Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
Public Member Functions | Protected Member Functions | Private Member Functions | Private Attributes | List of all members
Nektar::LocalRegions::HexExp Class Reference

#include <HexExp.h>

Inheritance diagram for Nektar::LocalRegions::HexExp:
Inheritance graph
[legend]
Collaboration diagram for Nektar::LocalRegions::HexExp:
Collaboration graph
[legend]

Public Member Functions

 HexExp (const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc, const SpatialDomains::HexGeomSharedPtr &geom)
 Constructor using BasisKey class for quadrature points and order definition. More...
 
 HexExp (const HexExp &T)
 Copy Constructor. More...
 
 ~HexExp ()
 Destructor. More...
 
- Public Member Functions inherited from Nektar::StdRegions::StdHexExp
 StdHexExp ()
 
 StdHexExp (const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc)
 
 StdHexExp (const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc, NekDouble *coeffs, NekDouble *phys)
 
 StdHexExp (const StdHexExp &T)
 
 ~StdHexExp ()
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion3D
 StdExpansion3D ()
 
 StdExpansion3D (int numcoeffs, const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc)
 
 StdExpansion3D (const StdExpansion3D &T)
 
virtual ~StdExpansion3D ()
 
void PhysTensorDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray_d1, Array< OneD, NekDouble > &outarray_d2, Array< OneD, NekDouble > &outarray_d3)
 Calculate the 3D derivative in the local tensor/collapsed coordinate at the physical points. More...
 
void BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
void IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion
 StdExpansion ()
 Default Constructor. More...
 
 StdExpansion (const int numcoeffs, const int numbases, const LibUtilities::BasisKey &Ba=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bb=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bc=LibUtilities::NullBasisKey)
 Constructor. More...
 
 StdExpansion (const StdExpansion &T)
 Copy Constructor. More...
 
virtual ~StdExpansion ()
 Destructor. More...
 
int GetNumBases () const
 This function returns the number of 1D bases used in the expansion. More...
 
const Array< OneD, const
LibUtilities::BasisSharedPtr > & 
GetBase () const
 This function gets the shared point to basis. More...
 
const
LibUtilities::BasisSharedPtr
GetBasis (int dir) const
 This function gets the shared point to basis in the dir direction. More...
 
int GetNcoeffs (void) const
 This function returns the total number of coefficients used in the expansion. More...
 
int GetTotPoints () const
 This function returns the total number of quadrature points used in the element. More...
 
LibUtilities::BasisType GetBasisType (const int dir) const
 This function returns the type of basis used in the dir direction. More...
 
int GetBasisNumModes (const int dir) const
 This function returns the number of expansion modes in the dir direction. More...
 
int EvalBasisNumModesMax (void) const
 This function returns the maximum number of expansion modes over all local directions. More...
 
LibUtilities::PointsType GetPointsType (const int dir) const
 This function returns the type of quadrature points used in the dir direction. More...
 
int GetNumPoints (const int dir) const
 This function returns the number of quadrature points in the dir direction. More...
 
const Array< OneD, const
NekDouble > & 
GetPoints (const int dir) const
 This function returns a pointer to the array containing the quadrature points in dir direction. More...
 
int GetNverts () const
 This function returns the number of vertices of the expansion domain. More...
 
int GetNedges () const
 This function returns the number of edges of the expansion domain. More...
 
int GetEdgeNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th edge. More...
 
int GetTotalEdgeIntNcoeffs () const
 
int GetEdgeNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th edge. More...
 
int DetCartesianDirOfEdge (const int edge)
 
const LibUtilities::BasisKey DetEdgeBasisKey (const int i) const
 
const LibUtilities::BasisKey DetFaceBasisKey (const int i, const int k) const
 
int GetFaceNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th face. More...
 
int GetFaceNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th face. More...
 
int GetFaceIntNcoeffs (const int i) const
 
int GetTotalFaceIntNcoeffs () const
 
int GetTraceNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th edge/face. More...
 
LibUtilities::PointsKey GetFacePointsKey (const int i, const int j) const
 
int NumBndryCoeffs (void) const
 
int NumDGBndryCoeffs (void) const
 
LibUtilities::BasisType GetEdgeBasisType (const int i) const
 This function returns the type of expansion basis on the i-th edge. More...
 
const LibUtilities::PointsKey GetNodalPointsKey () const
 This function returns the type of expansion Nodal point type if defined. More...
 
int GetNfaces () const
 This function returns the number of faces of the expansion domain. More...
 
int GetNtrace () const
 Returns the number of trace elements connected to this element. More...
 
LibUtilities::ShapeType DetShapeType () const
 This function returns the shape of the expansion domain. More...
 
boost::shared_ptr< StdExpansionGetStdExp (void) const
 
int GetShapeDimension () const
 
bool IsBoundaryInteriorExpansion ()
 
bool IsNodalNonTensorialExp ()
 
void BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Backward transformation from coefficient space to physical space. More...
 
void FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Forward transformation from physical space to coefficient space. More...
 
void FwdTrans_BndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble Integral (const Array< OneD, const NekDouble > &inarray)
 This function integrates the specified function over the domain. More...
 
void FillMode (const int mode, Array< OneD, NekDouble > &outarray)
 This function fills the array outarray with the mode-th mode of the expansion. More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 this function calculates the inner product of a given function f with the different modes of the expansion More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &base, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int coll_check)
 
void IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
int GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void SetElmtId (const int id)
 Set the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2=NullNekDouble1DArray, Array< OneD, NekDouble > &coords_3=NullNekDouble1DArray)
 this function returns the physical coordinates of the quadrature points of the expansion More...
 
void GetCoord (const Array< OneD, const NekDouble > &Lcoord, Array< OneD, NekDouble > &coord)
 given the coordinates of a point of the element in the local collapsed coordinate system, this function calculates the physical coordinates of the point More...
 
DNekMatSharedPtr GetStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr GetStdStaticCondMatrix (const StdMatrixKey &mkey)
 
IndexMapValuesSharedPtr GetIndexMap (const IndexMapKey &ikey)
 
const Array< OneD, const
NekDouble > & 
GetPhysNormals (void)
 
void SetPhysNormals (Array< OneD, const NekDouble > &normal)
 
virtual void SetUpPhysNormals (const int edge)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
DNekScalBlkMatSharedPtr GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
void DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
StdRegions::Orientation GetForient (int face)
 
StdRegions::Orientation GetEorient (int edge)
 
StdRegions::Orientation GetPorient (int point)
 
StdRegions::Orientation GetCartesianEorient (int edge)
 
void SetCoeffsToOrientation (Array< OneD, NekDouble > &coeffs, StdRegions::Orientation dir)
 
void SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
int CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
void ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int nmodes_offset, NekDouble *coeffs)
 
NekDouble StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
int GetCoordim ()
 
void GetBoundaryMap (Array< OneD, unsigned int > &outarray)
 
void GetInteriorMap (Array< OneD, unsigned int > &outarray)
 
int GetVertexMap (const int localVertexId, bool useCoeffPacking=false)
 
void GetEdgeInteriorMap (const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
 
void GetFaceInteriorMap (const int fid, const Orientation faceOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
 
void GetEdgeToElementMap (const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, int P=-1)
 
void GetFaceToElementMap (const int fid, const Orientation faceOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, int nummodesA=-1, int nummodesB=-1)
 
void GetEdgePhysVals (const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Extract the physical values along edge edge from inarray into outarray following the local edge orientation and point distribution defined by defined in EdgeExp. More...
 
void GetEdgePhysVals (const int edge, const boost::shared_ptr< StdExpansion > &EdgeExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GetTracePhysVals (const int edge, const boost::shared_ptr< StdExpansion > &EdgeExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GetVertexPhysVals (const int vertex, const Array< OneD, const NekDouble > &inarray, NekDouble &outarray)
 
void GetEdgeInterpVals (const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GetEdgeQFactors (const int edge, Array< OneD, NekDouble > &outarray)
 Extract the metric factors to compute the contravariant fluxes along edge edge and stores them into outarray following the local edge orientation (i.e. anticlockwise convention). More...
 
void GetFacePhysVals (const int face, const boost::shared_ptr< StdExpansion > &FaceExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient=eNoOrientation)
 
void GetEdgePhysMap (const int edge, Array< OneD, int > &outarray)
 
void GetFacePhysMap (const int face, Array< OneD, int > &outarray)
 
void MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
DNekMatSharedPtr CreateGeneralMatrix (const StdMatrixKey &mkey)
 this function generates the mass matrix $\mathbf{M}[i][j] = \int \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x}$ More...
 
void GeneralMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
DNekMatSharedPtr GenMatrix (const StdMatrixKey &mkey)
 
void PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void PhysDeriv_s (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_ds)
 
void PhysDeriv_n (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_dn)
 
void PhysDirectionalDeriv (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &direction, Array< OneD, NekDouble > &outarray)
 
void StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void AddRobinMassMatrix (const int edgeid, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat)
 
void AddRobinEdgeContribution (const int edgeid, const Array< OneD, const NekDouble > &primCoeffs, Array< OneD, NekDouble > &coeffs)
 
NekDouble PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
void LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
 Convert local cartesian coordinate xi into local collapsed coordinates eta. More...
 
const boost::shared_ptr
< SpatialDomains::GeomFactors > & 
GetMetricInfo (void) const
 
virtual int v_GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
virtual const Array< OneD,
const NekDouble > & 
v_GetPhysNormals (void)
 
virtual void v_SetPhysNormals (Array< OneD, const NekDouble > &normal)
 
virtual void v_SetUpPhysNormals (const int edge)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
virtual StdRegions::Orientation v_GetEorient (int edge)
 
virtual StdRegions::Orientation v_GetCartesianEorient (int edge)
 
virtual StdRegions::Orientation v_GetPorient (int point)
 
NekDouble Linf (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete $ L_\infty$ error $ |\epsilon|_\infty = \max |u - u_{exact}|$ where $ u_{exact}$ is given by the array sol. More...
 
NekDouble L2 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete $ L_2$ error, $ | \epsilon |_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 dx \right]^{1/2} d\xi_1 $ where $ u_{exact}$ is given by the array sol. More...
 
NekDouble H1 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete $ H^1$ error, $ | \epsilon |^1_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 + \nabla(u - u_{exact})\cdot\nabla(u - u_{exact})\cdot dx \right]^{1/2} d\xi_1 $ where $ u_{exact}$ is given by the array sol. More...
 
const NormalVectorGetEdgeNormal (const int edge) const
 
void ComputeEdgeNormal (const int edge)
 
void NegateEdgeNormal (const int edge)
 
bool EdgeNormalNegated (const int edge)
 
void ComputeFaceNormal (const int face)
 
void NegateFaceNormal (const int face)
 
bool FaceNormalNegated (const int face)
 
void ComputeVertexNormal (const int vertex)
 
const NormalVectorGetFaceNormal (const int face) const
 
const NormalVectorGetVertexNormal (const int vertex) const
 
const NormalVectorGetSurfaceNormal (const int id) const
 
const LibUtilities::PointsKeyVector GetPointsKeys () const
 
Array< OneD, unsigned int > GetEdgeInverseBoundaryMap (int eid)
 
Array< OneD, unsigned int > GetFaceInverseBoundaryMap (int fid, StdRegions::Orientation faceOrient=eNoOrientation)
 
DNekMatSharedPtr BuildInverseTransformationMatrix (const DNekScalMatSharedPtr &m_transformationmatrix)
 
void PhysInterpToSimplexEquiSpaced (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int npset=-1)
 This function performs an interpolation from the physical space points provided at input into an array of equispaced points which are not the collapsed coordinate. So for a tetrahedron you will only get a tetrahedral number of values. More...
 
void GetSimplexEquiSpacedConnectivity (Array< OneD, int > &conn, bool standard=true)
 This function provides the connectivity of local simplices (triangles or tets) to connect the equispaced data points provided by PhysInterpToSimplexEquiSpaced. More...
 
void EquiSpacedToCoeffs (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs a projection/interpolation from the equispaced points sometimes used in post-processing onto the coefficient space. More...
 
template<class T >
boost::shared_ptr< T > as ()
 
void IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
 
- Public Member Functions inherited from Nektar::LocalRegions::Expansion3D
 Expansion3D (SpatialDomains::Geometry3DSharedPtr pGeom)
 
virtual ~Expansion3D ()
 
void SetFaceExp (const int face, Expansion2DSharedPtr &f)
 
Expansion2DSharedPtr GetFaceExp (const int face)
 
void SetTraceToGeomOrientation (Array< OneD, NekDouble > &inout)
 Align trace orientation with the geometry orientation. More...
 
void SetFaceToGeomOrientation (const int face, Array< OneD, NekDouble > &inout)
 Align face orientation with the geometry orientation. More...
 
void AddHDGHelmholtzFaceTerms (const NekDouble tau, const int edge, Array< OneD, NekDouble > &facePhys, const StdRegions::VarCoeffMap &dirForcing, Array< OneD, NekDouble > &outarray)
 
void AddNormTraceInt (const int dir, Array< OneD, ExpansionSharedPtr > &FaceExp, Array< OneD, Array< OneD, NekDouble > > &faceCoeffs, Array< OneD, NekDouble > &outarray)
 
void AddNormTraceInt (const int dir, Array< OneD, const NekDouble > &inarray, Array< OneD, ExpansionSharedPtr > &FaceExp, Array< OneD, NekDouble > &outarray, const StdRegions::VarCoeffMap &varcoeffs)
 
void AddFaceBoundaryInt (const int face, ExpansionSharedPtr &FaceExp, Array< OneD, NekDouble > &facePhys, Array< OneD, NekDouble > &outarray, const StdRegions::VarCoeffMap &varcoeffs=StdRegions::NullVarCoeffMap)
 
