Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
Public Member Functions | Protected Member Functions | Private Member Functions | Private Attributes | List of all members
Nektar::LocalRegions::PrismExp Class Reference

#include <PrismExp.h>

Inheritance diagram for Nektar::LocalRegions::PrismExp:
Inheritance graph
[legend]
Collaboration diagram for Nektar::LocalRegions::PrismExp:
Collaboration graph
[legend]

Public Member Functions

 PrismExp (const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc, const SpatialDomains::PrismGeomSharedPtr &geom)
 Constructor using BasisKey class for quadrature points and order definition. More...
 
 PrismExp (const PrismExp &T)
 
 ~PrismExp ()
 
- Public Member Functions inherited from Nektar::StdRegions::StdPrismExp
 StdPrismExp ()
 
 StdPrismExp (const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc)
 
 StdPrismExp (const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc, NekDouble *coeffs, NekDouble *phys)
 
 StdPrismExp (const StdPrismExp &T)
 
 ~StdPrismExp ()
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion3D
 StdExpansion3D ()
 
 StdExpansion3D (int numcoeffs, const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc)
 
 StdExpansion3D (const StdExpansion3D &T)
 
virtual ~StdExpansion3D ()
 
void PhysTensorDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray_d1, Array< OneD, NekDouble > &outarray_d2, Array< OneD, NekDouble > &outarray_d3)
 Calculate the 3D derivative in the local tensor/collapsed coordinate at the physical points. More...
 
void BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
void IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion
 StdExpansion ()
 Default Constructor. More...
 
 StdExpansion (const int numcoeffs, const int numbases, const LibUtilities::BasisKey &Ba=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bb=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bc=LibUtilities::NullBasisKey)
 Constructor. More...
 
 StdExpansion (const StdExpansion &T)
 Copy Constructor. More...
 
virtual ~StdExpansion ()
 Destructor. More...
 
int GetNumBases () const
 This function returns the number of 1D bases used in the expansion. More...
 
const Array< OneD, const
LibUtilities::BasisSharedPtr > & 
GetBase () const
 This function gets the shared point to basis. More...
 
const
LibUtilities::BasisSharedPtr
GetBasis (int dir) const
 This function gets the shared point to basis in the dir direction. More...
 
int GetNcoeffs (void) const
 This function returns the total number of coefficients used in the expansion. More...
 
int GetTotPoints () const
 This function returns the total number of quadrature points used in the element. More...
 
LibUtilities::BasisType GetBasisType (const int dir) const
 This function returns the type of basis used in the dir direction. More...
 
int GetBasisNumModes (const int dir) const
 This function returns the number of expansion modes in the dir direction. More...
 
int EvalBasisNumModesMax (void) const
 This function returns the maximum number of expansion modes over all local directions. More...
 
LibUtilities::PointsType GetPointsType (const int dir) const
 This function returns the type of quadrature points used in the dir direction. More...
 
int GetNumPoints (const int dir) const
 This function returns the number of quadrature points in the dir direction. More...
 
const Array< OneD, const
NekDouble > & 
GetPoints (const int dir) const
 This function returns a pointer to the array containing the quadrature points in dir direction. More...
 
int GetNverts () const
 This function returns the number of vertices of the expansion domain. More...
 
int GetNedges () const
 This function returns the number of edges of the expansion domain. More...
 
int GetEdgeNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th edge. More...
 
int GetTotalEdgeIntNcoeffs () const
 
int GetEdgeNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th edge. More...
 
int DetCartesianDirOfEdge (const int edge)
 
const LibUtilities::BasisKey DetEdgeBasisKey (const int i) const
 
const LibUtilities::BasisKey DetFaceBasisKey (const int i, const int k) const
 
int GetFaceNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th face. More...
 
int GetFaceNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th face. More...
 
int GetFaceIntNcoeffs (const int i) const
 
int GetTotalFaceIntNcoeffs () const
 
int GetTraceNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th edge/face. More...
 
LibUtilities::PointsKey GetFacePointsKey (const int i, const int j) const
 
int NumBndryCoeffs (void) const
 
int NumDGBndryCoeffs (void) const
 
LibUtilities::BasisType GetEdgeBasisType (const int i) const
 This function returns the type of expansion basis on the i-th edge. More...
 
const LibUtilities::PointsKey GetNodalPointsKey () const
 This function returns the type of expansion Nodal point type if defined. More...
 
int GetNfaces () const
 This function returns the number of faces of the expansion domain. More...
 
int GetNtrace () const
 Returns the number of trace elements connected to this element. More...
 
LibUtilities::ShapeType DetShapeType () const
 This function returns the shape of the expansion domain. More...
 
boost::shared_ptr< StdExpansionGetStdExp (void) const
 
int GetShapeDimension () const
 
bool IsBoundaryInteriorExpansion ()
 
bool IsNodalNonTensorialExp ()
 
void BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Backward transformation from coefficient space to physical space. More...
 
void FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Forward transformation from physical space to coefficient space. More...
 
void FwdTrans_BndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble Integral (const Array< OneD, const NekDouble > &inarray)
 This function integrates the specified function over the domain. More...
 
void FillMode (const int mode, Array< OneD, NekDouble > &outarray)
 This function fills the array outarray with the mode-th mode of the expansion. More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 this function calculates the inner product of a given function f with the different modes of the expansion More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &base, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int coll_check)
 
void IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
int GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void SetElmtId (const int id)
 Set the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2=NullNekDouble1DArray, Array< OneD, NekDouble > &coords_3=NullNekDouble1DArray)
 this function returns the physical coordinates of the quadrature points of the expansion More...
 
void GetCoord (const Array< OneD, const NekDouble > &Lcoord, Array< OneD, NekDouble > &coord)
 given the coordinates of a point of the element in the local collapsed coordinate system, this function calculates the physical coordinates of the point More...
 
DNekMatSharedPtr GetStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr GetStdStaticCondMatrix (const StdMatrixKey &mkey)
 
IndexMapValuesSharedPtr GetIndexMap (const IndexMapKey &ikey)
 
const Array< OneD, const
NekDouble > & 
GetPhysNormals (void)
 
void SetPhysNormals (Array< OneD, const NekDouble > &normal)
 
virtual void SetUpPhysNormals (const int edge)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
DNekScalBlkMatSharedPtr GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
void DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
StdRegions::Orientation GetForient (int face)
 
StdRegions::Orientation GetEorient (int edge)
 
StdRegions::Orientation GetPorient (int point)
 
StdRegions::Orientation GetCartesianEorient (int edge)
 
void SetCoeffsToOrientation (Array< OneD, NekDouble > &coeffs, StdRegions::Orientation dir)
 
void SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
int CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
void ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int nmodes_offset, NekDouble *coeffs)
 
NekDouble StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
int GetCoordim ()
 
void GetBoundaryMap (Array< OneD, unsigned int > &outarray)
 
void GetInteriorMap (Array< OneD, unsigned int > &outarray)
 
int GetVertexMap (const int localVertexId, bool useCoeffPacking=false)
 
void GetEdgeInteriorMap (const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
 
void GetFaceInteriorMap (const int fid, const Orientation faceOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
 
void GetEdgeToElementMap (const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, int P=-1)
 
void GetFaceToElementMap (const int fid, const Orientation faceOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, int nummodesA=-1, int nummodesB=-1)
 
void GetEdgePhysVals (const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Extract the physical values along edge edge from inarray into outarray following the local edge orientation and point distribution defined by defined in EdgeExp. More...
 
void GetEdgePhysVals (const int edge, const boost::shared_ptr< StdExpansion > &EdgeExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GetTracePhysVals (const int edge, const boost::shared_ptr< StdExpansion > &EdgeExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GetVertexPhysVals (const int vertex, const Array< OneD, const NekDouble > &inarray, NekDouble &outarray)
 
void GetEdgeInterpVals (const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GetEdgeQFactors (const int edge, Array< OneD, NekDouble > &outarray)
 Extract the metric factors to compute the contravariant fluxes along edge edge and stores them into outarray following the local edge orientation (i.e. anticlockwise convention). More...
 
void GetFacePhysVals (const int face, const boost::shared_ptr< StdExpansion > &FaceExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient=eNoOrientation)
 
void GetEdgePhysMap (const int edge, Array< OneD, int > &outarray)
 
void GetFacePhysMap (const int face, Array< OneD, int > &outarray)
 
void MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
DNekMatSharedPtr CreateGeneralMatrix (const StdMatrixKey &mkey)
 this function generates the mass matrix $\mathbf{M}[i][j] = \int \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x}$ More...
 
void GeneralMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
DNekMatSharedPtr GenMatrix (const StdMatrixKey &mkey)
 
void PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void PhysDeriv_s (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_ds)
 
void PhysDeriv_n (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_dn)
 
void PhysDirectionalDeriv (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &direction, Array< OneD, NekDouble > &outarray)
 
void StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void AddRobinMassMatrix (const int edgeid, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat)
 
void AddRobinEdgeContribution (const int edgeid, const Array< OneD, const NekDouble > &primCoeffs, Array< OneD, NekDouble > &coeffs)
 
NekDouble PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
void LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
 Convert local cartesian coordinate xi into local collapsed coordinates eta. More...
 
const boost::shared_ptr
< SpatialDomains::GeomFactors > & 
GetMetricInfo (void) const
 
virtual int v_GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
virtual const Array< OneD,
const NekDouble > & 
v_GetPhysNormals (void)
 
virtual void v_SetPhysNormals (Array< OneD, const NekDouble > &normal)
 
virtual void v_SetUpPhysNormals (const int edge)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
virtual StdRegions::Orientation v_GetEorient (int edge)
 
virtual StdRegions::Orientation v_GetCartesianEorient (int edge)
 
virtual StdRegions::Orientation v_GetPorient (int point)
 
NekDouble Linf (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete $ L_\infty$ error $ |\epsilon|_\infty = \max |u - u_{exact}|$ where $ u_{exact}$ is given by the array sol. More...
 
NekDouble L2 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete $ L_2$ error, $ | \epsilon |_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 dx \right]^{1/2} d\xi_1 $ where $ u_{exact}$ is given by the array sol. More...
 
