1);
192  }
193  else if(fields[0]->GetWaveSpace() == true && m_homogen_dealiasing == false)
194  {
195  // take d/dx, d/dy gradients in physical Fourier space
196  fields[0]->PhysDeriv(advVel[n],grad0,grad1);
197 
198  // Take d/dz derivative using wave space field
199  fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[2],inarray[n],
200  outarray[n]);
201  fields[0]->HomogeneousBwdTrans(outarray[n],grad2);
202 
203  if(m_specHP_dealiasing) //interpolate spectral/hp gradient field
204  {
205  fields[0]->PhysInterp1DScaled(OneDptscale,grad0,wkSp);
206  Vmath::Vmul(nPointsTot,wkSp,1,AdvVel[0],1,Outarray,1);
207  }
208  else
209  {
210  Vmath::Vmul(nPointsTot,grad0,1,AdvVel[0],1,Outarray,1);
211  }
212 
213  if(m_specHP_dealiasing) //interpolate spectral/hp gradient field
214  {
215  fields[0]->PhysInterp1DScaled(OneDptscale,grad1,wkSp);
216  Vmath::Vvtvp(nPointsTot,wkSp,1,AdvVel[1],1,Outarray,1,
217  Outarray,1);
218  }
219  else
220  {
221  Vmath::Vvtvp(nPointsTot,grad1,1,AdvVel[1],1,Outarray,1,
222  Outarray,1);
223  }
224 
225  if(m_specHP_dealiasing) //interpolate spectral/hp gradient field
226  {
227  fields[0]->PhysInterp1DScaled(OneDptscale,grad2,wkSp);
228  Vmath::Vvtvp(nPointsTot,wkSp,1,AdvVel[2],1,Outarray,1,Outarray,1);
229  fields[0]->PhysGalerkinProjection1DScaled(OneDptscale,Outarray,grad2);
230  fields[0]->HomogeneousFwdTrans(grad2,outarray[n]);
231  }
232  else
233  {
234  Vmath::Vvtvp(nPointsTot,grad2,1,AdvVel[2],1,Outarray,1,grad0,1);
235  fields[0]->HomogeneousFwdTrans(grad0,outarray[n]);
236  }
237  }
238  else if(fields[0]->GetWaveSpace() == false && m_homogen_dealiasing == false)
239  {
240 
241  fields[0]->PhysDeriv(inarray[n],grad0,grad1,grad2);
242 
243  if(m_specHP_dealiasing) //interpolate spectral/hp gradient field
244  {
245  fields[0]->PhysInterp1DScaled(OneDptscale,grad0,wkSp);
246  Vmath::Vmul(nPointsTot,wkSp,1,AdvVel[0],1,Outarray,1);
247  }
248  else
249  {
250  Vmath::Vmul(nPointsTot,grad0,1,AdvVel[0],1,Outarray,1);
251  }
252 
253 
254  if(m_specHP_dealiasing) //interpolate spectral/hp gradient field
255  {
256  fields[0]->PhysInterp1DScaled(OneDptscale,grad1,wkSp);
257  Vmath::Vvtvp(nPointsTot,wkSp,1,AdvVel[1],1,Outarray,1,
258  Outarray,1);
259  }
260  else
261  {
262  Vmath::Vvtvp(nPointsTot,grad1,1,AdvVel[1],1,Outarray,1,
263  Outarray,1);
264  }
265 
266  if(m_specHP_dealiasing) //interpolate spectral/hp gradient field
267  {
268  fields[0]->PhysInterp1DScaled(OneDptscale,grad2,wkSp);
269  Vmath::Vvtvp(nPointsTot,wkSp,1,AdvVel[2],1,Outarray,1,Outarray,1);
270  fields[0]->PhysGalerkinProjection1DScaled(OneDptscale,Outarray,outarray[n]);
271  }
272  else
273  {
274  Vmath::Vvtvp(nPointsTot,grad2,1,AdvVel[2],1,Outarray,1,outarray[n],1);
275  }
276  }
277  else if(fields[0]->GetWaveSpace() == true && m_homogen_dealiasing == true)
278  {
279  ASSERTL0(m_specHP_dealiasing == false,"Spectral/hp element dealaising is not set up for this option");
280 
281  fields[0]->PhysDeriv(inarray[n],grad0,grad1,grad2);
282 
283  fields[0]->HomogeneousBwdTrans(grad0, outarray[n]);
284  fields[0]->DealiasedProd(advVel[0], outarray[n], grad0,
285  m_CoeffState);
286 
287  fields[0]->HomogeneousBwdTrans(grad1,outarray[n]);
288  fields[0]->DealiasedProd(advVel[1], outarray[n], grad1,
289  m_CoeffState);
290 
291  fields[0]->HomogeneousBwdTrans(grad2,outarray[n]);
292  fields[0]->DealiasedProd(advVel[2], outarray[n], grad2,
293  m_CoeffState);
294 
295  Vmath::Vadd(nPointsTot, grad0, 1, grad1, 1, grad0, 1);
296  Vmath::Vadd(nPointsTot, grad0, 1, grad2, 1, grad0, 1);
297 
298  fields[0]->HomogeneousFwdTrans(grad0,outarray[n]);
299  }
300  else
301  {
302  ASSERTL0(false, "Advection term calculation not implented or "
303  "possible with the current problem set up");
304  }
305  break;
306  default:
307  ASSERTL0(false,"dimension unknown");
308  }
309 
310  Vmath::Neg(nqtot,outarray[n],1);
311  }
312 
313  }
314 
315 } //end of namespace
316 
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
Local coefficients.
virtual void v_Advect(const int nConvectiveFields, const Array< OneD, MultiRegions::ExpListSharedPtr > &fields, const Array< OneD, Array< OneD, NekDouble > > &advVel, const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble &time)
Advects a vector field.
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:428
STL namespace.
boost::shared_ptr< SessionReader > SessionReaderSharedPtr
Definition: MeshPartition.h:51
AdvectionFactory & GetAdvectionFactory()
Gets the factory for initialising advection objects.
Definition: Advection.cpp:46
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:382
double NekDouble
MultiRegions::CoeffState m_CoeffState
MultiRegions::Direction const DirCartesianMap[]
Definition: ExpList.h:86
virtual void v_InitObject(LibUtilities::SessionReaderSharedPtr pSession, Array< OneD, MultiRegions::ExpListSharedPtr > pFields)
Initialises the advection object.
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1047
virtual SOLVER_UTILS_EXPORT void v_InitObject(LibUtilities::SessionReaderSharedPtr pSession, Array< OneD, MultiRegions::ExpListSharedPtr > pFields)
Initialises the advection object.
Definition: Advection.cpp:97
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:285
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
Defines a callback function which evaluates the flux vector.
Definition: Advection.h:69
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, tDescription pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:215