SpatialDomains::Geometry3DSharedPtr GetGeom3D () const
 
void ReOrientFacePhysMap (const int nvert, const StdRegions::Orientation orient, const int nq0, const int nq1, Array< OneD, int > &idmap)
 
void v_NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
- Public Member Functions inherited from Nektar::LocalRegions::Expansion
 Expansion (SpatialDomains::GeometrySharedPtr pGeom)
 
 Expansion (const Expansion &pSrc)
 
virtual ~Expansion ()
 
DNekScalMatSharedPtr GetLocMatrix (const LocalRegions::MatrixKey &mkey)
 
DNekScalMatSharedPtr GetLocMatrix (const StdRegions::MatrixType mtype, const StdRegions::ConstFactorMap &factors=StdRegions::NullConstFactorMap, const StdRegions::VarCoeffMap &varcoeffs=StdRegions::NullVarCoeffMap)
 
SpatialDomains::GeometrySharedPtr GetGeom () const
 
void Reset ()
 
virtual const
SpatialDomains::GeomFactorsSharedPtr
v_GetMetricInfo () const
 
DNekMatSharedPtr BuildTransformationMatrix (const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType)
 
DNekMatSharedPtr BuildVertexMatrix (const DNekScalMatSharedPtr &r_bnd)
 
void AddEdgeNormBoundaryInt (const int edge, const boost::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void AddEdgeNormBoundaryInt (const int edge, const boost::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
void AddFaceNormBoundaryInt (const int face, const boost::shared_ptr< Expansion > &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
void DGDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, ExpansionSharedPtr > &EdgeExp, Array< OneD, Array< OneD, NekDouble > > &coeffs, Array< OneD, NekDouble > &outarray)
 

Protected Member Functions

virtual NekDouble v_Integral (const Array< OneD, const NekDouble > &inarray)
 Integrate the physical point list inarray over region. More...
 
virtual void v_PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2)
 Calculate the derivative of the physical points. More...
 
virtual void v_PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Calculate the derivative of the physical points in a single direction. More...
 
virtual void v_FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Forward transform from physical quadrature space stored in inarray and evaluate the expansion coefficients and store in (this)->_coeffs. More...
 
virtual void v_IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Calculate the inner product of inarray with respect to the elements basis. More...
 
virtual void v_IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
 Calculate the inner product of inarray with respect to the given basis B = base0 * base1 * base2. More...
 
virtual void v_IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Calculates the inner product $ I_{pqr} = (u, \partial_{x_i} \phi_{pqr}) $. More...
 
void IProductWRTDerivBase_MatOp (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual NekDouble v_StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
virtual NekDouble v_PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
virtual void v_GetCoord (const Array< OneD, const NekDouble > &Lcoords, Array< OneD, NekDouble > &coords)
 Retrieves the physical coordinates of a given set of reference coordinates. More...
 
virtual void v_GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3)
 
virtual LibUtilities::ShapeType v_DetShapeType () const
 Return the region shape using the enum-list of ShapeType. More...
 
virtual
StdRegions::StdExpansionSharedPtr 
v_GetStdExp (void) const
 
virtual void v_ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int mode_offset, NekDouble *coeffs)
 Unpack data from input file assuming it comes from the same expansion type. More...
 
virtual bool v_GetFaceDGForwards (const int i) const
 
virtual void v_GetFacePhysMap (const int face, Array< OneD, int > &outarray)
 
void v_ComputeFaceNormal (const int face)
 
virtual void v_MassMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_LaplacianMatrixOp (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_WeakDerivMatrixOp (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_WeakDirectionalDerivMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_MassLevelCurvatureMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
void v_GeneralMatrixOp_MatOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdRegions::StdMatrixKey &mkey)
 
virtual DNekMatSharedPtr v_GenMatrix (const StdRegions::StdMatrixKey &mkey)
 
virtual DNekMatSharedPtr v_CreateStdMatrix (const StdRegions::StdMatrixKey &mkey)
 
DNekScalMatSharedPtr CreateMatrix (const MatrixKey &mkey)
 
DNekScalBlkMatSharedPtr CreateStaticCondMatrix (const MatrixKey &mkey)
 
virtual DNekScalMatSharedPtr v_GetLocMatrix (const MatrixKey &mkey)
 
virtual DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix (const MatrixKey &mkey)
 
void v_DropLocStaticCondMatrix (const MatrixKey &mkey)
 
virtual void v_ComputeLaplacianMetric ()
 
- Protected Member Functions inherited from Nektar::StdRegions::StdHexExp
virtual void v_StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2)
 
virtual void v_StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
virtual void v_IProductWRTBase_MatOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
virtual void v_IProductWRTDerivBase_MatOp (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
 
virtual void v_FillMode (const int mode, Array< OneD, NekDouble > &outarray)
 
virtual int v_GetNverts () const
 
virtual int v_GetNedges () const
 
virtual int v_GetNfaces () const
 
virtual int v_NumBndryCoeffs () const
 
virtual int v_NumDGBndryCoeffs () const
 
virtual int v_GetEdgeNcoeffs (const int i) const
 
virtual int v_GetTotalEdgeIntNcoeffs () const
 
virtual int v_GetFaceNcoeffs (const int i) const
 
virtual int v_GetFaceIntNcoeffs (const int i) const
 
virtual int v_GetTotalFaceIntNcoeffs () const
 
virtual int v_GetFaceNumPoints (const int i) const
 
virtual LibUtilities::PointsKey v_GetFacePointsKey (const int i, const int j) const
 
virtual int v_CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
virtual const
LibUtilities::BasisKey 
v_DetFaceBasisKey (const int i, const int k) const
 
virtual LibUtilities::BasisType v_GetEdgeBasisType (const int i) const
 
virtual bool v_IsBoundaryInteriorExpansion ()
 
virtual void v_GetFaceToElementMap (const int fid, const Orientation faceOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, int nummodesA=-1, int nummodesB=-1)
 
virtual int v_GetVertexMap (int localVertexId, bool useCoeffPacking=false)
 
virtual void v_GetEdgeInteriorMap (const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
 
virtual void v_GetFaceInteriorMap (const int fid, const Orientation faceOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
 
virtual void v_GetInteriorMap (Array< OneD, unsigned int > &outarray)
 
virtual void v_GetBoundaryMap (Array< OneD, unsigned int > &outarray)
 
virtual void v_MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion3D
virtual NekDouble v_PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
 
virtual void v_LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_NegateFaceNormal (const int face)
 
virtual bool v_FaceNormalNegated (const int face)
 
virtual int v_GetTraceNcoeffs (const int i) const
 
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion
DNekMatSharedPtr CreateStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr CreateStdStaticCondMatrix (const StdMatrixKey &mkey)
 Create the static condensation of a matrix when using a boundary interior decomposition. More...
 
IndexMapValuesSharedPtr CreateIndexMap (const IndexMapKey &ikey)
 Create an IndexMap which contains mapping information linking any specific element shape with either its boundaries, edges, faces, verteces, etc. More...
 
void BwdTrans_MatOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GeneralMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree_Kernel (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
 
void LaplacianMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp_MatFree (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void HelmholtzMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
virtual void v_SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_SetCoeffsToOrientation (Array< OneD, NekDouble > &coeffs, StdRegions::Orientation dir)
 
- Protected Member Functions inherited from Nektar::LocalRegions::Expansion3D
virtual void v_DGDeriv (const int dir, const Array< OneD, const NekDouble > &incoeffs, Array< OneD, ExpansionSharedPtr > &FaceExp, Array< OneD, Array< OneD, NekDouble > > &faceCoeffs, Array< OneD, NekDouble > &out_d)
 Evaluate coefficients of weak deriviative in the direction dir given the input coefficicents incoeffs and the imposed boundary values in EdgeExp (which will have its phys space updated). More...
 
virtual void v_AddFaceNormBoundaryInt (const int face, const ExpansionSharedPtr &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddRobinMassMatrix (const int face, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat)
 
virtual StdRegions::Orientation v_GetForient (int face)
 
virtual void v_GetTracePhysVals (const int face, const StdRegions::StdExpansionSharedPtr &FaceExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient)
 Returns the physical values at the quadrature points of a face Wrapper function to v_GetFacePhysVals. More...
 
virtual void v_GetFacePhysVals (const int face, const StdRegions::StdExpansionSharedPtr &FaceExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient)
 
virtual Array< OneD, unsigned int > v_GetEdgeInverseBoundaryMap (int eid)
 
virtual Array< OneD, unsigned int > v_GetFaceInverseBoundaryMap (int fid, StdRegions::Orientation faceOrient=StdRegions::eNoOrientation)
 
virtual DNekMatSharedPtr v_BuildTransformationMatrix (const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType)
 
virtual DNekMatSharedPtr v_BuildInverseTransformationMatrix (const DNekScalMatSharedPtr &m_transformationmatrix)
 Build inverse and inverse transposed transformation matrix: $\mathbf{R^{-1}}$ and $\mathbf{R^{-T}}$. More...
 
virtual DNekMatSharedPtr v_BuildVertexMatrix (const DNekScalMatSharedPtr &r_bnd)
 
void ReOrientTriFacePhysMap (const StdRegions::Orientation orient, const int nq0, const int nq1, Array< OneD, int > &idmap)
 
void ReOrientQuadFacePhysMap (const StdRegions::Orientation orient, const int nq0, const int nq1, Array< OneD, int > &idmap)
 
- Protected Member Functions inherited from Nektar::LocalRegions::Expansion
void ComputeLaplacianMetric ()
 
void ComputeQuadratureMetric ()
 
virtual void v_MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddEdgeNormBoundaryInt (const int edge, const boost::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddEdgeNormBoundaryInt (const int edge, const boost::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddFaceNormBoundaryInt (const int face, const boost::shared_ptr< Expansion > &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 

Private Member Functions

 HexExp ()
 
virtual void v_LaplacianMatrixOp_MatFree_Kernel (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
 

Private Attributes

LibUtilities::NekManager
< MatrixKey, DNekScalMat,
MatrixKey::opLess
m_matrixManager
 
LibUtilities::NekManager
< MatrixKey, DNekScalBlkMat,
MatrixKey::opLess
m_staticCondMatrixManager
 

Additional Inherited Members

- Protected Attributes inherited from Nektar::StdRegions::StdExpansion3D
std::map< int, NormalVectorm_faceNormals
 
std::map< int, bool > m_negatedNormals
 
- Protected Attributes inherited from Nektar::StdRegions::StdExpansion
Array< OneD,
LibUtilities::BasisSharedPtr
m_base
 
int m_elmt_id
 
int m_ncoeffs
 
LibUtilities::NekManager
< StdMatrixKey, DNekMat,
StdMatrixKey::opLess
m_stdMatrixManager
 
LibUtilities::NekManager
< StdMatrixKey, DNekBlkMat,
StdMatrixKey::opLess
m_stdStaticCondMatrixManager
 
LibUtilities::NekManager
< IndexMapKey, IndexMapValues,
IndexMapKey::opLess
m_IndexMapManager
 
- Protected Attributes inherited from Nektar::LocalRegions::Expansion
SpatialDomains::GeometrySharedPtr m_geom
 
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
 
MetricMap m_metrics
 

Detailed Description

Defines a hexahedral local expansion.

Definition at line 64 of file HexExp.h.

Constructor & Destructor Documentation

Nektar::LocalRegions::HexExp::HexExp ( const LibUtilities::BasisKey Ba,
const LibUtilities::BasisKey Bb,
const LibUtilities::BasisKey Bc,
const SpatialDomains::HexGeomSharedPtr geom 
)

Constructor using BasisKey class for quadrature points and order definition.

Parameters
BaBasis key for first coordinate.
BbBasis key for second coordinate.
BcBasis key for third coordinate.

Definition at line 61 of file HexExp.cpp.

64  :
65  StdExpansion (Ba.GetNumModes()*Bb.GetNumModes()*Bc.GetNumModes(),3,Ba,Bb,Bc),
66  StdExpansion3D(Ba.GetNumModes()*Bb.GetNumModes()*Bc.GetNumModes(),Ba,Bb,Bc),
67  StdRegions::StdHexExp(Ba,Bb,Bc),
68  Expansion (geom),
69  Expansion3D (geom),
71  boost::bind(&HexExp::CreateMatrix, this, _1),
72  std::string("HexExpMatrix")),
74  boost::bind(&HexExp::CreateStaticCondMatrix, this, _1),
75  std::string("HexExpStaticCondMatrix"))
76  {
77  }
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: HexExp.h:262
DNekScalMatSharedPtr CreateMatrix(const MatrixKey &mkey)
Definition: HexExp.cpp:1310
Expansion(SpatialDomains::GeometrySharedPtr pGeom)
Definition: Expansion.cpp:48
DNekScalBlkMatSharedPtr CreateStaticCondMatrix(const MatrixKey &mkey)
Definition: HexExp.cpp:1635
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: HexExp.h:261
StdExpansion()
Default Constructor.
Expansion3D(SpatialDomains::Geometry3DSharedPtr pGeom)
Definition: Expansion3D.h:63
Nektar::LocalRegions::HexExp::HexExp ( const HexExp T)

Copy Constructor.

Parameters
THexExp to copy.

Definition at line 85 of file HexExp.cpp.

85  :
86  StdRegions::StdHexExp(T),
87  Expansion(T),
88  Expansion3D(T),
89  m_matrixManager(T.m_matrixManager),
90  m_staticCondMatrixManager(T.m_staticCondMatrixManager)
91  {
92  }
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: HexExp.h:262
Expansion(SpatialDomains::GeometrySharedPtr pGeom)
Definition: Expansion.cpp:48
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: HexExp.h:261
Expansion3D(SpatialDomains::Geometry3DSharedPtr pGeom)
Definition: Expansion3D.h:63
Nektar::LocalRegions::HexExp::~HexExp ( )

Destructor.