NekDouble H1 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete $ H^1$ error, $ | \epsilon |^1_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 + \nabla(u - u_{exact})\cdot\nabla(u - u_{exact})\cdot dx \right]^{1/2} d\xi_1 $ where $ u_{exact}$ is given by the array sol. More...
 
const NormalVectorGetEdgeNormal (const int edge) const
 
void ComputeEdgeNormal (const int edge)
 
void NegateEdgeNormal (const int edge)
 
bool EdgeNormalNegated (const int edge)
 
void ComputeFaceNormal (const int face)
 
void NegateFaceNormal (const int face)
 
bool FaceNormalNegated (const int face)
 
void ComputeVertexNormal (const int vertex)
 
const NormalVectorGetFaceNormal (const int face) const
 
const NormalVectorGetVertexNormal (const int vertex) const
 
const NormalVectorGetSurfaceNormal (const int id) const
 
const LibUtilities::PointsKeyVector GetPointsKeys () const
 
Array< OneD, unsigned int > GetEdgeInverseBoundaryMap (int eid)
 
Array< OneD, unsigned int > GetFaceInverseBoundaryMap (int fid, StdRegions::Orientation faceOrient=eNoOrientation)
 
DNekMatSharedPtr BuildInverseTransformationMatrix (const DNekScalMatSharedPtr &m_transformationmatrix)
 
void PhysInterpToSimplexEquiSpaced (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int npset=-1)
 This function performs an interpolation from the physical space points provided at input into an array of equispaced points which are not the collapsed coordinate. So for a tetrahedron you will only get a tetrahedral number of values. More...
 
void GetSimplexEquiSpacedConnectivity (Array< OneD, int > &conn, bool standard=true)
 This function provides the connectivity of local simplices (triangles or tets) to connect the equispaced data points provided by PhysInterpToSimplexEquiSpaced. More...
 
void EquiSpacedToCoeffs (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs a projection/interpolation from the equispaced points sometimes used in post-processing onto the coefficient space. More...
 
template<class T >
boost::shared_ptr< T > as ()
 
void IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
 
- Public Member Functions inherited from Nektar::LocalRegions::Expansion3D
 Expansion3D (SpatialDomains::Geometry3DSharedPtr pGeom)
 
virtual ~Expansion3D ()
 
void SetFaceExp (const int face, Expansion2DSharedPtr &f)
 
Expansion2DSharedPtr GetFaceExp (const int face)
 
void SetTraceToGeomOrientation (Array< OneD, NekDouble > &inout)
 Align trace orientation with the geometry orientation. More...
 
void SetFaceToGeomOrientation (const int face, Array< OneD, NekDouble > &inout)
 Align face orientation with the geometry orientation. More...
 
void AddHDGHelmholtzFaceTerms (const NekDouble tau, const int edge, Array< OneD, NekDouble > &facePhys, const StdRegions::VarCoeffMap &dirForcing, Array< OneD, NekDouble > &outarray)
 
void AddNormTraceInt (const int dir, Array< OneD, ExpansionSharedPtr > &FaceExp, Array< OneD, Array< OneD, NekDouble > > &faceCoeffs, Array< OneD, NekDouble > &outarray)
 
void AddNormTraceInt (const int dir, Array< OneD, const NekDouble > &inarray, Array< OneD, ExpansionSharedPtr > &FaceExp, Array< OneD, NekDouble > &outarray, const StdRegions::VarCoeffMap &varcoeffs)
 
void AddFaceBoundaryInt (const int face, ExpansionSharedPtr &FaceExp, Array< OneD, NekDouble > &facePhys, Array< OneD, NekDouble > &outarray, const StdRegions::VarCoeffMap &varcoeffs=StdRegions::NullVarCoeffMap)
 
SpatialDomains::Geometry3DSharedPtr GetGeom3D () const
 
void ReOrientFacePhysMap (const int nvert, const StdRegions::Orientation orient, const int nq0, const int nq1, Array< OneD, int > &idmap)
 
void v_NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
- Public Member Functions inherited from Nektar::LocalRegions::Expansion
 Expansion (SpatialDomains::GeometrySharedPtr pGeom)
 
 Expansion (const Expansion &pSrc)
 
virtual ~Expansion ()
 
DNekScalMatSharedPtr GetLocMatrix (const LocalRegions::MatrixKey &mkey)
 
DNekScalMatSharedPtr GetLocMatrix (const StdRegions::MatrixType mtype, const StdRegions::ConstFactorMap &factors=StdRegions::NullConstFactorMap, const StdRegions::VarCoeffMap &varcoeffs=StdRegions::NullVarCoeffMap)
 
SpatialDomains::GeometrySharedPtr GetGeom () const
 
void Reset ()
 
virtual const
SpatialDomains::GeomFactorsSharedPtr
v_GetMetricInfo () const
 
DNekMatSharedPtr BuildTransformationMatrix (const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType)
 
DNekMatSharedPtr BuildVertexMatrix (const DNekScalMatSharedPtr &r_bnd)
 
void AddEdgeNormBoundaryInt (const int edge, const boost::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void AddEdgeNormBoundaryInt (const int edge, const boost::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
void AddFaceNormBoundaryInt (const int face, const boost::shared_ptr< Expansion > &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
void DGDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, ExpansionSharedPtr > &EdgeExp, Array< OneD, Array< OneD, NekDouble > > &coeffs, Array< OneD, NekDouble > &outarray)
 

Protected Member Functions

virtual NekDouble v_Integral (const Array< OneD, const NekDouble > &inarray)
 Integrate the physical point list inarray over prismatic region and return the value. More...
 
virtual void v_PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2)
 Calculate the derivative of the physical points. More...
 
virtual void v_FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Forward transform from physical quadrature space stored in inarray and evaluate the expansion coefficients and store in (this)->m_coeffs. More...
 
virtual void v_IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Calculate the inner product of inarray with respect to the basis B=base0*base1*base2 and put into outarray: More...
 
virtual void v_IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
 
void v_IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Calculates the inner product $ I_{pqr} = (u, \partial_{x_i} \phi_{pqr}) $. More...
 
void v_IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_GetCoord (const Array< OneD, const NekDouble > &Lcoords, Array< OneD, NekDouble > &coords)
 Get the coordinates #coords at the local coordinates #Lcoords. More...
 
virtual void v_GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3)
 
virtual NekDouble v_StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
virtual NekDouble v_PhysEvaluate (const Array< OneD, const NekDouble > &coord, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
virtual
StdRegions::StdExpansionSharedPtr 
v_GetStdExp (void) const
 
virtual int v_GetCoordim ()
 
virtual void v_ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int mode_offset, NekDouble *coeffs)
 Unpack data from input file assuming it comes from the same expansion type. More...
 
virtual void v_GetFacePhysMap (const int face, Array< OneD, int > &outarray)
 
void v_ComputeFaceNormal (const int face)
 Get the normals along specficied face Get the face normals interplated to a points0 x points 0 type distribution. More...
 
virtual void v_MassMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_LaplacianMatrixOp (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_GeneralMatrixOp_MatOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdRegions::StdMatrixKey &mkey)
 
virtual DNekMatSharedPtr v_GenMatrix (const StdRegions::StdMatrixKey &mkey)
 
virtual DNekMatSharedPtr v_CreateStdMatrix (const StdRegions::StdMatrixKey &mkey)
 
virtual DNekScalMatSharedPtr v_GetLocMatrix (const MatrixKey &mkey)
 
virtual DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix (const MatrixKey &mkey)
 
void v_DropLocStaticCondMatrix (const MatrixKey &mkey)
 
DNekScalMatSharedPtr CreateMatrix (const MatrixKey &mkey)
 
DNekScalBlkMatSharedPtr CreateStaticCondMatrix (const MatrixKey &mkey)
 
virtual void v_GetSimplexEquiSpacedConnectivity (Array< OneD, int > &conn, bool standard=true)
 
- Protected Member Functions inherited from Nektar::StdRegions::StdPrismExp
virtual void v_PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Calculate the derivative of the physical points in a given direction. More...
 
virtual void v_StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2)
 
virtual void v_StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
virtual void v_IProductWRTBase_MatOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
virtual void v_IProductWRTDerivBase_MatOp (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
 
virtual void v_FillMode (const int mode, Array< OneD, NekDouble > &outarray)
 
virtual int v_GetNverts () const
 
virtual int v_GetNedges () const
 
virtual int v_GetNfaces () const
 
virtual LibUtilities::ShapeType v_DetShapeType () const
 Return Shape of region, using ShapeType enum list; i.e. prism. More...
 
virtual int v_NumBndryCoeffs () const
 
virtual int v_NumDGBndryCoeffs () const
 
virtual int v_GetEdgeNcoeffs (const int i) const
 
virtual int v_GetTotalEdgeIntNcoeffs () const
 
virtual int v_GetFaceNcoeffs (const int i) const
 
virtual int v_GetFaceNumPoints (const int i) const
 
virtual LibUtilities::PointsKey v_GetFacePointsKey (const int i, const int j) const
 
virtual const
LibUtilities::BasisKey 
v_DetFaceBasisKey (const int i, const int k) const
 
virtual int v_GetFaceIntNcoeffs (const int i) const
 
virtual int v_GetTotalFaceIntNcoeffs () const
 
virtual int v_CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
virtual LibUtilities::BasisType v_GetEdgeBasisType (const int i) const
 
virtual bool v_IsBoundaryInteriorExpansion ()
 
virtual void v_GetFaceToElementMap (const int fid, const Orientation faceOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, int P=-1, int Q=-1)
 
virtual int v_GetVertexMap (int localVertexId, bool useCoeffPacking=false)
 
virtual void v_GetEdgeInteriorMap (const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
 
virtual void v_GetFaceInteriorMap (const int fid, const Orientation faceOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
 
virtual void v_GetInteriorMap (Array< OneD, unsigned int > &outarray)
 
virtual void v_GetBoundaryMap (Array< OneD, unsigned int > &outarray)
 
virtual void v_MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion3D
virtual NekDouble v_PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
 
virtual void v_LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_NegateFaceNormal (const int face)
 
virtual bool v_FaceNormalNegated (const int face)
 
virtual int v_GetTraceNcoeffs (const int i) const
 
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion
DNekMatSharedPtr CreateStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr CreateStdStaticCondMatrix (const StdMatrixKey &mkey)
 Create the static condensation of a matrix when using a boundary interior decomposition. More...
 