Definition at line 97 of file HexExp.cpp.

98  {
99  }
Nektar::LocalRegions::HexExp::HexExp ( )
private

Member Function Documentation

DNekScalMatSharedPtr Nektar::LocalRegions::HexExp::CreateMatrix ( const MatrixKey mkey)
protected

Definition at line 1310 of file HexExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), ASSERTL2, Nektar::LocalRegions::Expansion::BuildTransformationMatrix(), Nektar::LocalRegions::Expansion::BuildVertexMatrix(), Nektar::StdRegions::StdMatrixKey::ConstFactorExists(), Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::eFactorLambda, Nektar::StdRegions::eFactorSVVCutoffRatio, Nektar::StdRegions::eHelmholtz, Nektar::StdRegions::eHybridDGHelmBndLam, Nektar::StdRegions::eHybridDGHelmholtz, Nektar::StdRegions::eHybridDGLamToQ0, Nektar::StdRegions::eHybridDGLamToQ1, Nektar::StdRegions::eHybridDGLamToQ2, Nektar::StdRegions::eHybridDGLamToU, Nektar::StdRegions::eInvHybridDGHelmholtz, Nektar::StdRegions::eInvLaplacianWithUnityMean, Nektar::StdRegions::eInvMass, Nektar::StdRegions::eIProductWRTBase, Nektar::StdRegions::eLaplacian, Nektar::StdRegions::eLaplacian00, Nektar::StdRegions::eLaplacian01, Nektar::StdRegions::eLaplacian02, Nektar::StdRegions::eLaplacian11, Nektar::StdRegions::eLaplacian12, Nektar::StdRegions::eLaplacian22, Nektar::StdRegions::eMass, Nektar::SpatialDomains::eNoGeomType, Nektar::StdRegions::ePreconLinearSpace, Nektar::StdRegions::ePreconLinearSpaceMass, Nektar::StdRegions::ePreconR, Nektar::StdRegions::ePreconRMass, Nektar::StdRegions::ePreconRT, Nektar::StdRegions::ePreconRTMass, Nektar::StdRegions::eWeakDeriv0, Nektar::StdRegions::eWeakDeriv1, Nektar::StdRegions::eWeakDeriv2, Nektar::StdRegions::StdExpansion::GenMatrix(), Nektar::StdRegions::StdMatrixKey::GetConstFactor(), Nektar::StdRegions::StdMatrixKey::GetConstFactors(), Nektar::StdRegions::StdExpansion::GetLocStaticCondMatrix(), Nektar::StdRegions::StdMatrixKey::GetMatrixType(), Nektar::StdRegions::StdMatrixKey::GetNVarCoeff(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdMatrixKey::GetShapeType(), Nektar::StdRegions::StdExpansion::GetStdMatrix(), Nektar::StdRegions::StdMatrixKey::GetVarCoeffs(), m_matrixManager, Nektar::LocalRegions::Expansion::m_metricinfo, and Nektar::Transpose().

1311  {
1312  DNekScalMatSharedPtr returnval;
1314 
1316  "Geometric information is not set up");
1317 
1318  switch(mkey.GetMatrixType())
1319  {
1320  case StdRegions::eMass:
1321  {
1322  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed ||
1323  mkey.GetNVarCoeff())
1324  {
1325  NekDouble one = 1.0;
1326  DNekMatSharedPtr mat = GenMatrix(mkey);
1327  returnval = MemoryManager<DNekScalMat>
1328  ::AllocateSharedPtr(one,mat);
1329  }
1330  else
1331  {
1332  NekDouble jac = (m_metricinfo->GetJac(ptsKeys))[0];
1333  DNekMatSharedPtr mat
1334  = GetStdMatrix(mkey);
1335  returnval = MemoryManager<DNekScalMat>
1336  ::AllocateSharedPtr(jac,mat);
1337  }
1338  }
1339  break;
1340  case StdRegions::eInvMass:
1341  {
1342  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1343  {
1344  NekDouble one = 1.0;
1345  StdRegions::StdMatrixKey masskey(StdRegions::eMass,
1346  DetShapeType(), *this);
1347  DNekMatSharedPtr mat = GenMatrix(masskey);
1348  mat->Invert();
1349 
1350  returnval = MemoryManager<DNekScalMat>
1351  ::AllocateSharedPtr(one,mat);
1352  }
1353  else
1354  {
1355  NekDouble fac = 1.0/(m_metricinfo->GetJac(ptsKeys))[0];
1356  DNekMatSharedPtr mat
1357  = GetStdMatrix(mkey);
1358  returnval = MemoryManager<DNekScalMat>
1359  ::AllocateSharedPtr(fac,mat);
1360  }
1361  }
1362  break;
1366  {
1367  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed ||
1368  mkey.GetNVarCoeff())
1369  {
1370  NekDouble one = 1.0;
1371  DNekMatSharedPtr mat = GenMatrix(mkey);
1372 
1373  returnval = MemoryManager<DNekScalMat>
1374  ::AllocateSharedPtr(one,mat);
1375  }
1376  else
1377  {
1378  NekDouble jac = (m_metricinfo->GetJac(ptsKeys))[0];
1379  Array<TwoD, const NekDouble> df
1380  = m_metricinfo->GetDerivFactors(ptsKeys);
1381  int dir = 0;
1382 
1383  switch(mkey.GetMatrixType())
1384  {
1386  dir = 0;
1387  break;
1389  dir = 1;
1390  break;
1392  dir = 2;
1393  break;
1394  default:
1395  break;
1396  }
1397 
1398  MatrixKey deriv0key(StdRegions::eWeakDeriv0,
1399  mkey.GetShapeType(), *this);
1400  MatrixKey deriv1key(StdRegions::eWeakDeriv1,
1401  mkey.GetShapeType(), *this);
1402  MatrixKey deriv2key(StdRegions::eWeakDeriv2,
1403  mkey.GetShapeType(), *this);
1404 
1405  DNekMat &deriv0 = *GetStdMatrix(deriv0key);
1406  DNekMat &deriv1 = *GetStdMatrix(deriv1key);
1407  DNekMat &deriv2 = *GetStdMatrix(deriv2key);
1408 
1409  int rows = deriv0.GetRows();
1410  int cols = deriv1.GetColumns();
1411 
1413  ::AllocateSharedPtr(rows,cols);
1414 
1415  (*WeakDeriv) = df[3*dir ][0]*deriv0
1416  + df[3*dir+1][0]*deriv1
1417  + df[3*dir+2][0]*deriv2;
1418 
1419  returnval = MemoryManager<DNekScalMat>
1420  ::AllocateSharedPtr(jac,WeakDeriv);
1421  }
1422  }
1423  break;
1425  {
1426  if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed ||
1427  mkey.GetNVarCoeff()||
1428  mkey.ConstFactorExists(
1430  {
1431  NekDouble one = 1.0;
1432  DNekMatSharedPtr mat = GenMatrix(mkey);
1433 
1434  returnval = MemoryManager<DNekScalMat>
1435  ::AllocateSharedPtr(one,mat);
1436  }
1437  else
1438  {
1439  MatrixKey lap00key(StdRegions::eLaplacian00,
1440  mkey.GetShapeType(), *this);
1441  MatrixKey lap01key(StdRegions::eLaplacian01,
1442  mkey.GetShapeType(), *this);
1443  MatrixKey lap02key(StdRegions::eLaplacian02,
1444  mkey.GetShapeType(), *this);
1445  MatrixKey lap11key(StdRegions::eLaplacian11,
1446  mkey.GetShapeType(), *this);
1447  MatrixKey lap12key(StdRegions::eLaplacian12,
1448  mkey.GetShapeType(), *this);
1449  MatrixKey lap22key(StdRegions::eLaplacian22,
1450  mkey.GetShapeType(), *this);
1451 
1452  DNekMat &lap00 = *GetStdMatrix(lap00key);
1453  DNekMat &lap01 = *GetStdMatrix(lap01key);
1454  DNekMat &lap02 = *GetStdMatrix(lap02key);
1455  DNekMat &lap11 = *GetStdMatrix(lap11key);
1456  DNekMat &lap12 = *GetStdMatrix(lap12key);
1457  DNekMat &lap22 = *GetStdMatrix(lap22key);
1458 
1459  NekDouble jac = (m_metricinfo->GetJac(ptsKeys))[0];
1460  Array<TwoD, const NekDouble> gmat
1461  = m_metricinfo->GetGmat(ptsKeys);
1462 
1463  int rows = lap00.GetRows();
1464  int cols = lap00.GetColumns();
1465 
1467  ::AllocateSharedPtr(rows,cols);
1468 
1469  (*lap) = gmat[0][0]*lap00
1470  + gmat[4][0]*lap11
1471  + gmat[8][0]*lap22
1472  + gmat[3][0]*(lap01 + Transpose(lap01))
1473  + gmat[6][0]*(lap02 + Transpose(lap02))
1474  + gmat[7][0]*(lap12 + Transpose(lap12));
1475 
1476  returnval = MemoryManager<DNekScalMat>
1477  ::AllocateSharedPtr(jac,lap);
1478  }
1479  }
1480  break;
1482  {
1483  NekDouble lambda = mkey.GetConstFactor(StdRegions::eFactorLambda);
1484  MatrixKey masskey(StdRegions::eMass,
1485  mkey.GetShapeType(), *this);
1486  DNekScalMat &MassMat = *(this->m_matrixManager[masskey]);
1487  MatrixKey lapkey(StdRegions::eLaplacian,
1488  mkey.GetShapeType(), *this, mkey.GetConstFactors(), mkey.GetVarCoeffs());
1489  DNekScalMat &LapMat = *(this->m_matrixManager[lapkey]);
1490 
1491  int rows = LapMat.GetRows();
1492  int cols = LapMat.GetColumns();
1493 
1495 
1496  NekDouble one = 1.0;
1497  (*helm) = LapMat + lambda*MassMat;
1498 
1499  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,helm);
1500  }
1501  break;
1503  {
1504  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1505  {
1506  NekDouble one = 1.0;
1507  DNekMatSharedPtr mat = GenMatrix(mkey);
1508  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1509  }
1510  else
1511  {
1512  NekDouble jac = (m_metricinfo->GetJac(ptsKeys))[0];
1513  DNekMatSharedPtr mat = GetStdMatrix(mkey);
1514  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(jac,mat);
1515  }
1516  }
1517  break;
1525  {
1526  NekDouble one = 1.0;
1527 
1528  DNekMatSharedPtr mat = GenMatrix(mkey);
1529  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1530  }
1531  break;
1533  {
1534  NekDouble one = 1.0;
1535 
1536 // StdRegions::StdMatrixKey hkey(StdRegions::eHybridDGHelmholtz,
1537 // DetShapeType(),*this,
1538 // mkey.GetConstant(0),
1539 // mkey.GetConstant(1));
1540  MatrixKey hkey(StdRegions::eHybridDGHelmholtz, DetShapeType(), *this, mkey.GetConstFactors(), mkey.GetVarCoeffs());
1541  DNekMatSharedPtr mat = GenMatrix(hkey);
1542 
1543  mat->Invert();
1544  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1545  }
1546  break;
1548  {
1549  NekDouble one = 1.0;
1550  MatrixKey helmkey(StdRegions::eHelmholtz, mkey.GetShapeType(), *this, mkey.GetConstFactors(), mkey.GetVarCoeffs());
1551  DNekScalBlkMatSharedPtr helmStatCond = GetLocStaticCondMatrix(helmkey);
1552  DNekScalMatSharedPtr A =helmStatCond->GetBlock(0,0);
1554 
1556  }
1557  break;
1559  {
1560  NekDouble one = 1.0;
1561  MatrixKey masskey(StdRegions::eMass, mkey.GetShapeType(), *this);
1562  DNekScalBlkMatSharedPtr massStatCond = GetLocStaticCondMatrix(masskey);
1563  DNekScalMatSharedPtr A =massStatCond->GetBlock(0,0);
1565 
1567  }
1568  break;
1569  case StdRegions::ePreconR:
1570  {
1571  NekDouble one = 1.0;
1572  MatrixKey helmkey(StdRegions::eHelmholtz, mkey.GetShapeType(), *this,mkey.GetConstFactors(), mkey.GetVarCoeffs());
1573  DNekScalBlkMatSharedPtr helmStatCond = GetLocStaticCondMatrix(helmkey);
1574  DNekScalMatSharedPtr A =helmStatCond->GetBlock(0,0);
1575 
1576  DNekScalMatSharedPtr Atmp;
1577  DNekMatSharedPtr R=BuildTransformationMatrix(A,mkey.GetMatrixType());
1578 
1580  }
1581  break;
1582  case StdRegions::ePreconRT:
1583  {
1584  NekDouble one = 1.0;
1585  MatrixKey helmkey(StdRegions::eHelmholtz, mkey.GetShapeType(), *this,mkey.GetConstFactors(), mkey.GetVarCoeffs());
1586  DNekScalBlkMatSharedPtr helmStatCond = GetLocStaticCondMatrix(helmkey);
1587  DNekScalMatSharedPtr A =helmStatCond->GetBlock(0,0);
1588 
1589  DNekScalMatSharedPtr Atmp;
1590  DNekMatSharedPtr RT=BuildTransformationMatrix(A,mkey.GetMatrixType());
1591 
1593  }
1594  break;
1596  {
1597  NekDouble one = 1.0;
1598  MatrixKey masskey(StdRegions::eMass, mkey.GetShapeType(), *this);
1599  DNekScalBlkMatSharedPtr massStatCond = GetLocStaticCondMatrix(masskey);
1600  DNekScalMatSharedPtr A =massStatCond->GetBlock(0,0);
1601 
1602  DNekScalMatSharedPtr Atmp;
1603  DNekMatSharedPtr R=BuildTransformationMatrix(A,mkey.GetMatrixType());
1604 
1606  }
1607  break;
1609  {
1610  NekDouble one = 1.0;
1611  MatrixKey masskey(StdRegions::eMass, mkey.GetShapeType(), *this);
1612  DNekScalBlkMatSharedPtr massStatCond = GetLocStaticCondMatrix(masskey);
1613  DNekScalMatSharedPtr A =massStatCond->GetBlock(0,0);
1614 
1615  DNekScalMatSharedPtr Atmp;
1616  DNekMatSharedPtr RT=BuildTransformationMatrix(A,mkey.GetMatrixType());
1617 
1619  }
1620  break;
1621  default:
1622  {
1623  NekDouble one = 1.0;
1624  DNekMatSharedPtr mat = GenMatrix(mkey);
1625 
1626  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1627  }
1628  break;
1629  }
1630 
1631  return returnval;
1632  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
Definition: StdExpansion.h:470
DNekMatSharedPtr GenMatrix(const StdMatrixKey &mkey)
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:220
DNekMatSharedPtr BuildTransformationMatrix(const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType)
Definition: Expansion.cpp:90
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
DNekMatSharedPtr BuildVertexMatrix(const DNekScalMatSharedPtr &r_bnd)
Definition: Expansion.cpp:98
DNekScalBlkMatSharedPtr GetLocStaticCondMatrix(const LocalRegions::MatrixKey &mkey)
Definition: StdExpansion.h:747
boost::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:70
DNekMatSharedPtr GetStdMatrix(const StdMatrixKey &mkey)
Definition: StdExpansion.h:700
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
boost::shared_ptr< DNekScalBlkMat > DNekScalBlkMatSharedPtr
Definition: NekTypeDefs.hpp:74
NekMatrix< InnerMatrixType, BlockMatrixTag > Transpose(NekMatrix< InnerMatrixType, BlockMatrixTag > &rhs)
NekMatrix< NekDouble, StandardMatrixTag > DNekMat
Definition: NekTypeDefs.hpp:52
double NekDouble
#define ASSERTL2(condition, msg)
Assert Level 2 – Debugging which is used FULLDEBUG compilation mode. This level assert is designed t...
Definition: ErrorUtil.hpp:213
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: HexExp.h:261
Geometry is curved or has non-constant factors.
NekMatrix< NekMatrix< NekDouble, StandardMatrixTag >, ScaledMatrixTag > DNekScalMat
DNekScalBlkMatSharedPtr Nektar::LocalRegions::HexExp::CreateStaticCondMatrix ( const MatrixKey mkey)
protected

Definition at line 1635 of file HexExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), ASSERTL2, Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::eHelmholtz, Nektar::StdRegions::eLaplacian, Nektar::SpatialDomains::eNoGeomType, Nektar::StdRegions::StdExpansion::GetBoundaryMap(), Nektar::StdRegions::StdExpansion::GetInteriorMap(), Nektar::LocalRegions::Expansion::GetLocMatrix(), Nektar::StdRegions::StdMatrixKey::GetMatrixType(), Nektar::StdRegions::StdMatrixKey::GetNVarCoeff(), Nektar::StdRegions::StdExpansion::GetStdStaticCondMatrix(), Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::StdRegions::StdExpansion::m_ncoeffs, and Nektar::StdRegions::StdExpansion::NumBndryCoeffs().

1636  {
1637  DNekScalBlkMatSharedPtr returnval;
1638 
1639  ASSERTL2(m_metricinfo->GetGtype() != SpatialDomains::eNoGeomType,"Geometric information is not set up");
1640 
1641  // set up block matrix system
1642  unsigned int nbdry = NumBndryCoeffs();
1643  unsigned int nint = (unsigned int)(m_ncoeffs - nbdry);
1644  unsigned int exp_size[] = {nbdry,nint};
1645  unsigned int nblks = 2;
1646  returnval = MemoryManager<DNekScalBlkMat>::AllocateSharedPtr(nblks,nblks,exp_size,exp_size); //Really need a constructor which takes Arrays
1647  NekDouble factor = 1.0;
1648 
1649  switch(mkey.GetMatrixType())
1650  {
1652  case StdRegions::eHelmholtz: // special case since Helmholtz not defined in StdRegions
1653 
1654  // use Deformed case for both regular and deformed geometries
1655  factor = 1.0;
1656  goto UseLocRegionsMatrix;
1657  break;
1658  default:
1659  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed ||
1660  mkey.GetNVarCoeff())
1661  {
1662  factor = 1.0;
1663  goto UseLocRegionsMatrix;
1664  }
1665  else
1666  {
1667  DNekScalMatSharedPtr mat = GetLocMatrix(mkey);
1668  factor = mat->Scale();
1669  goto UseStdRegionsMatrix;
1670  }
1671  break;
1672  UseStdRegionsMatrix:
1673  {
1674  NekDouble invfactor = 1.0/factor;
1675  NekDouble one = 1.0;
1677  DNekScalMatSharedPtr Atmp;
1678  DNekMatSharedPtr Asubmat;
1679 
1680  returnval->SetBlock(0,0,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(factor,Asubmat = mat->GetBlock(0,0)));
1681  returnval->SetBlock(0,1,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,Asubmat = mat->GetBlock(0,1)));
1682  returnval->SetBlock(1,0,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(factor,Asubmat = mat->GetBlock(1,0)));
1683  returnval->SetBlock(1,1,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(invfactor,Asubmat = mat->GetBlock(1,1)));
1684  }
1685  break;
1686  UseLocRegionsMatrix:
1687  {
1688  int i,j;
1689  NekDouble invfactor = 1.0/factor;
1690  NekDouble one = 1.0;
1691  DNekScalMat &mat = *GetLocMatrix(mkey);
1696 
1697  Array<OneD,unsigned int> bmap(nbdry);
1698  Array<OneD,unsigned int> imap(nint);
1699  GetBoundaryMap(bmap);
1700  GetInteriorMap(imap);
1701 
1702  for(i = 0; i < nbdry; ++i)
1703  {
1704  for(j = 0; j < nbdry; ++j)
1705  {
1706  (*A)(i,j) = mat(bmap[i],bmap[j]);
1707  }
1708 
1709  for(j = 0; j < nint; ++j)
1710  {
1711  (*B)(i,j) = mat(bmap[i],imap[j]);
1712  }
1713  }
1714 
1715  for(i = 0; i < nint; ++i)
1716  {
1717  for(j = 0; j < nbdry; ++j)
1718  {
1719  (*C)(i,j) = mat(imap[i],bmap[j]);
1720  }
1721 
1722  for(j = 0; j < nint; ++j)
1723  {
1724  (*D)(i,j) = mat(imap[i],imap[j]);
1725  }
1726  }
1727 
1728  // Calculate static condensed system
1729  if(nint)
1730  {
1731  D->Invert();
1732  (*B) = (*B)*(*D);
1733  (*A) = (*A) - (*B)*(*C);
1734  }
1735 
1736  DNekScalMatSharedPtr Atmp;
1737 
1738  returnval->SetBlock(0,0,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(factor,A));
1739  returnval->SetBlock(0,1,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,B));
1740  returnval->SetBlock(1,0,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(factor,C));
1741  returnval->SetBlock(1,1,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(invfactor,D));
1742 
1743  }
1744  }
1745  return returnval;
1746  }
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
boost::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:70
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
DNekBlkMatSharedPtr GetStdStaticCondMatrix(const StdMatrixKey &mkey)
Definition: StdExpansion.h:705
boost::shared_ptr< DNekScalBlkMat > DNekScalBlkMatSharedPtr
Definition: NekTypeDefs.hpp:74
void GetInteriorMap(Array< OneD, unsigned int > &outarray)
Definition: StdExpansion.h:821
double NekDouble
boost::shared_ptr< DNekBlkMat > DNekBlkMatSharedPtr
Definition: NekTypeDefs.hpp:72
DNekScalMatSharedPtr GetLocMatrix(const LocalRegions::MatrixKey &mkey)
Definition: Expansion.cpp:85
#define ASSERTL2(condition, msg)
Assert Level 2 – Debugging which is used FULLDEBUG compilation mode. This level assert is designed t...
Definition: ErrorUtil.hpp:213
Geometry is curved or has non-constant factors.
NekMatrix< NekMatrix< NekDouble, StandardMatrixTag >, ScaledMatrixTag > DNekScalMat
void GetBoundaryMap(Array< OneD, unsigned int > &outarray)
Definition: StdExpansion.h:816
void Nektar::LocalRegions::HexExp::IProductWRTDerivBase_MatOp ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protected

Definition at line 492 of file HexExp.cpp.

References ASSERTL1, Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::StdRegions::eIProductWRTDerivBase0, Nektar::StdRegions::eIProductWRTDerivBase1, Nektar::StdRegions::eIProductWRTDerivBase2, Nektar::StdRegions::StdExpansion::GetTotPoints(), m_matrixManager, and Nektar::StdRegions::StdExpansion::m_ncoeffs.

496  {
497  int nq = GetTotPoints();
499 
500  switch(dir)
501  {
502  case 0:
503  {
505  }
506  break;
507  case 1:
508  {
510  }
511  break;
512  case 2:
513  {
515  }
516  break;
517  default:
518  {
519  ASSERTL1(false,"input dir is out of range");
520  }
521  break;
522  }
523 
524  MatrixKey iprodmatkey(mtype,DetShapeType(),*this);
525  DNekScalMatSharedPtr iprodmat = m_matrixManager[iprodmatkey];
526 
527  Blas::Dgemv('N',m_ncoeffs,nq,iprodmat->Scale(),(iprodmat->GetOwnedMatrix())->GetPtr().get(),
528  m_ncoeffs, inarray.get(), 1, 0.0, outarray.get(), 1);
529  }
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
Definition: StdExpansion.h:470
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:141
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: HexExp.h:261
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
void Nektar::LocalRegions::HexExp::IProductWRTDerivBase_SumFac ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protected

Calculates the inner product $ I_{pqr} = (u, \partial_{x_i} \phi_{pqr}) $.

The derivative of the basis functions is performed using the chain rule in order to incorporate the geometric factors. Assuming that the basis functions are a tensor product $\phi_{pqr}(\xi_1,\xi_2,\xi_3) = \phi_1(\xi_1)\phi_2(\xi_2)\phi_3(\xi_3)$, in the hexahedral element, this is straightforward and yields the result

\[ I_{pqr} = \sum_{k=1}^3 \left(u, \frac{\partial u}{\partial \xi_k} \frac{\partial \xi_k}{\partial x_i}\right) \]

Parameters
dirDirection in which to take the derivative.
inarrayThe function $ u $.
outarrayValue of the inner product.

Definition at line 430 of file HexExp.cpp.

References ASSERTL1, Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion3D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::StdRegions::StdExpansion::m_ncoeffs, Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric(), Vmath::Smul(), Vmath::Vadd(), and Vmath::Vmul().

Referenced by v_IProductWRTDerivBase().

434  {
435  ASSERTL1((dir==0)||(dir==1)||(dir==2),"Invalid direction.");
436 
437  const int nq0 = m_base[0]->GetNumPoints();
438  const int nq1 = m_base[1]->GetNumPoints();
439  const int nq2 = m_base[2]->GetNumPoints();
440  const int nq = nq0*nq1*nq2;
441  const int nm0 = m_base[0]->GetNumModes();
442  const int nm1 = m_base[1]->GetNumModes();
443 
444  const Array<TwoD, const NekDouble>& df =
445  m_metricinfo->GetDerivFactors(GetPointsKeys());
446 
447  Array<OneD, NekDouble> alloc(4*nq + m_ncoeffs + nm0*nq2*(nq1+nm1));
448  Array<OneD, NekDouble> tmp1 (alloc); // Quad metric
449  Array<OneD, NekDouble> tmp2 (alloc + nq); // Dir1 metric
450  Array<OneD, NekDouble> tmp3 (alloc + 2*nq); // Dir2 metric
451  Array<OneD, NekDouble> tmp4 (alloc + 3*nq); // Dir3 metric
452  Array<OneD, NekDouble> tmp5 (alloc + 4*nq); // iprod tmp
453  Array<OneD, NekDouble> wsp (tmp5 + m_ncoeffs); // Wsp
454 
455  MultiplyByQuadratureMetric(inarray, tmp1);
456 
457  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
458  {
459  Vmath::Vmul(nq,&df[3*dir][0], 1,tmp1.get(),1,tmp2.get(),1);
460  Vmath::Vmul(nq,&df[3*dir+1][0],1,tmp1.get(),1,tmp3.get(),1);
461  Vmath::Vmul(nq,&df[3*dir+2][0],1,tmp1.get(),1,tmp4.get(),1);
462  }
463  else
464  {
465  Vmath::Smul(nq, df[3*dir][0], tmp1.get(),1,tmp2.get(), 1);
466  Vmath::Smul(nq, df[3*dir+1][0],tmp1.get(),1,tmp3.get(), 1);
467  Vmath::Smul(nq, df[3*dir+2][0],tmp1.get(),1,tmp4.get(), 1);
468  }
469 
470  IProductWRTBase_SumFacKernel(m_base[0]->GetDbdata(),
471  m_base[1]->GetBdata(),
472  m_base[2]->GetBdata(),
473  tmp2,outarray,wsp,
474  false,true,true);
475 
476  IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(),
477  m_base[1]->GetDbdata(),
478  m_base[2]->GetBdata(),
479  tmp3,tmp5,wsp,
480  true,false,true);
481  Vmath::Vadd(m_ncoeffs, tmp5, 1, outarray, 1, outarray, 1);
482 
483  IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(),
484  m_base[1]->GetBdata(),
485  m_base[2]->GetDbdata(),
486  tmp4,tmp5,wsp,
487  true,true,false);
488  Vmath::Vadd(m_ncoeffs, tmp5, 1, outarray, 1, outarray, 1);
489  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:942
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
Array< OneD, LibUtilities::BasisSharedPtr > m_base
Geometry is curved or has non-constant factors.
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:285
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
void Nektar::LocalRegions::HexExp::v_ComputeFaceNormal ( const int  face)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 801 of file HexExp.cpp.