IndexMapValuesSharedPtr CreateIndexMap (const IndexMapKey &ikey)
 Create an IndexMap which contains mapping information linking any specific element shape with either its boundaries, edges, faces, verteces, etc. More...
 
void BwdTrans_MatOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GeneralMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree_Kernel (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
 
void LaplacianMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp_MatFree (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void HelmholtzMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
virtual void v_SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_SetCoeffsToOrientation (Array< OneD, NekDouble > &coeffs, StdRegions::Orientation dir)
 
- Protected Member Functions inherited from Nektar::LocalRegions::Expansion3D
virtual void v_DGDeriv (const int dir, const Array< OneD, const NekDouble > &incoeffs, Array< OneD, ExpansionSharedPtr > &FaceExp, Array< OneD, Array< OneD, NekDouble > > &faceCoeffs, Array< OneD, NekDouble > &out_d)
 Evaluate coefficients of weak deriviative in the direction dir given the input coefficicents incoeffs and the imposed boundary values in EdgeExp (which will have its phys space updated). More...
 
virtual void v_AddFaceNormBoundaryInt (const int face, const ExpansionSharedPtr &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddRobinMassMatrix (const int face, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat)
 
virtual StdRegions::Orientation v_GetForient (int face)
 
virtual void v_GetTracePhysVals (const int face, const StdRegions::StdExpansionSharedPtr &FaceExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient)
 Returns the physical values at the quadrature points of a face Wrapper function to v_GetFacePhysVals. More...
 
virtual void v_GetFacePhysVals (const int face, const StdRegions::StdExpansionSharedPtr &FaceExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient)
 
virtual Array< OneD, unsigned int > v_GetEdgeInverseBoundaryMap (int eid)
 
virtual Array< OneD, unsigned int > v_GetFaceInverseBoundaryMap (int fid, StdRegions::Orientation faceOrient=StdRegions::eNoOrientation)
 
virtual DNekMatSharedPtr v_BuildTransformationMatrix (const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType)
 
virtual DNekMatSharedPtr v_BuildInverseTransformationMatrix (const DNekScalMatSharedPtr &m_transformationmatrix)
 Build inverse and inverse transposed transformation matrix: $\mathbf{R^{-1}}$ and $\mathbf{R^{-T}}$. More...
 
virtual DNekMatSharedPtr v_BuildVertexMatrix (const DNekScalMatSharedPtr &r_bnd)
 
void ReOrientTriFacePhysMap (const StdRegions::Orientation orient, const int nq0, const int nq1, Array< OneD, int > &idmap)
 
void ReOrientQuadFacePhysMap (const StdRegions::Orientation orient, const int nq0, const int nq1, Array< OneD, int > &idmap)
 
- Protected Member Functions inherited from Nektar::LocalRegions::Expansion
void ComputeLaplacianMetric ()
 
void ComputeQuadratureMetric ()
 
virtual void v_MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_ComputeLaplacianMetric ()
 
virtual void v_AddEdgeNormBoundaryInt (const int edge, const boost::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddEdgeNormBoundaryInt (const int edge, const boost::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddFaceNormBoundaryInt (const int face, const boost::shared_ptr< Expansion > &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 

Private Member Functions

virtual void v_LaplacianMatrixOp_MatFree_Kernel (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
 Calculate the Laplacian multiplication in a matrix-free manner. More...
 

Private Attributes

LibUtilities::NekManager
< MatrixKey, DNekScalMat,
MatrixKey::opLess
m_matrixManager
 
LibUtilities::NekManager
< MatrixKey, DNekScalBlkMat,
MatrixKey::opLess
m_staticCondMatrixManager
 

Additional Inherited Members

- Protected Attributes inherited from Nektar::StdRegions::StdExpansion3D
std::map< int, NormalVectorm_faceNormals
 
std::map< int, bool > m_negatedNormals
 
- Protected Attributes inherited from Nektar::StdRegions::StdExpansion
Array< OneD,
LibUtilities::BasisSharedPtr
m_base
 
int m_elmt_id
 
int m_ncoeffs
 
LibUtilities::NekManager
< StdMatrixKey, DNekMat,
StdMatrixKey::opLess
m_stdMatrixManager
 
LibUtilities::NekManager
< StdMatrixKey, DNekBlkMat,
StdMatrixKey::opLess
m_stdStaticCondMatrixManager
 
LibUtilities::NekManager
< IndexMapKey, IndexMapValues,
IndexMapKey::opLess
m_IndexMapManager
 
- Protected Attributes inherited from Nektar::LocalRegions::Expansion
SpatialDomains::GeometrySharedPtr m_geom
 
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
 
MetricMap m_metrics
 

Detailed Description

Definition at line 50 of file PrismExp.h.

Constructor & Destructor Documentation

Nektar::LocalRegions::PrismExp::PrismExp ( const LibUtilities::BasisKey Ba,
const LibUtilities::BasisKey Bb,
const LibUtilities::BasisKey Bc,
const SpatialDomains::PrismGeomSharedPtr geom 
)

Constructor using BasisKey class for quadrature points and order definition.

Definition at line 49 of file PrismExp.cpp.

52  :
54  Ba.GetNumModes(), Bb.GetNumModes(), Bc.GetNumModes()),
55  3, Ba, Bb, Bc),
57  Ba.GetNumModes(), Bb.GetNumModes(), Bc.GetNumModes()),
58  Ba, Bb, Bc),
59  StdPrismExp (Ba, Bb, Bc),
60  Expansion (geom),
61  Expansion3D (geom),
63  boost::bind(&PrismExp::CreateMatrix, this, _1),
64  std::string("PrismExpMatrix")),
66  boost::bind(&PrismExp::CreateStaticCondMatrix, this, _1),
67  std::string("PrismExpStaticCondMatrix"))
68  {
69  }
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: PrismExp.h:206
int getNumberOfCoefficients(int Na, int Nb, int Nc)
Definition: ShapeType.hpp:286
DNekScalMatSharedPtr CreateMatrix(const MatrixKey &mkey)
Definition: PrismExp.cpp:1097
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: PrismExp.h:208
Expansion(SpatialDomains::GeometrySharedPtr pGeom)
Definition: Expansion.cpp:48
StdExpansion()
Default Constructor.
Expansion3D(SpatialDomains::Geometry3DSharedPtr pGeom)
Definition: Expansion3D.h:63
DNekScalBlkMatSharedPtr CreateStaticCondMatrix(const MatrixKey &mkey)
Definition: PrismExp.cpp:1414
Nektar::LocalRegions::PrismExp::PrismExp ( const PrismExp T)

Definition at line 71 of file PrismExp.cpp.

71  :
72  StdExpansion(T),
73  StdExpansion3D(T),
74  StdRegions::StdPrismExp(T),
75  Expansion(T),
76  Expansion3D(T),
77  m_matrixManager(T.m_matrixManager),
78  m_staticCondMatrixManager(T.m_staticCondMatrixManager)
79  {
80  }
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: PrismExp.h:206
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: PrismExp.h:208
Expansion(SpatialDomains::GeometrySharedPtr pGeom)
Definition: Expansion.cpp:48
StdExpansion()
Default Constructor.
Expansion3D(SpatialDomains::Geometry3DSharedPtr pGeom)
Definition: Expansion3D.h:63
Nektar::LocalRegions::PrismExp::~PrismExp ( )

Definition at line 82 of file PrismExp.cpp.

83  {
84  }

Member Function Documentation

DNekScalMatSharedPtr Nektar::LocalRegions::PrismExp::CreateMatrix ( const MatrixKey mkey)
protected

Definition at line 1097 of file PrismExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), ASSERTL2, Nektar::LocalRegions::Expansion::BuildTransformationMatrix(), Nektar::LocalRegions::Expansion::BuildVertexMatrix(), Nektar::StdRegions::StdMatrixKey::ConstFactorExists(), Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::eFactorLambda, Nektar::StdRegions::eFactorSVVCutoffRatio, Nektar::StdRegions::eHelmholtz, Nektar::StdRegions::eHybridDGHelmBndLam, Nektar::StdRegions::eHybridDGHelmholtz, Nektar::StdRegions::eHybridDGLamToQ0, Nektar::StdRegions::eHybridDGLamToQ1, Nektar::StdRegions::eHybridDGLamToU, Nektar::StdRegions::eInvHybridDGHelmholtz, Nektar::StdRegions::eInvLaplacianWithUnityMean, Nektar::StdRegions::eInvMass, Nektar::StdRegions::eIProductWRTBase, Nektar::StdRegions::eLaplacian, Nektar::StdRegions::eLaplacian00, Nektar::StdRegions::eLaplacian01, Nektar::StdRegions::eLaplacian02, Nektar::StdRegions::eLaplacian11, Nektar::StdRegions::eLaplacian12, Nektar::StdRegions::eLaplacian22, Nektar::StdRegions::eMass, Nektar::SpatialDomains::eNoGeomType, Nektar::StdRegions::ePreconLinearSpace, Nektar::StdRegions::ePreconLinearSpaceMass, Nektar::StdRegions::ePreconR, Nektar::StdRegions::ePreconRMass, Nektar::StdRegions::ePreconRT, Nektar::StdRegions::ePreconRTMass, Nektar::StdRegions::eWeakDeriv0, Nektar::StdRegions::eWeakDeriv1, Nektar::StdRegions::eWeakDeriv2, Nektar::StdRegions::StdExpansion::GenMatrix(), Nektar::StdRegions::StdMatrixKey::GetConstFactor(), Nektar::StdRegions::StdMatrixKey::GetConstFactors(), Nektar::StdRegions::StdExpansion::GetLocStaticCondMatrix(), Nektar::StdRegions::StdMatrixKey::GetMatrixType(), Nektar::StdRegions::StdMatrixKey::GetNVarCoeff(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdMatrixKey::GetShapeType(), Nektar::StdRegions::StdExpansion::GetStdMatrix(), Nektar::StdRegions::StdMatrixKey::GetVarCoeffs(), m_matrixManager, Nektar::LocalRegions::Expansion::m_metricinfo, and Nektar::Transpose().