References ASSERTL0, Nektar::StdRegions::StdExpansion::DetFaceBasisKey(), Nektar::SpatialDomains::eMovingRegular, Nektar::SpatialDomains::eRegular, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetCoordim(), Nektar::LocalRegions::Expansion::GetGeom(), Nektar::LibUtilities::BasisKey::GetNumPoints(), Nektar::LibUtilities::BasisKey::GetPointsKey(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::LibUtilities::Interp2D(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion3D::m_faceNormals, Vmath::Sdiv(), Vmath::Vmul(), Vmath::Vsqrt(), Vmath::Vvtvp(), and Vmath::Zero().

802  {
803  int i;
804  const SpatialDomains::GeomFactorsSharedPtr & geomFactors =
805  GetGeom()->GetMetricInfo();
806  SpatialDomains::GeomType type = geomFactors->GetGtype();
808  const Array<TwoD, const NekDouble> & df = geomFactors->GetDerivFactors(ptsKeys);
809  const Array<OneD, const NekDouble> & jac = geomFactors->GetJac(ptsKeys);
810 
811  LibUtilities::BasisKey tobasis0 = DetFaceBasisKey(face,0);
812  LibUtilities::BasisKey tobasis1 = DetFaceBasisKey(face,1);
813 
814  // Number of quadrature points in face expansion.
815  int nq_face = tobasis0.GetNumPoints()*tobasis1.GetNumPoints();
816 
817  int vCoordDim = GetCoordim();
818 
819  m_faceNormals[face] = Array<OneD, Array<OneD, NekDouble> >(vCoordDim);
820  Array<OneD, Array<OneD, NekDouble> > &normal = m_faceNormals[face];
821  for (i = 0; i < vCoordDim; ++i)
822  {
823  normal[i] = Array<OneD, NekDouble>(nq_face);
824  }
825  // Regular geometry case
827  {
828  NekDouble fac;
829  // Set up normals
830  switch(face)
831  {
832  case 0:
833  for(i = 0; i < vCoordDim; ++i)
834  {
835  normal[i][0] = -df[3*i+2][0];
836  }
837  break;
838  case 1:
839  for(i = 0; i < vCoordDim; ++i)
840  {
841  normal[i][0] = -df[3*i+1][0];
842  }
843  break;
844  case 2:
845  for(i = 0; i < vCoordDim; ++i)
846  {
847  normal[i][0] = df[3*i][0];
848  }
849  break;
850  case 3:
851  for(i = 0; i < vCoordDim; ++i)
852  {
853  normal[i][0] = df[3*i+1][0];
854  }
855  break;
856  case 4:
857  for(i = 0; i < vCoordDim; ++i)
858  {
859  normal[i][0] = -df[3*i][0];
860  }
861  break;
862  case 5:
863  for(i = 0; i < vCoordDim; ++i)
864  {
865  normal[i][0] = df[3*i+2][0];
866  }
867  break;
868  default:
869  ASSERTL0(false,"face is out of range (edge < 5)");
870  }
871 
872  // normalise
873  fac = 0.0;
874  for(i =0 ; i < vCoordDim; ++i)
875  {
876  fac += normal[i][0]*normal[i][0];
877  }
878  fac = 1.0/sqrt(fac);
879  for (i = 0; i < vCoordDim; ++i)
880  {
881  Vmath::Fill(nq_face,fac*normal[i][0],normal[i],1);
882  }
883 
884  }
885  else // Set up deformed normals
886  {
887  int j, k;
888 
889  int nqe0 = m_base[0]->GetNumPoints();
890  int nqe1 = m_base[1]->GetNumPoints();
891  int nqe2 = m_base[2]->GetNumPoints();
892  int nqe01 = nqe0*nqe1;
893  int nqe02 = nqe0*nqe2;
894  int nqe12 = nqe1*nqe2;
895 
896  int nqe;
897  if (face == 0 || face == 5)
898  {
899  nqe = nqe01;
900  }
901  else if (face == 1 || face == 3)
902  {
903  nqe = nqe02;
904  }
905  else
906  {
907  nqe = nqe12;
908  }
909 
910  LibUtilities::PointsKey points0;
911  LibUtilities::PointsKey points1;
912 
913  Array<OneD, NekDouble> faceJac(nqe);
914  Array<OneD, NekDouble> normals(vCoordDim*nqe,0.0);
915 
916  // Extract Jacobian along face and recover local
917  // derivates (dx/dr) for polynomial interpolation by
918  // multiplying m_gmat by jacobian
919  switch(face)
920  {
921  case 0:
922  for(j = 0; j < nqe; ++j)
923  {
924  normals[j] = -df[2][j]*jac[j];
925  normals[nqe+j] = -df[5][j]*jac[j];
926  normals[2*nqe+j] = -df[8][j]*jac[j];
927  faceJac[j] = jac[j];
928  }
929 
930  points0 = ptsKeys[0];
931  points1 = ptsKeys[1];
932  break;
933  case 1:
934  for (j = 0; j < nqe0; ++j)
935  {
936  for(k = 0; k < nqe2; ++k)
937  {
938  int idx = j + nqe01*k;
939  normals[j+k*nqe0] = -df[1][idx]*jac[idx];
940  normals[nqe+j+k*nqe0] = -df[4][idx]*jac[idx];
941  normals[2*nqe+j+k*nqe0] = -df[7][idx]*jac[idx];
942  faceJac[j+k*nqe0] = jac[idx];
943  }
944  }
945  points0 = ptsKeys[0];
946  points1 = ptsKeys[2];
947  break;
948  case 2:
949  for (j = 0; j < nqe1; ++j)
950  {
951  for(k = 0; k < nqe2; ++k)
952  {
953  int idx = nqe0-1+nqe0*j+nqe01*k;
954  normals[j+k*nqe1] = df[0][idx]*jac[idx];
955  normals[nqe+j+k*nqe1] = df[3][idx]*jac[idx];
956  normals[2*nqe+j+k*nqe1] = df[6][idx]*jac[idx];
957  faceJac[j+k*nqe1] = jac[idx];
958  }
959  }
960  points0 = ptsKeys[1];
961  points1 = ptsKeys[2];
962  break;
963  case 3:
964  for (j = 0; j < nqe0; ++j)
965  {
966  for(k = 0; k < nqe2; ++k)
967  {
968  int idx = nqe0*(nqe1-1)+j+nqe01*k;
969  normals[j+k*nqe0] = df[1][idx]*jac[idx];
970  normals[nqe+j+k*nqe0] = df[4][idx]*jac[idx];
971  normals[2*nqe+j+k*nqe0] = df[7][idx]*jac[idx];
972  faceJac[j+k*nqe0] = jac[idx];
973  }
974  }
975  points0 = ptsKeys[0];
976  points1 = ptsKeys[2];
977  break;
978  case 4:
979  for (j = 0; j < nqe1; ++j)
980  {
981  for(k = 0; k < nqe2; ++k)
982  {
983  int idx = j*nqe0+nqe01*k;
984  normals[j+k*nqe1] = -df[0][idx]*jac[idx];
985  normals[nqe+j+k*nqe1] = -df[3][idx]*jac[idx];
986  normals[2*nqe+j+k*nqe1] = -df[6][idx]*jac[idx];
987  faceJac[j+k*nqe1] = jac[idx];
988  }
989  }
990  points0 = ptsKeys[1];
991  points1 = ptsKeys[2];
992  break;
993  case 5:
994  for (j = 0; j < nqe01; ++j)
995  {
996  int idx = j+nqe01*(nqe2-1);
997  normals[j] = df[2][idx]*jac[idx];
998  normals[nqe+j] = df[5][idx]*jac[idx];
999  normals[2*nqe+j] = df[8][idx]*jac[idx];
1000  faceJac[j] = jac[idx];
1001  }
1002  points0 = ptsKeys[0];
1003  points1 = ptsKeys[1];
1004  break;
1005  default:
1006  ASSERTL0(false,"face is out of range (face < 5)");
1007  }
1008 
1009  Array<OneD, NekDouble> work (nq_face, 0.0);
1010  // Interpolate Jacobian and invert
1011  LibUtilities::Interp2D(points0, points1, faceJac,
1012  tobasis0.GetPointsKey(),
1013  tobasis1.GetPointsKey(),
1014  work);
1015 
1016  Vmath::Sdiv(nq_face,1.0,&work[0],1,&work[0],1);
1017 
1018  // interpolate
1019  for(i = 0; i < GetCoordim(); ++i)
1020  {
1021  LibUtilities::Interp2D(points0, points1,
1022  &normals[i*nqe],
1023  tobasis0.GetPointsKey(),
1024  tobasis1.GetPointsKey(),
1025  &normal[i][0]);
1026  Vmath::Vmul(nq_face,work,1,normal[i],1,normal[i],1);
1027  }
1028 
1029  //normalise normal vectors
1030  Vmath::Zero(nq_face,work,1);
1031  for(i = 0; i < GetCoordim(); ++i)
1032  {
1033  Vmath::Vvtvp(nq_face,normal[i],1, normal[i],1,work,1,work,1);
1034  }
1035 
1036  Vmath::Vsqrt(nq_face,work,1,work,1);
1037  Vmath::Sdiv(nq_face,1.0,work,1,work,1);
1038 
1039  for(i = 0; i < GetCoordim(); ++i)
1040  {
1041  Vmath::Vmul(nq_face,normal[i],1,work,1,normal[i],1);
1042  }
1043  }
1044  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:220
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
Definition: Vmath.cpp:394
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:46
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:428
void Sdiv(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha/y.
Definition: Vmath.cpp:257
void Interp2D(const BasisKey &fbasis0, const BasisKey &fbasis1, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, const BasisKey &tbasis1, Array< OneD, NekDouble > &to)
this function interpolates a 2D function evaluated at the quadrature points of the 2D basis...
Definition: Interp.cpp:116
double NekDouble
std::map< int, NormalVector > m_faceNormals
SpatialDomains::GeometrySharedPtr GetGeom() const
Definition: Expansion.cpp:150
boost::shared_ptr< GeomFactors > GeomFactorsSharedPtr
Pointer to a GeomFactors object.
Definition: GeomFactors.h:62
Geometry is straight-sided with constant geometric factors.
const LibUtilities::BasisKey DetFaceBasisKey(const int i, const int k) const
Definition: StdExpansion.h:324
GeomType
Indicates the type of element geometry.
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:359
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
void Nektar::LocalRegions::HexExp::v_ComputeLaplacianMetric ( )
protectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 1830 of file HexExp.cpp.

References Nektar::LocalRegions::Expansion::ComputeQuadratureMetric(), Nektar::SpatialDomains::eDeformed, Nektar::LocalRegions::eMetricLaplacian00, Nektar::LocalRegions::eMetricLaplacian01, Nektar::LocalRegions::eMetricLaplacian02, Nektar::LocalRegions::eMetricLaplacian11, Nektar::LocalRegions::eMetricLaplacian12, Nektar::LocalRegions::eMetricLaplacian22, Nektar::LocalRegions::eMetricQuadrature, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::GetTotPoints(), Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::LocalRegions::Expansion::m_metrics, Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric(), and Vmath::Vcopy().

1831  {
1832  if (m_metrics.count(eMetricQuadrature) == 0)
1833  {
1835  }
1836 
1837  const SpatialDomains::GeomType type = m_metricinfo->GetGtype();
1838  const unsigned int nqtot = GetTotPoints();
1839  const unsigned int dim = 3;
1843  };
1844 
1845  for (unsigned int i = 0; i < dim; ++i)
1846  {
1847  for (unsigned int j = i; j < dim; ++j)
1848  {
1849  m_metrics[m[i][j]] = Array<OneD, NekDouble>(nqtot);
1850  const Array<TwoD, const NekDouble> &gmat =
1851  m_metricinfo->GetGmat(GetPointsKeys());
1852  if (type == SpatialDomains::eDeformed)
1853  {
1854  Vmath::Vcopy(nqtot, &gmat[i*dim+j][0], 1,
1855  &m_metrics[m[i][j]][0], 1);
1856  }
1857  else
1858  {
1859  Vmath::Fill(nqtot, gmat[i*dim+j][0],
1860  &m_metrics[m[i][j]][0], 1);
1861  }
1863  m_metrics[m[i][j]]);
1864 
1865  }
1866  }
1867  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:942
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:46
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:141
GeomType
Indicates the type of element geometry.
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1047
Geometry is curved or has non-constant factors.
DNekMatSharedPtr Nektar::LocalRegions::HexExp::v_CreateStdMatrix ( const StdRegions::StdMatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 1296 of file HexExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and Nektar::StdRegions::StdExpansion::m_base.

1298  {
1299  LibUtilities::BasisKey bkey0 = m_base[0]->GetBasisKey();
1300  LibUtilities::BasisKey bkey1 = m_base[1]->GetBasisKey();
1301  LibUtilities::BasisKey bkey2 = m_base[2]->GetBasisKey();
1302 
1304  ::AllocateSharedPtr(bkey0,bkey1,bkey2);
1305 
1306  return tmp->GetStdMatrix(mkey);
1307  }
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
boost::shared_ptr< StdHexExp > StdHexExpSharedPtr
Definition: StdHexExp.h:286
Array< OneD, LibUtilities::BasisSharedPtr > m_base
LibUtilities::ShapeType Nektar::LocalRegions::HexExp::v_DetShapeType ( ) const
protectedvirtual

Return the region shape using the enum-list of ShapeType.