1098  {
1099  DNekScalMatSharedPtr returnval;
1101 
1103  "Geometric information is not set up");
1104 
1105  switch(mkey.GetMatrixType())
1106  {
1107  case StdRegions::eMass:
1108  {
1109  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1110  {
1111  NekDouble one = 1.0;
1112  DNekMatSharedPtr mat = GenMatrix(mkey);
1113  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1114  }
1115  else
1116  {
1117  NekDouble jac = (m_metricinfo->GetJac(ptsKeys))[0];
1118  DNekMatSharedPtr mat = GetStdMatrix(mkey);
1119  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(jac,mat);
1120  }
1121  break;
1122  }
1123 
1124  case StdRegions::eInvMass:
1125  {
1126  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1127  {
1128  NekDouble one = 1.0;
1129  StdRegions::StdMatrixKey masskey(StdRegions::eMass,DetShapeType(),*this);
1130  DNekMatSharedPtr mat = GenMatrix(masskey);
1131  mat->Invert();
1132 
1133  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1134  }
1135  else
1136  {
1137  NekDouble fac = 1.0/(m_metricinfo->GetJac(ptsKeys))[0];
1138  DNekMatSharedPtr mat = GetStdMatrix(mkey);
1139  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(fac,mat);
1140  }
1141  break;
1142  }
1143 
1147  {
1148  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1149  {
1150  NekDouble one = 1.0;
1151  DNekMatSharedPtr mat = GenMatrix(mkey);
1152 
1153  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1154  }
1155  else
1156  {
1157  NekDouble jac = (m_metricinfo->GetJac(ptsKeys))[0];
1158  Array<TwoD, const NekDouble> df =
1159  m_metricinfo->GetDerivFactors(ptsKeys);
1160  int dir = 0;
1161 
1162  switch(mkey.GetMatrixType())
1163  {
1165  dir = 0;
1166  break;
1168  dir = 1;
1169  break;
1171  dir = 2;
1172  break;
1173  default:
1174  break;
1175  }
1176 
1177  MatrixKey deriv0key(StdRegions::eWeakDeriv0,
1178  mkey.GetShapeType(), *this);
1179  MatrixKey deriv1key(StdRegions::eWeakDeriv1,
1180  mkey.GetShapeType(), *this);
1181  MatrixKey deriv2key(StdRegions::eWeakDeriv2,
1182  mkey.GetShapeType(), *this);
1183 
1184  DNekMat &deriv0 = *GetStdMatrix(deriv0key);
1185  DNekMat &deriv1 = *GetStdMatrix(deriv1key);
1186  DNekMat &deriv2 = *GetStdMatrix(deriv2key);
1187 
1188  int rows = deriv0.GetRows();
1189  int cols = deriv1.GetColumns();
1190 
1192  ::AllocateSharedPtr(rows,cols);
1193 
1194  (*WeakDeriv) = df[3*dir ][0]*deriv0
1195  + df[3*dir+1][0]*deriv1
1196  + df[3*dir+2][0]*deriv2;
1197 
1198  returnval = MemoryManager<DNekScalMat>
1199  ::AllocateSharedPtr(jac,WeakDeriv);
1200  }
1201  break;
1202  }
1203 
1205  {
1206  if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed ||
1207  mkey.GetNVarCoeff() > 0 ||
1208  mkey.ConstFactorExists(
1210  {
1211  NekDouble one = 1.0;
1212  DNekMatSharedPtr mat = GenMatrix(mkey);
1213  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1214  }
1215  else
1216  {
1217  MatrixKey lap00key(StdRegions::eLaplacian00,
1218  mkey.GetShapeType(), *this);
1219  MatrixKey lap01key(StdRegions::eLaplacian01,
1220  mkey.GetShapeType(), *this);
1221  MatrixKey lap02key(StdRegions::eLaplacian02,
1222  mkey.GetShapeType(), *this);
1223  MatrixKey lap11key(StdRegions::eLaplacian11,
1224  mkey.GetShapeType(), *this);
1225  MatrixKey lap12key(StdRegions::eLaplacian12,
1226  mkey.GetShapeType(), *this);
1227  MatrixKey lap22key(StdRegions::eLaplacian22,
1228  mkey.GetShapeType(), *this);
1229 
1230  DNekMat &lap00 = *GetStdMatrix(lap00key);
1231  DNekMat &lap01 = *GetStdMatrix(lap01key);
1232  DNekMat &lap02 = *GetStdMatrix(lap02key);
1233  DNekMat &lap11 = *GetStdMatrix(lap11key);
1234  DNekMat &lap12 = *GetStdMatrix(lap12key);
1235  DNekMat &lap22 = *GetStdMatrix(lap22key);
1236 
1237  NekDouble jac = (m_metricinfo->GetJac(ptsKeys))[0];
1238  Array<TwoD, const NekDouble> gmat
1239  = m_metricinfo->GetGmat(ptsKeys);
1240 
1241  int rows = lap00.GetRows();
1242  int cols = lap00.GetColumns();
1243 
1245  ::AllocateSharedPtr(rows,cols);
1246 
1247  (*lap) = gmat[0][0]*lap00
1248  + gmat[4][0]*lap11
1249  + gmat[8][0]*lap22
1250  + gmat[3][0]*(lap01 + Transpose(lap01))
1251  + gmat[6][0]*(lap02 + Transpose(lap02))
1252  + gmat[7][0]*(lap12 + Transpose(lap12));
1253 
1254  returnval = MemoryManager<DNekScalMat>
1255  ::AllocateSharedPtr(jac,lap);
1256  }
1257  break;
1258  }
1259 
1261  {
1262  NekDouble factor = mkey.GetConstFactor(StdRegions::eFactorLambda);
1263  MatrixKey masskey(StdRegions::eMass,
1264  mkey.GetShapeType(), *this);
1265  DNekScalMat &MassMat = *(this->m_matrixManager[masskey]);
1266  MatrixKey lapkey(StdRegions::eLaplacian,
1267  mkey.GetShapeType(), *this, mkey.GetConstFactors(), mkey.GetVarCoeffs());
1268  DNekScalMat &LapMat = *(this->m_matrixManager[lapkey]);
1269 
1270  int rows = LapMat.GetRows();
1271  int cols = LapMat.GetColumns();
1272 
1274 
1275  NekDouble one = 1.0;
1276  (*helm) = LapMat + factor*MassMat;
1277 
1278  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,helm);
1279  break;
1280  }
1287  {
1288  NekDouble one = 1.0;
1289 
1290  DNekMatSharedPtr mat = GenMatrix(mkey);
1291  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1292 
1293  break;
1294  }
1295 
1297  {
1298  NekDouble one = 1.0;
1299 
1300  MatrixKey hkey(StdRegions::eHybridDGHelmholtz, DetShapeType(), *this, mkey.GetConstFactors(), mkey.GetVarCoeffs());
1301 // StdRegions::StdMatrixKey hkey(StdRegions::eHybridDGHelmholtz,
1302 // DetExpansionType(),*this,
1303 // mkey.GetConstant(0),
1304 // mkey.GetConstant(1));
1305  DNekMatSharedPtr mat = GenMatrix(hkey);
1306 
1307  mat->Invert();
1308  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1309  break;
1310  }
1311 
1313  {
1314  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1315  {
1316  NekDouble one = 1.0;
1317  DNekMatSharedPtr mat = GenMatrix(mkey);
1318  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1319  }
1320  else
1321  {
1322  NekDouble jac = (m_metricinfo->GetJac(ptsKeys))[0];
1323  DNekMatSharedPtr mat = GetStdMatrix(mkey);
1324  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(jac,mat);
1325  }
1326  break;
1327  }
1329  {
1330  NekDouble one = 1.0;
1331  MatrixKey helmkey(StdRegions::eHelmholtz, mkey.GetShapeType(), *this, mkey.GetConstFactors(), mkey.GetVarCoeffs());
1332  DNekScalBlkMatSharedPtr helmStatCond = GetLocStaticCondMatrix(helmkey);
1333  DNekScalMatSharedPtr A =helmStatCond->GetBlock(0,0);
1335 
1337  }
1338  break;
1340  {
1341  NekDouble one = 1.0;
1342  MatrixKey masskey(StdRegions::eMass, mkey.GetShapeType(), *this);
1343  DNekScalBlkMatSharedPtr massStatCond = GetLocStaticCondMatrix(masskey);
1344  DNekScalMatSharedPtr A =massStatCond->GetBlock(0,0);
1346 
1348  }
1349  break;
1350  case StdRegions::ePreconR:
1351  {
1352  NekDouble one = 1.0;
1353  MatrixKey helmkey(StdRegions::eHelmholtz, mkey.GetShapeType(), *this,mkey.GetConstFactors(), mkey.GetVarCoeffs());
1354  DNekScalBlkMatSharedPtr helmStatCond = GetLocStaticCondMatrix(helmkey);
1355  DNekScalMatSharedPtr A =helmStatCond->GetBlock(0,0);
1356 
1357  DNekScalMatSharedPtr Atmp;
1358  DNekMatSharedPtr R=BuildTransformationMatrix(A,mkey.GetMatrixType());
1359 
1361  }
1362  break;
1363  case StdRegions::ePreconRT:
1364  {
1365  NekDouble one = 1.0;
1366  MatrixKey helmkey(StdRegions::eHelmholtz, mkey.GetShapeType(), *this,mkey.GetConstFactors(), mkey.GetVarCoeffs());
1367  DNekScalBlkMatSharedPtr helmStatCond = GetLocStaticCondMatrix(helmkey);
1368  DNekScalMatSharedPtr A =helmStatCond->GetBlock(0,0);
1369 
1370  DNekScalMatSharedPtr Atmp;
1371  DNekMatSharedPtr R=BuildTransformationMatrix(A,mkey.GetMatrixType());
1372 
1374  }
1375  break;
1377  {
1378  NekDouble one = 1.0;
1379  MatrixKey masskey(StdRegions::eMass, mkey.GetShapeType(), *this);
1380  DNekScalBlkMatSharedPtr massStatCond = GetLocStaticCondMatrix(masskey);
1381  DNekScalMatSharedPtr A =massStatCond->GetBlock(0,0);
1382 
1383  DNekScalMatSharedPtr Atmp;
1384  DNekMatSharedPtr R=BuildTransformationMatrix(A,mkey.GetMatrixType());
1385 
1387  }
1388  break;
1390  {
1391  NekDouble one = 1.0;
1392  MatrixKey masskey(StdRegions::eMass, mkey.GetShapeType(), *this);
1393  DNekScalBlkMatSharedPtr massStatCond = GetLocStaticCondMatrix(masskey);
1394  DNekScalMatSharedPtr A =massStatCond->GetBlock(0,0);
1395 
1396  DNekScalMatSharedPtr Atmp;
1397  DNekMatSharedPtr R=BuildTransformationMatrix(A,mkey.GetMatrixType());
1398 
1400  }
1401  break;
1402  default:
1403  {
1404  NekDouble one = 1.0;
1405  DNekMatSharedPtr mat = GenMatrix(mkey);
1406 
1407  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1408  }
1409  }
1410 
1411  return returnval;
1412  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
Definition: StdExpansion.h:470
DNekMatSharedPtr GenMatrix(const StdMatrixKey &mkey)
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: PrismExp.h:206
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:220
DNekMatSharedPtr BuildTransformationMatrix(const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType)
Definition: Expansion.cpp:90
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
DNekMatSharedPtr BuildVertexMatrix(const DNekScalMatSharedPtr &r_bnd)
Definition: Expansion.cpp:98
DNekScalBlkMatSharedPtr GetLocStaticCondMatrix(const LocalRegions::MatrixKey &mkey)
Definition: StdExpansion.h:747
boost::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:70
DNekMatSharedPtr GetStdMatrix(const StdMatrixKey &mkey)
Definition: StdExpansion.h:700
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
boost::shared_ptr< DNekScalBlkMat > DNekScalBlkMatSharedPtr
Definition: NekTypeDefs.hpp:74
NekMatrix< InnerMatrixType, BlockMatrixTag > Transpose(NekMatrix< InnerMatrixType, BlockMatrixTag > &rhs)
NekMatrix< NekDouble, StandardMatrixTag > DNekMat
Definition: NekTypeDefs.hpp:52
double NekDouble
#define ASSERTL2(condition, msg)
Assert Level 2 – Debugging which is used FULLDEBUG compilation mode. This level assert is designed t...
Definition: ErrorUtil.hpp:213
Geometry is curved or has non-constant factors.
NekMatrix< NekMatrix< NekDouble, StandardMatrixTag >, ScaledMatrixTag > DNekScalMat
DNekScalBlkMatSharedPtr Nektar::LocalRegions::PrismExp::CreateStaticCondMatrix ( const MatrixKey mkey)
protected

Definition at line 1414 of file PrismExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), ASSERTL2, Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::eHelmholtz, Nektar::StdRegions::eLaplacian, Nektar::SpatialDomains::eNoGeomType, Nektar::StdRegions::StdExpansion::GetBoundaryMap(), Nektar::StdRegions::StdExpansion::GetInteriorMap(), Nektar::LocalRegions::Expansion::GetLocMatrix(), Nektar::StdRegions::StdMatrixKey::GetMatrixType(), Nektar::StdRegions::StdExpansion::GetStdStaticCondMatrix(), Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::StdRegions::StdExpansion::m_ncoeffs, and Nektar::StdRegions::StdExpansion::NumBndryCoeffs().

1415  {
1416  DNekScalBlkMatSharedPtr returnval;
1417 
1418  ASSERTL2(m_metricinfo->GetGtype() != SpatialDomains::eNoGeomType,"Geometric information is not set up");
1419 
1420  // set up block matrix system
1421  unsigned int nbdry = NumBndryCoeffs();
1422  unsigned int nint = (unsigned int)(m_ncoeffs - nbdry);
1423  unsigned int exp_size[] = {nbdry, nint};
1424  unsigned int nblks=2;
1425  returnval = MemoryManager<DNekScalBlkMat>::AllocateSharedPtr(nblks, nblks, exp_size, exp_size);
1426  NekDouble factor = 1.0;
1427 
1428  switch(mkey.GetMatrixType())
1429  {
1431  case StdRegions::eHelmholtz: // special case since Helmholtz not defined in StdRegions
1432  // use Deformed case for both regular and deformed geometries
1433  factor = 1.0;
1434  goto UseLocRegionsMatrix;
1435  break;
1436  default:
1437  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1438  {
1439  factor = 1.0;
1440  goto UseLocRegionsMatrix;
1441  }
1442  else
1443  {
1444  DNekScalMatSharedPtr mat = GetLocMatrix(mkey);
1445  factor = mat->Scale();
1446  goto UseStdRegionsMatrix;
1447  }
1448  break;
1449  UseStdRegionsMatrix:
1450  {
1451  NekDouble invfactor = 1.0/factor;
1452  NekDouble one = 1.0;
1454  DNekScalMatSharedPtr Atmp;
1455  DNekMatSharedPtr Asubmat;
1456 
1457  //TODO: check below
1458  returnval->SetBlock(0,0,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(factor,Asubmat = mat->GetBlock(0,0)));
1459  returnval->SetBlock(0,1,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,Asubmat = mat->GetBlock(0,1)));
1460  returnval->SetBlock(1,0,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(factor,Asubmat = mat->GetBlock(1,0)));
1461  returnval->SetBlock(1,1,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(invfactor,Asubmat = mat->GetBlock(1,1)));
1462  }
1463  break;
1464  UseLocRegionsMatrix:
1465  {
1466  int i,j;
1467  NekDouble invfactor = 1.0/factor;
1468  NekDouble one = 1.0;
1469  DNekScalMat &mat = *GetLocMatrix(mkey);
1474 
1475  Array<OneD,unsigned int> bmap(nbdry);
1476  Array<OneD,unsigned int> imap(nint);
1477  GetBoundaryMap(bmap);
1478  GetInteriorMap(imap);
1479 
1480  for(i = 0; i < nbdry; ++i)
1481  {
1482  for(j = 0; j < nbdry; ++j)
1483  {
1484  (*A)(i,j) = mat(bmap[i],bmap[j]);
1485  }
1486 
1487  for(j = 0; j < nint; ++j)
1488  {
1489  (*B)(i,j) = mat(bmap[i],imap[j]);
1490  }
1491  }
1492 
1493  for(i = 0; i < nint; ++i)
1494  {
1495  for(j = 0; j < nbdry; ++j)
1496  {
1497  (*C)(i,j) = mat(imap[i],bmap[j]);
1498  }
1499 
1500  for(j = 0; j < nint; ++j)
1501  {
1502  (*D)(i,j) = mat(imap[i],imap[j]);
1503  }
1504  }
1505 
1506  // Calculate static condensed system
1507  if(nint)
1508  {
1509  D->Invert();
1510  (*B) = (*B)*(*D);
1511  (*A) = (*A) - (*B)*(*C);
1512  }
1513 
1514  DNekScalMatSharedPtr Atmp;
1515 
1516  returnval->SetBlock(0,0,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(factor,A));
1517  returnval->SetBlock(0,1,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,B));
1518  returnval->SetBlock(1,0,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(factor,C));
1519  returnval->SetBlock(1,1,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(invfactor,D));
1520 
1521  }
1522  break;
1523  }
1524  return returnval;
1525  }
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
boost::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:70
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
DNekBlkMatSharedPtr GetStdStaticCondMatrix(const StdMatrixKey &mkey)
Definition: StdExpansion.h:705
boost::shared_ptr< DNekScalBlkMat > DNekScalBlkMatSharedPtr
Definition: NekTypeDefs.hpp:74
void GetInteriorMap(Array< OneD, unsigned int > &outarray)
Definition: StdExpansion.h:821
double NekDouble
boost::shared_ptr< DNekBlkMat > DNekBlkMatSharedPtr
Definition: NekTypeDefs.hpp:72
DNekScalMatSharedPtr GetLocMatrix(const LocalRegions::MatrixKey &mkey)
Definition: Expansion.cpp:85
#define ASSERTL2(condition, msg)
Assert Level 2 – Debugging which is used FULLDEBUG compilation mode. This level assert is designed t...
Definition: ErrorUtil.hpp:213
Geometry is curved or has non-constant factors.
NekMatrix< NekMatrix< NekDouble, StandardMatrixTag >, ScaledMatrixTag > DNekScalMat
void GetBoundaryMap(Array< OneD, unsigned int > &outarray)
Definition: StdExpansion.h:816
void Nektar::LocalRegions::PrismExp::v_ComputeFaceNormal ( const int  face)
protectedvirtual

Get the normals along specficied face Get the face normals interplated to a points0 x points 0 type distribution.

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 688 of file PrismExp.cpp.

References ASSERTL0, Nektar::StdRegions::StdExpansion::DetFaceBasisKey(), Nektar::SpatialDomains::eMovingRegular, Nektar::SpatialDomains::eRegular, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetCoordim(), Nektar::LocalRegions::Expansion::GetGeom(), Nektar::LibUtilities::BasisKey::GetNumPoints(), Nektar::LibUtilities::BasisKey::GetPointsKey(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::LibUtilities::Interp2D(), Nektar::StdRegions::StdExpansion3D::m_faceNormals, Vmath::Sdiv(), Vmath::Vmul(), Vmath::Vsqrt(), Vmath::Vvtvp(), and Vmath::Zero().