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 609 of file HexExp.cpp.

References Nektar::LibUtilities::eHexahedron.

void Nektar::LocalRegions::HexExp::v_DropLocStaticCondMatrix ( const MatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1761 of file HexExp.cpp.

References m_staticCondMatrixManager.

1762  {
1763  m_staticCondMatrixManager.DeleteObject(mkey);
1764  }
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: HexExp.h:262
void Nektar::LocalRegions::HexExp::v_ExtractDataToCoeffs ( const NekDouble data,
const std::vector< unsigned int > &  nummodes,
const int  nmode_offset,
NekDouble coeffs 
)
protectedvirtual

Unpack data from input file assuming it comes from the same expansion type.

See also
StdExpansion::ExtractDataToCoeffs

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 615 of file HexExp.cpp.

References ASSERTL0, ASSERTL1, Nektar::LibUtilities::eModified_A, Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, Vmath::Vcopy(), and Vmath::Zero().

620  {
621  int data_order0 = nummodes[mode_offset];
622  int fillorder0 = min(m_base[0]->GetNumModes(),data_order0);
623  int data_order1 = nummodes[mode_offset+1];
624  int order1 = m_base[1]->GetNumModes();
625  int fillorder1 = min(order1,data_order1);
626  int data_order2 = nummodes[mode_offset+2];
627  int order2 = m_base[2]->GetNumModes();
628  int fillorder2 = min(order2,data_order2);
629 
630  switch(m_base[0]->GetBasisType())
631  {
633  {
634  int i,j;
635  int cnt = 0;
636  int cnt1 = 0;
637 
638  ASSERTL1(m_base[1]->GetBasisType() ==
640  "Extraction routine not set up for this basis");
641  ASSERTL1(m_base[2]->GetBasisType() ==
643  "Extraction routine not set up for this basis");
644 
645  Vmath::Zero(m_ncoeffs,coeffs,1);
646  for(j = 0; j < fillorder0; ++j)
647  {
648  for(i = 0; i < fillorder1; ++i)
649  {
650  Vmath::Vcopy(fillorder2, &data[cnt], 1,
651  &coeffs[cnt1], 1);
652  cnt += data_order2;
653  cnt1 += order2;
654  }
655 
656  // count out data for j iteration
657  for(i = fillorder1; i < data_order1; ++i)
658  {
659  cnt += data_order2;
660  }
661 
662  for(i = fillorder1; i < order1; ++i)
663  {
664  cnt1 += order2;
665  }
666  }
667  }
668  break;
669  default:
670  ASSERTL0(false, "basis is either not set up or not "
671  "hierarchicial");
672  }
673  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
Principle Modified Functions .
Definition: BasisType.h:49
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:165
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:359
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1047
void Nektar::LocalRegions::HexExp::v_FwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Forward transform from physical quadrature space stored in inarray and evaluate the expansion coefficients and store in (this)->_coeffs.

Parameters
inarrayInput array
outarrayOutput array

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 288 of file HexExp.cpp.

References Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::StdRegions::eInvMass, Nektar::eWrapper, Nektar::StdRegions::StdExpansion::GetNcoeffs(), Nektar::StdRegions::StdExpansion::IProductWRTBase(), Nektar::StdRegions::StdExpansion::m_base, m_matrixManager, Nektar::StdRegions::StdExpansion::m_ncoeffs, and Vmath::Vcopy().

291  {
292  if( m_base[0]->Collocation() && m_base[1]->Collocation()
293  && m_base[2]->Collocation())
294  {
295  Vmath::Vcopy(GetNcoeffs(),&inarray[0],1,&outarray[0],1);
296  }
297  else
298  {
299  IProductWRTBase(inarray,outarray);
300 
301  // get Mass matrix inverse
302  MatrixKey masskey(StdRegions::eInvMass,
303  DetShapeType(),*this);
304  DNekScalMatSharedPtr matsys = m_matrixManager[masskey];
305 
306  // copy inarray in case inarray == outarray
307  DNekVec in (m_ncoeffs,outarray);
308  DNekVec out(m_ncoeffs,outarray,eWrapper);
309 
310  out = (*matsys)*in;
311  }
312  }
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
Definition: StdExpansion.h:470
void IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
this function calculates the inner product of a given function f with the different modes of the expa...
Definition: StdExpansion.h:629
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
NekVector< NekDouble > DNekVec
Definition: NekTypeDefs.hpp:49
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: HexExp.h:261
int GetNcoeffs(void) const
This function returns the total number of coefficients used in the expansion.
Definition: StdExpansion.h:131
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1047
void Nektar::LocalRegions::HexExp::v_GeneralMatrixOp_MatOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 1112 of file HexExp.cpp.

References Nektar::LocalRegions::Expansion::GetLocMatrix(), Nektar::StdRegions::StdExpansion::m_ncoeffs, and Vmath::Vcopy().

1116  {
1117  //int nConsts = mkey.GetNconstants();
1118  DNekScalMatSharedPtr mat = GetLocMatrix(mkey);
1119 
1120 // switch(nConsts)
1121 // {
1122 // case 0:
1123 // {
1124 // mat = GetLocMatrix(mkey.GetMatrixType());
1125 // }
1126 // break;
1127 // case 1:
1128 // {
1129 // mat = GetLocMatrix(mkey.GetMatrixType(),mkey.GetConstant(0));
1130 // }
1131 // break;
1132 // case 2:
1133 // {
1134 // mat = GetLocMatrix(mkey.GetMatrixType(),mkey.GetConstant(0),mkey.GetConstant(1));
1135 // }
1136 // break;
1137 //
1138 // default:
1139 // {
1140 // NEKERROR(ErrorUtil::efatal, "Unknown number of constants");
1141 // }
1142 // break;
1143 // }
1144 
1145  if(inarray.get() == outarray.get())
1146  {
1147  Array<OneD,NekDouble> tmp(m_ncoeffs);
1148  Vmath::Vcopy(m_ncoeffs,inarray.get(),1,tmp.get(),1);
1149 
1150  Blas::Dgemv('N',m_ncoeffs,m_ncoeffs,mat->Scale(),(mat->GetOwnedMatrix())->GetPtr().get(),
1151  m_ncoeffs, tmp.get(), 1, 0.0, outarray.get(), 1);
1152  }
1153  else
1154  {
1155  Blas::Dgemv('N',m_ncoeffs,m_ncoeffs,mat->Scale(),(mat->GetOwnedMatrix())->GetPtr().get(),
1156  m_ncoeffs, inarray.get(), 1, 0.0, outarray.get(), 1);
1157  }
1158  }
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
DNekScalMatSharedPtr GetLocMatrix(const LocalRegions::MatrixKey &mkey)
Definition: Expansion.cpp:85
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1047
DNekMatSharedPtr Nektar::LocalRegions::HexExp::v_GenMatrix ( const StdRegions::StdMatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 1272 of file HexExp.cpp.

References Nektar::StdRegions::eHybridDGHelmBndLam, Nektar::StdRegions::eHybridDGHelmholtz, Nektar::StdRegions::eHybridDGLamToQ0, Nektar::StdRegions::eHybridDGLamToQ1, Nektar::StdRegions::eHybridDGLamToQ2, Nektar::StdRegions::eHybridDGLamToU, Nektar::StdRegions::eInvLaplacianWithUnityMean, Nektar::StdRegions::StdMatrixKey::GetMatrixType(), and Nektar::LocalRegions::Expansion3D::v_GenMatrix().

1274  {
1275  DNekMatSharedPtr returnval;
1276 
1277  switch(mkey.GetMatrixType())
1278  {
1286  returnval = Expansion3D::v_GenMatrix(mkey);
1287  break;
1288  default:
1289  returnval = StdHexExp::v_GenMatrix(mkey);
1290  }
1291 
1292  return returnval;
1293  }
boost::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:70
virtual DNekMatSharedPtr v_GenMatrix(const StdRegions::StdMatrixKey &mkey)
void Nektar::LocalRegions::HexExp::v_GetCoord ( const Array< OneD, const NekDouble > &  Lcoords,
Array< OneD, NekDouble > &  coords 
)
protectedvirtual

Retrieves the physical coordinates of a given set of reference coordinates.

Parameters
LcoordsLocal coordinates in reference space.
coordsCorresponding coordinates in physical space.

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 577 of file HexExp.cpp.

References ASSERTL1, and Nektar::LocalRegions::Expansion::m_geom.

580  {
581  int i;
582 
583  ASSERTL1(Lcoords[0] >= -1.0 && Lcoords[0] <= 1.0 &&
584  Lcoords[1] >= -1.0 && Lcoords[1] <= 1.0 &&
585  Lcoords[2] >= -1.0 && Lcoords[2] <= 1.0,
586  "Local coordinates are not in region [-1,1]");
587 
588  m_geom->FillGeom();
589 
590  for(i = 0; i < m_geom->GetCoordim(); ++i)
591  {
592  coords[i] = m_geom->GetCoord(i,Lcoords);
593  }
594  }
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:125
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
void Nektar::LocalRegions::HexExp::v_GetCoords ( Array< OneD, NekDouble > &  coords_1,
Array< OneD, NekDouble > &  coords_2,
Array< OneD, NekDouble > &  coords_3 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 596 of file HexExp.cpp.

References Nektar::LocalRegions::Expansion::v_GetCoords().

600  {
601  Expansion::v_GetCoords(coords_0, coords_1, coords_2);
602  }
virtual void v_GetCoords(Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3)
Definition: Expansion.cpp:213
bool Nektar::LocalRegions::HexExp::v_GetFaceDGForwards ( const int  i) const
protectedvirtual
void Nektar::LocalRegions::HexExp::v_GetFacePhysMap ( const int  face,
Array< OneD, int > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 685 of file HexExp.cpp.

References ASSERTL0, and Nektar::StdRegions::StdExpansion::m_base.

687  {
688  int nquad0 = m_base[0]->GetNumPoints();
689  int nquad1 = m_base[1]->GetNumPoints();
690  int nquad2 = m_base[2]->GetNumPoints();
691 
692  int nq0 = 0;
693  int nq1 = 0;
694 
695  switch(face)
696  {
697  case 0:
698  nq0 = nquad0;
699  nq1 = nquad1;
700 
701  //Directions A and B positive
702  if(outarray.num_elements()!=nq0*nq1)
703  {
704  outarray = Array<OneD, int>(nq0*nq1);
705  }
706 
707  for (int i = 0; i < nquad0*nquad1; ++i)
708  {
709  outarray[i] = i;
710  }
711 
712  break;
713  case 1:
714  nq0 = nquad0;
715  nq1 = nquad2;
716  //Direction A and B positive
717  if(outarray.num_elements()!=nq0*nq1)
718  {
719  outarray = Array<OneD, int>(nq0*nq1);
720  }
721 
722  //Direction A and B positive
723  for (int k = 0; k < nquad2; k++)
724  {
725  for(int i = 0; i < nquad0; ++i)
726  {
727  outarray[k*nquad0 + i] = nquad0*nquad1*k + i;
728  }
729  }
730  break;
731  case 2:
732  nq0 = nquad1;
733  nq1 = nquad2;
734 
735  //Direction A and B positive
736  if(outarray.num_elements()!=nq0*nq1)
737  {
738  outarray = Array<OneD, int>(nq0*nq1);
739  }
740 
741  for (int i = 0; i < nquad1*nquad2; i++)
742  {
743  outarray[i] = nquad0-1 + i*nquad0;
744  }
745  break;
746  case 3:
747  nq0 = nquad0;
748  nq1 = nquad2;
749 
750  //Direction A and B positive
751  if(outarray.num_elements()!=nq0*nq1)
752  {
753  outarray = Array<OneD, int>(nq0*nq1);
754  }
755 
756  for (int k = 0; k < nquad2; k++)
757  {
758  for (int i = 0; i < nquad0; i++)
759  {
760  outarray[k*nquad0 + i] = (nquad0*(nquad1-1))+(k*nquad0*nquad1) + i;
761  }
762  }
763  break;
764  case 4:
765  nq0 = nquad1;
766  nq1 = nquad2;
767 
768  //Direction A and B positive
769  if(outarray.num_elements()!=nq0*nq1)
770  {
771  outarray = Array<OneD, int>(nq0*nq1);
772  }
773 
774  for (int i = 0; i < nquad1*nquad2; i++)
775  {
776  outarray[i] = i*nquad0;
777  }
778  break;
779  case 5:
780  nq0 = nquad0;
781  nq1 = nquad1;
782  //Directions A and B positive
783  if(outarray.num_elements()!=nq0*nq1)
784  {
785  outarray = Array<OneD, int>(nq0*nq1);
786  }
787 
788  for (int i = 0; i < nquad0*nquad1; i++)
789  {
790  outarray[i] = nquad0*nquad1*(nquad2-1) + i;
791  }
792 
793  break;
794  default:
795  ASSERTL0(false,"face value (> 5) is out of range");
796  break;
797  }
798 
799  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
Array< OneD, LibUtilities::BasisSharedPtr > m_base
DNekScalMatSharedPtr Nektar::LocalRegions::HexExp::v_GetLocMatrix ( const MatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 1749 of file HexExp.cpp.

References m_matrixManager.

1750  {
1751  return m_matrixManager[mkey];
1752  }
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: HexExp.h:261
DNekScalBlkMatSharedPtr Nektar::LocalRegions::HexExp::v_GetLocStaticCondMatrix ( const MatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1755 of file HexExp.cpp.

References m_staticCondMatrixManager.