689  {
690  const SpatialDomains::GeomFactorsSharedPtr &geomFactors =
691  GetGeom()->GetMetricInfo();
693  SpatialDomains::GeomType type = geomFactors->GetGtype();
694  const Array<TwoD, const NekDouble> &df = geomFactors->GetDerivFactors(ptsKeys);
695  const Array<OneD, const NekDouble> &jac = geomFactors->GetJac(ptsKeys);
696 
697  int nq0 = ptsKeys[0].GetNumPoints();
698  int nq1 = ptsKeys[1].GetNumPoints();
699  int nq2 = ptsKeys[2].GetNumPoints();
700  int nq01 = nq0*nq1;
701  int nqtot;
702 
703 
704  LibUtilities::BasisKey tobasis0 = DetFaceBasisKey(face,0);
705  LibUtilities::BasisKey tobasis1 = DetFaceBasisKey(face,1);
706 
707  // Number of quadrature points in face expansion.
708  int nq_face = tobasis0.GetNumPoints()*tobasis1.GetNumPoints();
709 
710  int vCoordDim = GetCoordim();
711  int i;
712 
713  m_faceNormals[face] = Array<OneD, Array<OneD, NekDouble> >(vCoordDim);
714  Array<OneD, Array<OneD, NekDouble> > &normal = m_faceNormals[face];
715  for (i = 0; i < vCoordDim; ++i)
716  {
717  normal[i] = Array<OneD, NekDouble>(nq_face);
718  }
719 
720  // Regular geometry case
721  if (type == SpatialDomains::eRegular ||
723  {
724  NekDouble fac;
725  // Set up normals
726  switch(face)
727  {
728  case 0:
729  {
730  for(i = 0; i < vCoordDim; ++i)
731  {
732  normal[i][0] = -df[3*i+2][0];;
733  }
734  break;
735  }
736  case 1:
737  {
738  for(i = 0; i < vCoordDim; ++i)
739  {
740  normal[i][0] = -df[3*i+1][0];
741  }
742  break;
743  }
744  case 2:
745  {
746  for(i = 0; i < vCoordDim; ++i)
747  {
748  normal[i][0] = df[3*i][0]+df[3*i+2][0];
749  }
750  break;
751  }
752  case 3:
753  {
754  for(i = 0; i < vCoordDim; ++i)
755  {
756  normal[i][0] = df[3*i+1][0];
757  }
758  break;
759  }
760  case 4:
761  {
762  for(i = 0; i < vCoordDim; ++i)
763  {
764  normal[i][0] = -df[3*i][0];
765  }
766  break;
767  }
768  default:
769  ASSERTL0(false,"face is out of range (face < 4)");
770  }
771 
772  // Normalise resulting vector.
773  fac = 0.0;
774  for(i = 0; i < vCoordDim; ++i)
775  {
776  fac += normal[i][0]*normal[i][0];
777  }
778  fac = 1.0/sqrt(fac);
779  for (i = 0; i < vCoordDim; ++i)
780  {
781  Vmath::Fill(nq_face,fac*normal[i][0],normal[i],1);
782  }
783  }
784  else
785  {
786  // Set up deformed normals.
787  int j, k;
788 
789  // Determine number of quadrature points on the face of 3D elmt
790  if (face == 0)
791  {
792  nqtot = nq0*nq1;
793  }
794  else if (face == 1 || face == 3)
795  {
796  nqtot = nq0*nq2;
797  }
798  else
799  {
800  nqtot = nq1*nq2;
801  }
802 
803  LibUtilities::PointsKey points0;
804  LibUtilities::PointsKey points1;
805 
806  Array<OneD, NekDouble> faceJac(nqtot);
807  Array<OneD, NekDouble> normals(vCoordDim*nqtot,0.0);
808 
809  // Extract Jacobian along face and recover local derivatives
810  // (dx/dr) for polynomial interpolation by multiplying m_gmat by
811  // jacobian
812  switch(face)
813  {
814  case 0:
815  {
816  for(j = 0; j < nq01; ++j)
817  {
818  normals[j] = -df[2][j]*jac[j];
819  normals[nqtot+j] = -df[5][j]*jac[j];
820  normals[2*nqtot+j] = -df[8][j]*jac[j];
821  faceJac[j] = jac[j];
822  }
823 
824  points0 = ptsKeys[0];
825  points1 = ptsKeys[1];
826  break;
827  }
828 
829  case 1:
830  {
831  for (j = 0; j < nq0; ++j)
832  {
833  for(k = 0; k < nq2; ++k)
834  {
835  int tmp = j+nq01*k;
836  normals[j+k*nq0] =
837  -df[1][tmp]*jac[tmp];
838  normals[nqtot+j+k*nq0] =
839  -df[4][tmp]*jac[tmp];
840  normals[2*nqtot+j+k*nq0] =
841  -df[7][tmp]*jac[tmp];
842  faceJac[j+k*nq0] = jac[tmp];
843  }
844  }
845 
846  points0 = ptsKeys[0];
847  points1 = ptsKeys[2];
848  break;
849  }
850 
851  case 2:
852  {
853  for (j = 0; j < nq1; ++j)
854  {
855  for(k = 0; k < nq2; ++k)
856  {
857  int tmp = nq0-1+nq0*j+nq01*k;
858  normals[j+k*nq1] =
859  (df[0][tmp]+df[2][tmp])*jac[tmp];
860  normals[nqtot+j+k*nq1] =
861  (df[3][tmp]+df[5][tmp])*jac[tmp];
862  normals[2*nqtot+j+k*nq1] =
863  (df[6][tmp]+df[8][tmp])*jac[tmp];
864  faceJac[j+k*nq1] = jac[tmp];
865  }
866  }
867 
868  points0 = ptsKeys[1];
869  points1 = ptsKeys[2];
870  break;
871  }
872 
873  case 3:
874  {
875  for (j = 0; j < nq0; ++j)
876  {
877  for(k = 0; k < nq2; ++k)
878  {
879  int tmp = nq0*(nq1-1) + j + nq01*k;
880  normals[j+k*nq0] =
881  df[1][tmp]*jac[tmp];
882  normals[nqtot+j+k*nq0] =
883  df[4][tmp]*jac[tmp];
884  normals[2*nqtot+j+k*nq0] =
885  df[7][tmp]*jac[tmp];
886  faceJac[j+k*nq0] = jac[tmp];
887  }
888  }
889 
890  points0 = ptsKeys[0];
891  points1 = ptsKeys[2];
892  break;
893  }
894 
895  case 4:
896  {
897  for (j = 0; j < nq1; ++j)
898  {
899  for(k = 0; k < nq2; ++k)
900  {
901  int tmp = j*nq0+nq01*k;
902  normals[j+k*nq1] =
903  -df[0][tmp]*jac[tmp];
904  normals[nqtot+j+k*nq1] =
905  -df[3][tmp]*jac[tmp];
906  normals[2*nqtot+j+k*nq1] =
907  -df[6][tmp]*jac[tmp];
908  faceJac[j+k*nq1] = jac[tmp];
909  }
910  }
911 
912  points0 = ptsKeys[1];
913  points1 = ptsKeys[2];
914  break;
915  }
916 
917  default:
918  ASSERTL0(false,"face is out of range (face < 4)");
919  }
920 
921 
922  Array<OneD, NekDouble> work (nq_face, 0.0);
923  // Interpolate Jacobian and invert
924  LibUtilities::Interp2D(points0, points1, faceJac,
925  tobasis0.GetPointsKey(),
926  tobasis1.GetPointsKey(),
927  work);
928  Vmath::Sdiv(nq_face, 1.0, &work[0], 1, &work[0], 1);
929 
930  // Interpolate normal and multiply by inverse Jacobian.
931  for(i = 0; i < vCoordDim; ++i)
932  {
933  LibUtilities::Interp2D(points0, points1,
934  &normals[i*nqtot],
935  tobasis0.GetPointsKey(),
936  tobasis1.GetPointsKey(),
937  &normal[i][0]);
938  Vmath::Vmul(nq_face,work,1,normal[i],1,normal[i],1);
939  }
940 
941  // Normalise to obtain unit normals.
942  Vmath::Zero(nq_face,work,1);
943  for(i = 0; i < GetCoordim(); ++i)
944  {
945  Vmath::Vvtvp(nq_face,normal[i],1,normal[i],1,work,1,work,1);
946  }
947 
948  Vmath::Vsqrt(nq_face,work,1,work,1);
949  Vmath::Sdiv (nq_face,1.0,work,1,work,1);
950 
951  for(i = 0; i < GetCoordim(); ++i)
952  {
953  Vmath::Vmul(nq_face,normal[i],1,work,1,normal[i],1);
954  }
955  }
956  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:220
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
Definition: Vmath.cpp:394
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:46
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:428
void Sdiv(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha/y.
Definition: Vmath.cpp:257
void Interp2D(const BasisKey &fbasis0, const BasisKey &fbasis1, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, const BasisKey &tbasis1, Array< OneD, NekDouble > &to)
this function interpolates a 2D function evaluated at the quadrature points of the 2D basis...
Definition: Interp.cpp:116
double NekDouble
std::map< int, NormalVector > m_faceNormals
SpatialDomains::GeometrySharedPtr GetGeom() const
Definition: Expansion.cpp:150
boost::shared_ptr< GeomFactors > GeomFactorsSharedPtr
Pointer to a GeomFactors object.
Definition: GeomFactors.h:62
Geometry is straight-sided with constant geometric factors.
const LibUtilities::BasisKey DetFaceBasisKey(const int i, const int k) const
Definition: StdExpansion.h:324
GeomType
Indicates the type of element geometry.
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:359
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
DNekMatSharedPtr Nektar::LocalRegions::PrismExp::v_CreateStdMatrix ( const StdRegions::StdMatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdPrismExp.

Definition at line 1071 of file PrismExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and Nektar::StdRegions::StdExpansion::m_base.

1072  {
1073  LibUtilities::BasisKey bkey0 = m_base[0]->GetBasisKey();
1074  LibUtilities::BasisKey bkey1 = m_base[1]->GetBasisKey();
1075  LibUtilities::BasisKey bkey2 = m_base[2]->GetBasisKey();
1077  MemoryManager<StdPrismExp>::AllocateSharedPtr(bkey0, bkey1, bkey2);
1078 
1079  return tmp->GetStdMatrix(mkey);
1080  }
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
boost::shared_ptr< StdPrismExp > StdPrismExpSharedPtr
Definition: StdPrismExp.h:253
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Nektar::LocalRegions::PrismExp::v_DropLocStaticCondMatrix ( const MatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1092 of file PrismExp.cpp.

References m_staticCondMatrixManager.

1093  {
1094  m_staticCondMatrixManager.DeleteObject(mkey);
1095  }
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: PrismExp.h:208
void Nektar::LocalRegions::PrismExp::v_ExtractDataToCoeffs ( const NekDouble data,
const std::vector< unsigned int > &  nummodes,
const int  nmode_offset,
NekDouble coeffs 
)
protectedvirtual

Unpack data from input file assuming it comes from the same expansion type.

See also
StdExpansion::ExtractDataToCoeffs

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 524 of file PrismExp.cpp.

References ASSERTL0, ASSERTL1, Nektar::LibUtilities::eModified_A, Nektar::LibUtilities::eModified_B, Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, Vmath::Vcopy(), and Vmath::Zero().

529  {
530  int data_order0 = nummodes[mode_offset];
531  int fillorder0 = min(m_base[0]->GetNumModes(),data_order0);
532  int data_order1 = nummodes[mode_offset+1];
533  int order1 = m_base[1]->GetNumModes();
534  int fillorder1 = min(order1,data_order1);
535  int data_order2 = nummodes[mode_offset+2];
536  int order2 = m_base[2]->GetNumModes();
537  int fillorder2 = min(order2,data_order2);
538 
539  switch(m_base[0]->GetBasisType())
540  {
542  {
543  int i,j;
544  int cnt = 0;
545  int cnt1 = 0;
546 
547  ASSERTL1(m_base[1]->GetBasisType() ==
549  "Extraction routine not set up for this basis");
550  ASSERTL1(m_base[2]->GetBasisType() ==
552  "Extraction routine not set up for this basis");
553 
554  Vmath::Zero(m_ncoeffs,coeffs,1);
555  for(j = 0; j < fillorder0; ++j)
556  {
557  for(i = 0; i < fillorder1; ++i)
558  {
559  Vmath::Vcopy(fillorder2-j, &data[cnt], 1,
560  &coeffs[cnt1], 1);
561  cnt += data_order2-j;
562  cnt1 += order2-j;
563  }
564 
565  // count out data for j iteration
566  for(i = fillorder1; i < data_order1; ++i)
567  {
568  cnt += data_order2-j;
569  }
570 
571  for(i = fillorder1; i < order1; ++i)
572  {
573  cnt1 += order2-j;
574  }
575  }
576  }
577  break;
578  default:
579  ASSERTL0(false, "basis is either not set up or not "
580  "hierarchicial");
581  }
582  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
Principle Modified Functions .
Definition: BasisType.h:49
Principle Modified Functions .
Definition: BasisType.h:50
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:165
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:359
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1047
void Nektar::LocalRegions::PrismExp::v_FwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Forward transform from physical quadrature space stored in inarray and evaluate the expansion coefficients and store in (this)->m_coeffs.

Inputs:

  • inarray: array of physical quadrature points to be transformed

Outputs:

  • (this)->_coeffs: updated array of expansion coefficients.

Reimplemented from Nektar::StdRegions::StdPrismExp.

Definition at line 217 of file PrismExp.cpp.

References Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::StdRegions::eInvMass, Nektar::eWrapper, Nektar::StdRegions::StdExpansion::GetNcoeffs(), Nektar::StdRegions::StdExpansion::m_base, m_matrixManager, Nektar::StdRegions::StdExpansion::m_ncoeffs, v_IProductWRTBase(), and Vmath::Vcopy().

219  {
220  if(m_base[0]->Collocation() &&
221  m_base[1]->Collocation() &&
222  m_base[2]->Collocation())
223  {
224  Vmath::Vcopy(GetNcoeffs(),&inarray[0],1,&outarray[0],1);
225  }
226  else
227  {
228  v_IProductWRTBase(inarray, outarray);
229 
230  // get Mass matrix inverse
231  MatrixKey masskey(StdRegions::eInvMass,
232  DetShapeType(),*this);
233  DNekScalMatSharedPtr matsys = m_matrixManager[masskey];
234 
235  // copy inarray in case inarray == outarray
236  DNekVec in (m_ncoeffs,outarray);
237  DNekVec out(m_ncoeffs,outarray,eWrapper);
238 
239  out = (*matsys)*in;
240  }
241  }
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
Definition: StdExpansion.h:470
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: PrismExp.h:206
virtual void v_IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Calculate the inner product of inarray with respect to the basis B=base0*base1*base2 and put into out...
Definition: PrismExp.cpp:272
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
NekVector< NekDouble > DNekVec
Definition: NekTypeDefs.hpp:49
int GetNcoeffs(void) const
This function returns the total number of coefficients used in the expansion.
Definition: StdExpansion.h:131
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1047
void Nektar::LocalRegions::PrismExp::v_GeneralMatrixOp_MatOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Definition at line 992 of file PrismExp.cpp.

References Nektar::LocalRegions::Expansion::GetLocMatrix(), Nektar::StdRegions::StdExpansion::m_ncoeffs, and Vmath::Vcopy().

996  {
998 
999  if(inarray.get() == outarray.get())
1000  {
1001  Array<OneD,NekDouble> tmp(m_ncoeffs);
1002  Vmath::Vcopy(m_ncoeffs,inarray.get(),1,tmp.get(),1);
1003 
1004  Blas::Dgemv('N',m_ncoeffs,m_ncoeffs,mat->Scale(),(mat->GetOwnedMatrix())->GetPtr().get(),
1005  m_ncoeffs, tmp.get(), 1, 0.0, outarray.get(), 1);
1006  }
1007  else
1008  {
1009  Blas::Dgemv('N',m_ncoeffs,m_ncoeffs,mat->Scale(),(mat->GetOwnedMatrix())->GetPtr().get(),
1010  m_ncoeffs, inarray.get(), 1, 0.0, outarray.get(), 1);
1011  }
1012  }
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
DNekScalMatSharedPtr GetLocMatrix(const LocalRegions::MatrixKey &mkey)
Definition: Expansion.cpp:85
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1047
DNekMatSharedPtr Nektar::LocalRegions::PrismExp::v_GenMatrix ( const StdRegions::StdMatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdPrismExp.

Definition at line 1048 of file PrismExp.cpp.

References Nektar::StdRegions::eHybridDGHelmBndLam, Nektar::StdRegions::eHybridDGHelmholtz, Nektar::StdRegions::eHybridDGLamToQ0, Nektar::StdRegions::eHybridDGLamToQ1, Nektar::StdRegions::eHybridDGLamToQ2, Nektar::StdRegions::eHybridDGLamToU, Nektar::StdRegions::eInvLaplacianWithUnityMean, Nektar::StdRegions::StdMatrixKey::GetMatrixType(), and Nektar::LocalRegions::Expansion3D::v_GenMatrix().

1049  {
1050  DNekMatSharedPtr returnval;
1051 
1052  switch(mkey.GetMatrixType())
1053  {
1061  returnval = Expansion3D::v_GenMatrix(mkey);
1062  break;
1063  default:
1064  returnval = StdPrismExp::v_GenMatrix(mkey);
1065  break;
1066  }
1067 
1068  return returnval;
1069  }
boost::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:70
virtual DNekMatSharedPtr v_GenMatrix(const StdRegions::StdMatrixKey &mkey)
void Nektar::LocalRegions::PrismExp::v_GetCoord ( const Array< OneD, const NekDouble > &  Lcoords,
Array< OneD, NekDouble > &  coords 
)
protectedvirtual

Get the coordinates #coords at the local coordinates #Lcoords.

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 463 of file PrismExp.cpp.

References ASSERTL1, and Nektar::LocalRegions::Expansion::m_geom.

465  {
466  int i;
467 
468  ASSERTL1(Lcoords[0] <= -1.0 && Lcoords[0] >= 1.0 &&
469  Lcoords[1] <= -1.0 && Lcoords[1] >= 1.0 &&
470  Lcoords[2] <= -1.0 && Lcoords[2] >= 1.0,
471  "Local coordinates are not in region [-1,1]");
472 
473  m_geom->FillGeom();
474 
475  for(i = 0; i < m_geom->GetCoordim(); ++i)
476  {
477  coords[i] = m_geom->GetCoord(i,Lcoords);
478  }
479  }
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:125
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
int Nektar::LocalRegions::PrismExp::v_GetCoordim ( void  )
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion3D.

Definition at line 519 of file PrismExp.cpp.

References Nektar::LocalRegions::Expansion::m_geom.

520  {
521  return m_geom->GetCoordim();
522  }
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:125
void Nektar::LocalRegions::PrismExp::v_GetCoords ( Array< OneD, NekDouble > &  coords_1,
Array< OneD, NekDouble > &  coords_2,
Array< OneD, NekDouble > &  coords_3 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdPrismExp.

Definition at line 481 of file PrismExp.cpp.

References Nektar::LocalRegions::Expansion::v_GetCoords().

485  {
486  Expansion::v_GetCoords(coords_0, coords_1, coords_2);
487  }
virtual void v_GetCoords(Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3)
Definition: Expansion.cpp:213
void Nektar::LocalRegions::PrismExp::v_GetFacePhysMap ( const int  face,
Array< OneD, int > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 584 of file PrismExp.cpp.

References ASSERTL0, and Nektar::StdRegions::StdExpansion::m_base.

586  {
587  int nquad0 = m_base[0]->GetNumPoints();
588  int nquad1 = m_base[1]->GetNumPoints();
589  int nquad2 = m_base[2]->GetNumPoints();
590  int nq0 = 0;
591  int nq1 = 0;
592 
593  switch(face)
594  {
595  case 0:
596  nq0 = nquad0;
597  nq1 = nquad1;
598  if(outarray.num_elements()!=nq0*nq1)
599  {
600  outarray = Array<OneD, int>(nq0*nq1);
601  }
602 
603  //Directions A and B positive
604  for(int i = 0; i < nquad0*nquad1; ++i)
605  {
606  outarray[i] = i;
607  }
608  break;
609  case 1:
610 
611  nq0 = nquad0;
612  nq1 = nquad2;
613  if(outarray.num_elements()!=nq0*nq1)
614  {
615  outarray = Array<OneD, int>(nq0*nq1);
616  }
617 
618  //Direction A and B positive
619  for (int k=0; k<nquad2; k++)
620  {
621  for(int i = 0; i < nquad0; ++i)
622  {
623  outarray[k*nquad0+i] = (nquad0*nquad1*k)+i;
624  }
625  }
626 
627  break;
628  case 2:
629 
630  nq0 = nquad1;
631  nq1 = nquad2;
632  if(outarray.num_elements()!=nq0*nq1)
633  {
634  outarray = Array<OneD, int>(nq0*nq1);
635  }
636 
637  //Directions A and B positive
638  for(int j = 0; j < nquad1*nquad2; ++j)
639  {
640  outarray[j] = nquad0-1 + j*nquad0;
641 
642  }
643  break;
644  case 3:
645  nq0 = nquad0;
646  nq1 = nquad2;
647  if(outarray.num_elements()!=nq0*nq1)
648  {
649  outarray = Array<OneD, int>(nq0*nq1);
650  }
651 
652  //Direction A and B positive
653  for (int k=0; k<nquad2; k++)
654  {
655  for(int i = 0; i < nquad0; ++i)
656  {
657  outarray[k*nquad0+i] = nquad0*(nquad1-1) + (nquad0*nquad1*k)+i;
658  }
659  }
660  break;
661  case 4:
662 
663  nq0 = nquad1;
664  nq1 = nquad2;
665  if(outarray.num_elements()!=nq0*nq1)
666  {
667  outarray = Array<OneD, int>(nq0*nq1);
668  }
669 
670  //Directions A and B positive
671  for(int j = 0; j < nquad1*nquad2; ++j)
672  {
673  outarray[j] = j*nquad0;
674 
675  }
676  break;
677  default:
678  ASSERTL0(false,"face value (> 4) is out of range");
679  break;
680  }
681 
682  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
Array< OneD, LibUtilities::BasisSharedPtr > m_base
DNekScalMatSharedPtr Nektar::LocalRegions::PrismExp::v_GetLocMatrix ( const MatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 1082 of file PrismExp.cpp.

References m_matrixManager.

1083  {
1084  return m_matrixManager[mkey];
1085  }
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: PrismExp.h:206
DNekScalBlkMatSharedPtr Nektar::LocalRegions::PrismExp::v_GetLocStaticCondMatrix ( const MatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1087 of file PrismExp.cpp.

References m_staticCondMatrixManager.

1088  {
1089  return m_staticCondMatrixManager[mkey];
1090  }
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: PrismExp.h:208
void Nektar::LocalRegions::PrismExp::v_GetSimplexEquiSpacedConnectivity ( Array< OneD, int > &  conn,
bool  standard = true 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1702 of file PrismExp.cpp.

References Nektar::StdRegions::StdExpansion::m_base, and Nektar::LocalRegions::Expansion::m_geom.