1757  {
1758  return m_staticCondMatrixManager[mkey];
1759  }
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: HexExp.h:262
StdRegions::StdExpansionSharedPtr Nektar::LocalRegions::HexExp::v_GetStdExp ( void  ) const
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 561 of file HexExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and Nektar::StdRegions::StdExpansion::m_base.

562  {
564  ::AllocateSharedPtr(m_base[0]->GetBasisKey(),
565  m_base[1]->GetBasisKey(),
566  m_base[2]->GetBasisKey());
567  }
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Nektar::LocalRegions::HexExp::v_HelmholtzMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 1103 of file HexExp.cpp.

References Nektar::StdRegions::StdExpansion3D::v_HelmholtzMatrixOp_MatFree().

1107  {
1108  HexExp::v_HelmholtzMatrixOp_MatFree(inarray,outarray,mkey);
1109  }
virtual void v_HelmholtzMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
NekDouble Nektar::LocalRegions::HexExp::v_Integral ( const Array< OneD, const NekDouble > &  inarray)
protectedvirtual

Integrate the physical point list inarray over region.

Parameters
inarraydefinition of function to be returned at quadrature points of expansion.
Returns
$\int^1_{-1}\int^1_{-1} \int^1_{-1} u(\eta_1, \eta_2, \eta_3) J[i,j,k] d \eta_1 d \eta_2 d \eta_3 $ where $inarray[i,j,k] = u(\eta_{1i},\eta_{2j},\eta_{3k}) $ and $ J[i,j,k] $ is the Jacobian evaluated at the quadrature point.

Reimplemented from Nektar::StdRegions::StdExpansion3D.

Definition at line 116 of file HexExp.cpp.

References Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Smul(), and Vmath::Vmul().

118  {
119  int nquad0 = m_base[0]->GetNumPoints();
120  int nquad1 = m_base[1]->GetNumPoints();
121  int nquad2 = m_base[2]->GetNumPoints();
122  Array<OneD, const NekDouble> jac = m_metricinfo->GetJac(GetPointsKeys());
123  NekDouble returnVal;
124  Array<OneD,NekDouble> tmp(nquad0*nquad1*nquad2);
125 
126  // multiply inarray with Jacobian
127 
128  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
129  {
130  Vmath::Vmul(nquad0*nquad1*nquad2,&jac[0],1,
131  (NekDouble*)&inarray[0],1,&tmp[0],1);
132  }
133  else
134  {
135  Vmath::Smul(nquad0*nquad1*nquad2,(NekDouble) jac[0],
136  (NekDouble*)&inarray[0],1,&tmp[0],1);
137  }
138 
139  // call StdHexExp version;
140  returnVal = StdHexExp::v_Integral(tmp);
141 
142  return returnVal;
143  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
double NekDouble
Array< OneD, LibUtilities::BasisSharedPtr > m_base
Geometry is curved or has non-constant factors.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
void Nektar::LocalRegions::HexExp::v_IProductWRTBase ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Calculate the inner product of inarray with respect to the elements basis.

Parameters
inarrayInput array of physical space data.
outarrayOutput array of data.

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 326 of file HexExp.cpp.

References v_IProductWRTBase_SumFac().

329  {
330  HexExp::v_IProductWRTBase_SumFac(inarray, outarray);
331  }
virtual void v_IProductWRTBase_SumFac(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
Calculate the inner product of inarray with respect to the given basis B = base0 * base1 * base2...
Definition: HexExp.cpp:365
void Nektar::LocalRegions::HexExp::v_IProductWRTBase_SumFac ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
bool  multiplybyweights = true 
)
protectedvirtual

Calculate the inner product of inarray with respect to the given basis B = base0 * base1 * base2.

$ \begin{array}{rcl} I_{pqr} = (\phi_{pqr}, u)_{\delta} & = & \sum_{i=0}^{nq_0} \sum_{j=0}^{nq_1} \sum_{k=0}^{nq_2} \psi_{p}^{a} (\xi_{1i}) \psi_{q}^{a} (\xi_{2j}) \psi_{r}^{a} (\xi_{3k}) w_i w_j w_k u(\xi_{1,i} \xi_{2,j} \xi_{3,k}) J_{i,j,k}\\ & = & \sum_{i=0}^{nq_0} \psi_p^a(\xi_{1,i}) \sum_{j=0}^{nq_1} \psi_{q}^a(\xi_{2,j}) \sum_{k=0}^{nq_2} \psi_{r}^a u(\xi_{1i},\xi_{2j},\xi_{3k}) J_{i,j,k} \end{array} $
where $ \phi_{pqr} (\xi_1 , \xi_2 , \xi_3) = \psi_p^a ( \xi_1) \psi_{q}^a (\xi_2) \psi_{r}^a (\xi_3) $
which can be implemented as
$f_{r} (\xi_{3k}) = \sum_{k=0}^{nq_3} \psi_{r}^a u(\xi_{1i},\xi_{2j},\xi_{3k}) J_{i,j,k} = {\bf B_3 U} $
$ g_{q} (\xi_{3k}) = \sum_{j=0}^{nq_1} \psi_{q}^a (\xi_{2j}) f_{r} (\xi_{3k}) = {\bf B_2 F} $
$ (\phi_{pqr}, u)_{\delta} = \sum_{k=0}^{nq_0} \psi_{p}^a (\xi_{3k}) g_{q} (\xi_{3k}) = {\bf B_1 G} $

Parameters
base0Basis to integrate wrt in first dimension.
base1Basis to integrate wrt in second dimension.
base2Basis to integrate wrt in third dimension.
inarrayInput array.
outarrayOutput array.
coll_check(not used)

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 365 of file HexExp.cpp.

References Nektar::StdRegions::StdExpansion3D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, and Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric().

Referenced by v_IProductWRTBase().

369  {
370  int nquad0 = m_base[0]->GetNumPoints();
371  int nquad1 = m_base[1]->GetNumPoints();
372  int nquad2 = m_base[2]->GetNumPoints();
373  int order0 = m_base[0]->GetNumModes();
374  int order1 = m_base[1]->GetNumModes();
375 
376  Array<OneD, NekDouble> wsp(nquad0*nquad1*(nquad2+order0) +
377  order0*order1*nquad2);
378 
379  if(multiplybyweights)
380  {
381  Array<OneD, NekDouble> tmp(inarray.num_elements());
382 
383  MultiplyByQuadratureMetric(inarray, tmp);
384  IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(),
385  m_base[1]->GetBdata(),
386  m_base[2]->GetBdata(),
387  tmp,outarray,wsp,
388  true,true,true);
389  }
390  else
391  {
392  IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(),
393  m_base[1]->GetBdata(),
394  m_base[2]->GetBdata(),
395  inarray,outarray,wsp,
396  true,true,true);
397 
398  }
399  }
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:942
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Nektar::LocalRegions::HexExp::v_IProductWRTDerivBase ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 401 of file HexExp.cpp.

References IProductWRTDerivBase_SumFac().

405  {
406  HexExp::IProductWRTDerivBase_SumFac(dir,inarray,outarray);
407  }
void IProductWRTDerivBase_SumFac(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Calculates the inner product .
Definition: HexExp.cpp:430
void Nektar::LocalRegions::HexExp::v_LaplacianMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 1057 of file HexExp.cpp.

References Nektar::StdRegions::StdExpansion3D::v_LaplacianMatrixOp_MatFree().

1061  {
1062  HexExp::v_LaplacianMatrixOp_MatFree(inarray,outarray,mkey);
1063  }
virtual void v_LaplacianMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
void Nektar::LocalRegions::HexExp::v_LaplacianMatrixOp ( const int  k1,
const int  k2,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 1065 of file HexExp.cpp.

1071  {
1072  StdExpansion::LaplacianMatrixOp_MatFree(k1,k2,inarray,outarray,
1073  mkey);
1074  }
void Nektar::LocalRegions::HexExp::v_LaplacianMatrixOp_MatFree_Kernel ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp 
)
privatevirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1766 of file HexExp.cpp.

References ASSERTL1, Nektar::LocalRegions::Expansion::ComputeLaplacianMetric(), Nektar::LocalRegions::eMetricLaplacian00, Nektar::LocalRegions::eMetricLaplacian01, Nektar::LocalRegions::eMetricLaplacian02, Nektar::LocalRegions::eMetricLaplacian11, Nektar::LocalRegions::eMetricLaplacian12, Nektar::LocalRegions::eMetricLaplacian22, Nektar::StdRegions::StdExpansion3D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metrics, Nektar::StdRegions::StdExpansion::m_ncoeffs, Vmath::Vadd(), Vmath::Vvtvp(), and Vmath::Vvtvvtp().

1770  {
1771  // This implementation is only valid when there are no
1772  // coefficients associated to the Laplacian operator
1773  if (m_metrics.count(eMetricLaplacian00) == 0)
1774  {
1776  }
1777 
1778  int nquad0 = m_base[0]->GetNumPoints();
1779  int nquad1 = m_base[1]->GetNumPoints();
1780  int nquad2 = m_base[2]->GetNumPoints();
1781  int nqtot = nquad0*nquad1*nquad2;
1782 
1783  ASSERTL1(wsp.num_elements() >= 6*nqtot,
1784  "Insufficient workspace size.");
1785 
1786  const Array<OneD, const NekDouble>& base0 = m_base[0]->GetBdata();
1787  const Array<OneD, const NekDouble>& base1 = m_base[1]->GetBdata();
1788  const Array<OneD, const NekDouble>& base2 = m_base[2]->GetBdata();
1789  const Array<OneD, const NekDouble>& dbase0 = m_base[0]->GetDbdata();
1790  const Array<OneD, const NekDouble>& dbase1 = m_base[1]->GetDbdata();
1791  const Array<OneD, const NekDouble>& dbase2 = m_base[2]->GetDbdata();
1792  const Array<OneD, const NekDouble>& metric00 = m_metrics[eMetricLaplacian00];
1793  const Array<OneD, const NekDouble>& metric01 = m_metrics[eMetricLaplacian01];
1794  const Array<OneD, const NekDouble>& metric02 = m_metrics[eMetricLaplacian02];
1795  const Array<OneD, const NekDouble>& metric11 = m_metrics[eMetricLaplacian11];
1796  const Array<OneD, const NekDouble>& metric12 = m_metrics[eMetricLaplacian12];
1797  const Array<OneD, const NekDouble>& metric22 = m_metrics[eMetricLaplacian22];
1798 
1799  // Allocate temporary storage
1800  Array<OneD,NekDouble> wsp0(wsp);
1801  Array<OneD,NekDouble> wsp1(wsp+1*nqtot);
1802  Array<OneD,NekDouble> wsp2(wsp+2*nqtot);
1803  Array<OneD,NekDouble> wsp3(wsp+3*nqtot);
1804  Array<OneD,NekDouble> wsp4(wsp+4*nqtot);
1805  Array<OneD,NekDouble> wsp5(wsp+5*nqtot);
1806 
1807  StdExpansion3D::PhysTensorDeriv(inarray,wsp0,wsp1,wsp2);
1808 
1809  // wsp0 = k = g0 * wsp1 + g1 * wsp2 = g0 * du_dxi1 + g1 * du_dxi2
1810  // wsp2 = l = g1 * wsp1 + g2 * wsp2 = g0 * du_dxi1 + g1 * du_dxi2
1811  // where g0, g1 and g2 are the metric terms set up in the GeomFactors class
1812  // especially for this purpose
1813  Vmath::Vvtvvtp(nqtot,&metric00[0],1,&wsp0[0],1,&metric01[0],1,&wsp1[0],1,&wsp3[0],1);
1814  Vmath::Vvtvp (nqtot,&metric02[0],1,&wsp2[0],1,&wsp3[0],1,&wsp3[0],1);
1815  Vmath::Vvtvvtp(nqtot,&metric01[0],1,&wsp0[0],1,&metric11[0],1,&wsp1[0],1,&wsp4[0],1);
1816  Vmath::Vvtvp (nqtot,&metric12[0],1,&wsp2[0],1,&wsp4[0],1,&wsp4[0],1);
1817  Vmath::Vvtvvtp(nqtot,&metric02[0],1,&wsp0[0],1,&metric12[0],1,&wsp1[0],1,&wsp5[0],1);
1818  Vmath::Vvtvp (nqtot,&metric22[0],1,&wsp2[0],1,&wsp5[0],1,&wsp5[0],1);
1819 
1820  // outarray = m = (D_xi1 * B)^T * k
1821  // wsp1 = n = (D_xi2 * B)^T * l
1822  IProductWRTBase_SumFacKernel(dbase0,base1,base2,wsp3,outarray,wsp0,false,true,true);
1823  IProductWRTBase_SumFacKernel(base0,dbase1,base2,wsp4,wsp2, wsp0,true,false,true);
1824  Vmath::Vadd(m_ncoeffs,wsp2.get(),1,outarray.get(),1,outarray.get(),1);
1825  IProductWRTBase_SumFacKernel(base0,base1,dbase2,wsp5,wsp2, wsp0,true,true,false);
1826  Vmath::Vadd(m_ncoeffs,wsp2.get(),1,outarray.get(),1,outarray.get(),1);
1827  }
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:428
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
void Vvtvvtp(int n, const T *v, int incv, const T *w, int incw, const T *x, int incx, const T *y, int incy, T *z, int incz)
vvtvvtp (vector times vector plus vector times vector):
Definition: Vmath.cpp:523
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:285
void Nektar::LocalRegions::HexExp::v_MassLevelCurvatureMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1094 of file HexExp.cpp.

1098  {
1099  StdExpansion::MassLevelCurvatureMatrixOp_MatFree(inarray,
1100  outarray,mkey);
1101  }
void Nektar::LocalRegions::HexExp::v_MassMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 1049 of file HexExp.cpp.

1053  {
1054  StdExpansion::MassMatrixOp_MatFree(inarray,outarray,mkey);
1055  }
void Nektar::LocalRegions::HexExp::v_PhysDeriv ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out_d0,
Array< OneD, NekDouble > &  out_d1,
Array< OneD, NekDouble > &  out_d2 
)
protectedvirtual

Calculate the derivative of the physical points.

For Hexahedral region can use the Tensor_Deriv function defined under StdExpansion.

Parameters
inarrayInput array
out_d0Derivative of inarray in first direction.
out_d1Derivative of inarray in second direction.
out_d2Derivative of inarray in third direction.

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 159 of file HexExp.cpp.

References Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Smul(), Vmath::Vmul(), and Vmath::Vvtvp().

164  {
165  int nquad0 = m_base[0]->GetNumPoints();
166  int nquad1 = m_base[1]->GetNumPoints();
167  int nquad2 = m_base[2]->GetNumPoints();
168  int ntot = nquad0 * nquad1 * nquad2;
169 
170  Array<TwoD, const NekDouble> df =
171  m_metricinfo->GetDerivFactors(GetPointsKeys());
172  Array<OneD,NekDouble> Diff0 = Array<OneD,NekDouble>(ntot);
173  Array<OneD,NekDouble> Diff1 = Array<OneD,NekDouble>(ntot);
174  Array<OneD,NekDouble> Diff2 = Array<OneD,NekDouble>(ntot);
175 
176  StdHexExp::v_PhysDeriv(inarray, Diff0, Diff1, Diff2);
177 
178  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
179  {
180  if(out_d0.num_elements())
181  {
182  Vmath::Vmul (ntot,&df[0][0],1,&Diff0[0],1, &out_d0[0], 1);
183  Vmath::Vvtvp(ntot,&df[1][0],1,&Diff1[0],1, &out_d0[0], 1,
184  &out_d0[0],1);
185  Vmath::Vvtvp(ntot,&df[2][0],1,&Diff2[0],1, &out_d0[0], 1,
186  &out_d0[0],1);
187  }
188 
189  if(out_d1.num_elements())
190  {
191  Vmath::Vmul (ntot,&df[3][0],1,&Diff0[0],1, &out_d1[0], 1);
192  Vmath::Vvtvp(ntot,&df[4][0],1,&Diff1[0],1, &out_d1[0], 1,
193  &out_d1[0],1);
194  Vmath::Vvtvp(ntot,&df[5][0],1,&Diff2[0],1, &out_d1[0], 1,
195  &out_d1[0],1);
196  }
197 
198  if(out_d2.num_elements())
199  {
200  Vmath::Vmul (ntot,&df[6][0],1,&Diff0[0],1, &out_d2[0], 1);
201  Vmath::Vvtvp(ntot,&df[7][0],1,&Diff1[0],1, &out_d2[0], 1,
202  &out_d2[0],1);
203  Vmath::Vvtvp(ntot,&df[8][0],1,&Diff2[0],1, &out_d2[0], 1,
204  &out_d2[0],1);
205  }
206  }
207  else // regular geometry
208  {
209  if(out_d0.num_elements())
210  {
211  Vmath::Smul (ntot,df[0][0],&Diff0[0],1, &out_d0[0], 1);
212  Blas::Daxpy (ntot,df[1][0],&Diff1[0],1, &out_d0[0], 1);
213  Blas::Daxpy (ntot,df[2][0],&Diff2[0],1, &out_d0[0], 1);
214  }
215 
216  if(out_d1.num_elements())
217  {
218  Vmath::Smul (ntot,df[3][0],&Diff0[0],1, &out_d1[0], 1);
219  Blas::Daxpy (ntot,df[4][0],&Diff1[0],1, &out_d1[0], 1);
220  Blas::Daxpy (ntot,df[5][0],&Diff2[0],1, &out_d1[0], 1);
221  }
222 
223  if(out_d2.num_elements())
224  {
225  Vmath::Smul (ntot,df[6][0],&Diff0[0],1, &out_d2[0], 1);
226  Blas::Daxpy (ntot,df[7][0],&Diff1[0],1, &out_d2[0], 1);
227  Blas::Daxpy (ntot,df[8][0],&Diff2[0],1, &out_d2[0], 1);
228  }
229  }
230  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:428
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
Array< OneD, LibUtilities::BasisSharedPtr > m_base
Geometry is curved or has non-constant factors.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
void Nektar::LocalRegions::HexExp::v_PhysDeriv ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Calculate the derivative of the physical points in a single direction.

Parameters
dirDirection in which to compute derivative. Valid values are 0, 1, 2.
inarrayInput array.
outarrayOutput array.

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 242 of file HexExp.cpp.

References ASSERTL1, Nektar::NullNekDouble1DArray, and Nektar::StdRegions::StdExpansion::PhysDeriv().

246  {
247  switch(dir)
248  {
249  case 0:
250  {
251  PhysDeriv(inarray, outarray, NullNekDouble1DArray,
253  }
254  break;
255  case 1:
256  {
257  PhysDeriv(inarray, NullNekDouble1DArray, outarray,
259  }
260  break;
261  case 2:
262  {
264  NullNekDouble1DArray, outarray);
265  }
266  break;
267  default:
268  {
269  ASSERTL1(false,"input dir is out of range");
270  }
271  break;
272  }
273  }
static Array< OneD, NekDouble > NullNekDouble1DArray
void PhysDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
NekDouble Nektar::LocalRegions::HexExp::v_PhysEvaluate ( const Array< OneD, const NekDouble > &  coords,
const Array< OneD, const NekDouble > &  physvals 
)
protectedvirtual

This function evaluates the expansion at a single (arbitrary) point of the domain.

Based on the value of the expansion at the quadrature points, this function calculates the value of the expansion at an arbitrary single points (with coordinates $ \mathbf{x_c}$ given by the pointer coords). This operation, equivalent to

\[ u(\mathbf{x_c}) = \sum_p \phi_p(\mathbf{x_c}) \hat{u}_p \]

is evaluated using Lagrangian interpolants through the quadrature points:

\[ u(\mathbf{x_c}) = \sum_p h_p(\mathbf{x_c}) u_p\]

This function requires that the physical value array $\mathbf{u}$ (implemented as the attribute #phys) is set.

Parameters
coordsthe coordinates of the single point
Returns
returns the value of the expansion at the single point

Reimplemented from Nektar::StdRegions::StdExpansion3D.

Definition at line 550 of file HexExp.cpp.

References ASSERTL0, and Nektar::LocalRegions::Expansion::m_geom.

553  {
554  Array<OneD,NekDouble> Lcoord = Array<OneD,NekDouble>(3);
555 
556  ASSERTL0(m_geom,"m_geom not defined");
557  m_geom->GetLocCoords(coord,Lcoord);
558  return StdHexExp::v_PhysEvaluate(Lcoord, physvals);
559  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:125
void Nektar::LocalRegions::HexExp::v_ReduceOrderCoeffs ( int  numMin,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

This function is used to compute exactly the advective numerical flux on the interface of two elements with different expansions, hence an appropriate number of Gauss points has to be used. The number of Gauss points has to be equal to the number used by the highest polynomial degree of the two adjacent elements

Parameters
numMinIs the reduced polynomial order
inarrayInput array of coefficients
dumpVarOutput array of reduced coefficients.

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1171 of file HexExp.cpp.

References Nektar::LibUtilities::eGaussLobattoLegendre, Nektar::LibUtilities::eOrtho_A, Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::LibUtilities::InterpCoeff3D(), Nektar::StdRegions::StdExpansion::m_base, Vmath::Vcopy(), and Vmath::Zero().

1175  {
1176  int n_coeffs = inarray.num_elements();
1177  int nmodes0 = m_base[0]->GetNumModes();
1178  int nmodes1 = m_base[1]->GetNumModes();
1179  int nmodes2 = m_base[2]->GetNumModes();
1180  int numMax = nmodes0;
1181 
1182  Array<OneD, NekDouble> coeff (n_coeffs);
1183  Array<OneD, NekDouble> coeff_tmp1(nmodes0*nmodes1, 0.0);
1184  Array<OneD, NekDouble> coeff_tmp2(n_coeffs, 0.0);
1185  Array<OneD, NekDouble> tmp, tmp2, tmp3, tmp4;
1186 
1187  Vmath::Vcopy(n_coeffs,inarray,1,coeff_tmp2,1);
1188 
1189  const LibUtilities::PointsKey Pkey0(
1191  const LibUtilities::PointsKey Pkey1(
1193  const LibUtilities::PointsKey Pkey2(
1195 
1196  LibUtilities::BasisKey b0(
1197  m_base[0]->GetBasisType(), nmodes0, Pkey0);
1198  LibUtilities::BasisKey b1(
1199  m_base[1]->GetBasisType(), nmodes1, Pkey1);
1200  LibUtilities::BasisKey b2(
1201  m_base[2]->GetBasisType(), nmodes2, Pkey2);
1202  LibUtilities::BasisKey bortho0(
1203  LibUtilities::eOrtho_A, nmodes0, Pkey0);
1204  LibUtilities::BasisKey bortho1(
1205  LibUtilities::eOrtho_A, nmodes1, Pkey1);
1206  LibUtilities::BasisKey bortho2(
1207  LibUtilities::eOrtho_A, nmodes2, Pkey2);
1208 
1210  b0, b1, b2, coeff_tmp2,
1211  bortho0, bortho1, bortho2, coeff);
1212 
1213  Vmath::Zero(n_coeffs, coeff_tmp2, 1);
1214 
1215  int cnt = 0, cnt2 = 0;
1216 
1217  for (int u = 0; u < numMin+1; ++u)
1218  {
1219  for (int i = 0; i < numMin; ++i)
1220  {
1221  Vmath::Vcopy(numMin,
1222  tmp = coeff+cnt+cnt2,1,
1223  tmp2 = coeff_tmp1+cnt,1);
1224 
1225  cnt = i*numMax;
1226  }
1227 
1228  Vmath::Vcopy(nmodes0*nmodes1,
1229  tmp3 = coeff_tmp1,1,
1230  tmp4 = coeff_tmp2+cnt2,1);
1231 
1232  cnt2 = u*nmodes0*nmodes1;
1233  }
1234 
1236  bortho0, bortho1, bortho2, coeff_tmp2,
1237  b0, b1, b2, outarray);
1238  }
Principle Orthogonal Functions .
Definition: BasisType.h:46
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:165
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:359
void InterpCoeff3D(const BasisKey &fbasis0, const BasisKey &fbasis1, const BasisKey &fbasis2, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, const BasisKey &tbasis1, const BasisKey &tbasis2, Array< OneD, NekDouble > &to)
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1047
1D Gauss-Lobatto-Legendre quadrature points
Definition: PointsType.h:50
NekDouble Nektar::LocalRegions::HexExp::v_StdPhysEvaluate ( const Array< OneD, const NekDouble > &  Lcoord,
const Array< OneD, const NekDouble > &  physvals 
)
protectedvirtual

Given the local cartesian coordinate Lcoord evaluate the value of physvals at this point by calling through to the StdExpansion method

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 542 of file HexExp.cpp.

545  {
546  // Evaluate point in local coordinates.
547  return StdHexExp::v_PhysEvaluate(Lcoord,physvals);
548  }
void Nektar::LocalRegions::HexExp::v_SVVLaplacianFilter ( Array< OneD, NekDouble > &  array,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 1240 of file HexExp.cpp.

References Nektar::SpatialDomains::eDeformed, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::GetTotPoints(), Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Vdiv(), Vmath::Vmul(), and Vmath::Vsqrt().

1243  {
1244  int nq = GetTotPoints();
1245 
1246  // Calculate sqrt of the Jacobian
1247  Array<OneD, const NekDouble> jac =
1248  m_metricinfo->GetJac(GetPointsKeys());
1249  Array<OneD, NekDouble> sqrt_jac(nq);
1250  if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1251  {
1252  Vmath::Vsqrt(nq,jac,1,sqrt_jac,1);
1253  }
1254  else
1255  {
1256  Vmath::Fill(nq,sqrt(jac[0]),sqrt_jac,1);
1257  }
1258 
1259  // Multiply array by sqrt(Jac)
1260  Vmath::Vmul(nq,sqrt_jac,1,array,1,array,1);
1261 
1262  // Apply std region filter
1263  StdHexExp::v_SVVLaplacianFilter( array, mkey);
1264 
1265  // Divide by sqrt(Jac)
1266  Vmath::Vdiv(nq,array,1,sqrt_jac,1,array,1);
1267  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
Definition: Vmath.cpp:394
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:46
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:227
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:141
Geometry is curved or has non-constant factors.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
void Nektar::LocalRegions::HexExp::v_WeakDerivMatrixOp ( const int  i,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 1076 of file HexExp.cpp.

1081  {
1082  StdExpansion::WeakDerivMatrixOp_MatFree(i,inarray,outarray,mkey);
1083  }
void Nektar::LocalRegions::HexExp::v_WeakDirectionalDerivMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1085 of file HexExp.cpp.

1089  {
1090  StdExpansion::WeakDirectionalDerivMatrixOp_MatFree(inarray,
1091  outarray,mkey);
1092  }

Member Data Documentation

LibUtilities::NekManager<MatrixKey, DNekScalMat, MatrixKey::opLess> Nektar::LocalRegions::HexExp::m_matrixManager
private

Definition at line 261 of file HexExp.h.

Referenced by CreateMatrix(), IProductWRTDerivBase_MatOp(), v_FwdTrans(), and v_GetLocMatrix().

LibUtilities::NekManager<MatrixKey, DNekScalBlkMat, MatrixKey::opLess> Nektar::LocalRegions::HexExp::m_staticCondMatrixManager
private

Definition at line 262 of file HexExp.h.

Referenced by v_DropLocStaticCondMatrix(), and v_GetLocStaticCondMatrix().