1705  {
1706  int np0 = m_base[0]->GetNumPoints();
1707  int np1 = m_base[1]->GetNumPoints();
1708  int np2 = m_base[2]->GetNumPoints();
1709  int np = max(np0,max(np1,np2));
1710  Array<OneD, int> prismpt(6);
1711  bool standard = true;
1712 
1713  int vid0 = m_geom->GetVid(0);
1714  int vid1 = m_geom->GetVid(1);
1715  int vid2 = m_geom->GetVid(4);
1716  int rotate = 0;
1717 
1718  // sort out prism rotation according to
1719  if((vid2 < vid1)&&(vid2 < vid0)) // top triangle vertex is lowest id
1720  {
1721  rotate = 0;
1722  if(vid0 > vid1)
1723  {
1724  standard = false;// reverse base direction
1725  }
1726  }
1727  else if((vid1 < vid2)&&(vid1 < vid0))
1728  {
1729  rotate = 1;
1730  if(vid2 > vid0)
1731  {
1732  standard = false;// reverse base direction
1733  }
1734  }
1735  else if ((vid0 < vid2)&&(vid0 < vid1))
1736  {
1737  rotate = 2;
1738  if(vid1 > vid2)
1739  {
1740  standard = false; // reverse base direction
1741  }
1742  }
1743 
1744  conn = Array<OneD, int>(12*(np-1)*(np-1)*(np-1));
1745 
1746  int row = 0;
1747  int rowp1 = 0;
1748  int plane = 0;
1749  int row1 = 0;
1750  int row1p1 = 0;
1751  int planep1 = 0;
1752  int cnt = 0;
1753 
1754 
1755  Array<OneD, int> rot(3);
1756 
1757  rot[0] = (0+rotate)%3;
1758  rot[1] = (1+rotate)%3;
1759  rot[2] = (2+rotate)%3;
1760 
1761  // lower diagonal along 1-3 on base
1762  for(int i = 0; i < np-1; ++i)
1763  {
1764  planep1 += (np-i)*np;
1765  row = 0; // current plane row offset
1766  rowp1 = 0; // current plane row plus one offset
1767  row1 = 0; // next plane row offset
1768  row1p1 = 0; // nex plane row plus one offset
1769  if(standard == false)
1770  {
1771  for(int j = 0; j < np-1; ++j)
1772  {
1773  rowp1 += np-i;
1774  row1p1 += np-i-1;
1775  for(int k = 0; k < np-i-2; ++k)
1776  {
1777  // bottom prism block
1778  prismpt[rot[0]] = plane + row + k;
1779  prismpt[rot[1]] = plane + row + k+1;
1780  prismpt[rot[2]] = planep1 + row1 + k;
1781 
1782  prismpt[3+rot[0]] = plane + rowp1 + k;
1783  prismpt[3+rot[1]] = plane + rowp1 + k+1;
1784  prismpt[3+rot[2]] = planep1 + row1p1 + k;
1785 
1786  conn[cnt++] = prismpt[0];
1787  conn[cnt++] = prismpt[1];
1788  conn[cnt++] = prismpt[3];
1789  conn[cnt++] = prismpt[2];
1790 
1791  conn[cnt++] = prismpt[5];
1792  conn[cnt++] = prismpt[2];
1793  conn[cnt++] = prismpt[3];
1794  conn[cnt++] = prismpt[4];
1795 
1796  conn[cnt++] = prismpt[3];
1797  conn[cnt++] = prismpt[1];
1798  conn[cnt++] = prismpt[4];
1799  conn[cnt++] = prismpt[2];
1800 
1801  // upper prism block.
1802  prismpt[rot[0]] = planep1 + row1 + k+1;
1803  prismpt[rot[1]] = planep1 + row1 + k;
1804  prismpt[rot[2]] = plane + row + k+1;
1805 
1806  prismpt[3+rot[0]] = planep1 + row1p1 + k+1;
1807  prismpt[3+rot[1]] = planep1 + row1p1 + k;
1808  prismpt[3+rot[2]] = plane + rowp1 + k+1;
1809 
1810 
1811  conn[cnt++] = prismpt[0];
1812  conn[cnt++] = prismpt[1];
1813  conn[cnt++] = prismpt[2];
1814  conn[cnt++] = prismpt[5];
1815 
1816  conn[cnt++] = prismpt[5];
1817  conn[cnt++] = prismpt[0];
1818  conn[cnt++] = prismpt[4];
1819  conn[cnt++] = prismpt[1];
1820 
1821  conn[cnt++] = prismpt[3];
1822  conn[cnt++] = prismpt[4];
1823  conn[cnt++] = prismpt[0];
1824  conn[cnt++] = prismpt[5];
1825 
1826  }
1827 
1828  // bottom prism block
1829  prismpt[rot[0]] = plane + row + np-i-2;
1830  prismpt[rot[1]] = plane + row + np-i-1;
1831  prismpt[rot[2]] = planep1 + row1 + np-i-2;
1832 
1833  prismpt[3+rot[0]] = plane + rowp1 + np-i-2;
1834  prismpt[3+rot[1]] = plane + rowp1 + np-i-1;
1835  prismpt[3+rot[2]] = planep1 + row1p1 + np-i-2;
1836 
1837  conn[cnt++] = prismpt[0];
1838  conn[cnt++] = prismpt[1];
1839  conn[cnt++] = prismpt[3];
1840  conn[cnt++] = prismpt[2];
1841 
1842  conn[cnt++] = prismpt[5];
1843  conn[cnt++] = prismpt[2];
1844  conn[cnt++] = prismpt[3];
1845  conn[cnt++] = prismpt[4];
1846 
1847  conn[cnt++] = prismpt[3];
1848  conn[cnt++] = prismpt[1];
1849  conn[cnt++] = prismpt[4];
1850  conn[cnt++] = prismpt[2];
1851 
1852  row += np-i;
1853  row1 += np-i-1;
1854  }
1855 
1856  }
1857  else
1858  { // lower diagonal along 0-4 on base
1859  for(int j = 0; j < np-1; ++j)
1860  {
1861  rowp1 += np-i;
1862  row1p1 += np-i-1;
1863  for(int k = 0; k < np-i-2; ++k)
1864  {
1865  // bottom prism block
1866  prismpt[rot[0]] = plane + row + k;
1867  prismpt[rot[1]] = plane + row + k+1;
1868  prismpt[rot[2]] = planep1 + row1 + k;
1869 
1870  prismpt[3+rot[0]] = plane + rowp1 + k;
1871  prismpt[3+rot[1]] = plane + rowp1 + k+1;
1872  prismpt[3+rot[2]] = planep1 + row1p1 + k;
1873 
1874  conn[cnt++] = prismpt[0];
1875  conn[cnt++] = prismpt[1];
1876  conn[cnt++] = prismpt[4];
1877  conn[cnt++] = prismpt[2];
1878 
1879  conn[cnt++] = prismpt[4];
1880  conn[cnt++] = prismpt[3];
1881  conn[cnt++] = prismpt[0];
1882  conn[cnt++] = prismpt[2];
1883 
1884  conn[cnt++] = prismpt[3];
1885  conn[cnt++] = prismpt[4];
1886  conn[cnt++] = prismpt[5];
1887  conn[cnt++] = prismpt[2];
1888 
1889  // upper prism block.
1890  prismpt[rot[0]] = planep1 + row1 + k+1;
1891  prismpt[rot[1]] = planep1 + row1 + k;
1892  prismpt[rot[2]] = plane + row + k+1;
1893 
1894  prismpt[3+rot[0]] = planep1 + row1p1 + k+1;
1895  prismpt[3+rot[1]] = planep1 + row1p1 + k;
1896  prismpt[3+rot[2]] = plane + rowp1 + k+1;
1897 
1898  conn[cnt++] = prismpt[0];
1899  conn[cnt++] = prismpt[2];
1900  conn[cnt++] = prismpt[1];
1901  conn[cnt++] = prismpt[5];
1902 
1903  conn[cnt++] = prismpt[3];
1904  conn[cnt++] = prismpt[5];
1905  conn[cnt++] = prismpt[0];
1906  conn[cnt++] = prismpt[1];
1907 
1908  conn[cnt++] = prismpt[5];
1909  conn[cnt++] = prismpt[3];
1910  conn[cnt++] = prismpt[4];
1911  conn[cnt++] = prismpt[1];
1912  }
1913 
1914  // bottom prism block
1915  prismpt[rot[0]] = plane + row + np-i-2;
1916  prismpt[rot[1]] = plane + row + np-i-1;
1917  prismpt[rot[2]] = planep1 + row1 + np-i-2;
1918 
1919  prismpt[3+rot[0]] = plane + rowp1 + np-i-2;
1920  prismpt[3+rot[1]] = plane + rowp1 + np-i-1;
1921  prismpt[3+rot[2]] = planep1 + row1p1 + np-i-2;
1922 
1923  conn[cnt++] = prismpt[0];
1924  conn[cnt++] = prismpt[1];
1925  conn[cnt++] = prismpt[4];
1926  conn[cnt++] = prismpt[2];
1927 
1928  conn[cnt++] = prismpt[4];
1929  conn[cnt++] = prismpt[3];
1930  conn[cnt++] = prismpt[0];
1931  conn[cnt++] = prismpt[2];
1932 
1933  conn[cnt++] = prismpt[3];
1934  conn[cnt++] = prismpt[4];
1935  conn[cnt++] = prismpt[5];
1936  conn[cnt++] = prismpt[2];
1937 
1938  row += np-i;
1939  row1 += np-i-1;
1940  }
1941 
1942  }
1943  plane += (np-i)*np;
1944  }
1945  }
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:125
Array< OneD, LibUtilities::BasisSharedPtr > m_base
StdRegions::StdExpansionSharedPtr Nektar::LocalRegions::PrismExp::v_GetStdExp ( void  ) const
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 451 of file PrismExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and Nektar::StdRegions::StdExpansion::m_base.

452  {
454  ::AllocateSharedPtr(m_base[0]->GetBasisKey(),
455  m_base[1]->GetBasisKey(),
456  m_base[2]->GetBasisKey());
457  }
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Nektar::LocalRegions::PrismExp::v_HelmholtzMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 984 of file PrismExp.cpp.

References Nektar::StdRegions::StdExpansion3D::v_HelmholtzMatrixOp_MatFree().

988  {
989  PrismExp::v_HelmholtzMatrixOp_MatFree(inarray,outarray,mkey);
990  }
virtual void v_HelmholtzMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
NekDouble Nektar::LocalRegions::PrismExp::v_Integral ( const Array< OneD, const NekDouble > &  inarray)
protectedvirtual

Integrate the physical point list inarray over prismatic region and return the value.

Inputs:

  • inarray: definition of function to be returned at quadrature point of expansion.

Outputs:

  • returns $\int^1_{-1}\int^1_{-1}\int^1_{-1} u(\bar \eta_1, \xi_2, \xi_3) J[i,j,k] d \bar \eta_1 d \xi_2 d \xi_3 $
    $ = \sum_{i=0}^{Q_1 - 1} \sum_{j=0}^{Q_2 - 1} \sum_{k=0}^{Q_3 - 1} u(\bar \eta_{1i}^{0,0}, \xi_{2j}^{0,0},\xi_{3k}^{1,0})w_{i}^{0,0} w_{j}^{0,0} \hat w_{k}^{1,0} $
    where $ inarray[i,j, k] = u(\bar \eta_{1i}^{0,0}, \xi_{2j}^{0,0},\xi_{3k}^{1,0}) $,
    $\hat w_{i}^{1,0} = \frac {w_{j}^{1,0}} {2} $
    and $ J[i,j,k] $ is the Jacobian evaluated at the quadrature point.

Reimplemented from Nektar::StdRegions::StdExpansion3D.

Definition at line 111 of file PrismExp.cpp.

References Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Smul(), and Vmath::Vmul().

112  {
113  int nquad0 = m_base[0]->GetNumPoints();
114  int nquad1 = m_base[1]->GetNumPoints();
115  int nquad2 = m_base[2]->GetNumPoints();
116  Array<OneD, const NekDouble> jac = m_metricinfo->GetJac(GetPointsKeys());
117  Array<OneD, NekDouble> tmp(nquad0*nquad1*nquad2);
118 
119  // Multiply inarray with Jacobian
120  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
121  {
122  Vmath::Vmul(nquad0*nquad1*nquad2,&jac[0],1,(NekDouble*)&inarray[0],1,&tmp[0],1);
123  }
124  else
125  {
126  Vmath::Smul(nquad0*nquad1*nquad2,(NekDouble)jac[0],(NekDouble*)&inarray[0],1,&tmp[0],1);
127  }
128 
129  // Call StdPrismExp version.
130  return StdPrismExp::v_Integral(tmp);
131  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
double NekDouble
Array< OneD, LibUtilities::BasisSharedPtr > m_base
Geometry is curved or has non-constant factors.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
void Nektar::LocalRegions::PrismExp::v_IProductWRTBase ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Calculate the inner product of inarray with respect to the basis B=base0*base1*base2 and put into outarray:

$ \begin{array}{rcl} I_{pqr} = (\phi_{pqr}, u)_{\delta} & = & \sum_{i=0}^{nq_0} \sum_{j=0}^{nq_1} \sum_{k=0}^{nq_2} \psi_{p}^{a} (\bar \eta_{1i}) \psi_{q}^{a} (\xi_{2j}) \psi_{pr}^{b} (\xi_{3k}) w_i w_j w_k u(\bar \eta_{1,i} \xi_{2,j} \xi_{3,k}) J_{i,j,k}\\ & = & \sum_{i=0}^{nq_0} \psi_p^a(\bar \eta_{1,i}) \sum_{j=0}^{nq_1} \psi_{q}^a(\xi_{2,j}) \sum_{k=0}^{nq_2} \psi_{pr}^b u(\bar \eta_{1i},\xi_{2j},\xi_{3k}) J_{i,j,k} \end{array} $
where

$ \phi_{pqr} (\xi_1 , \xi_2 , \xi_3) = \psi_p^a (\bar \eta_1) \psi_{q}^a (\xi_2) \psi_{pr}^b (\xi_3) $
which can be implemented as
$f_{pr} (\xi_{3k}) = \sum_{k=0}^{nq_3} \psi_{pr}^b u(\bar \eta_{1i},\xi_{2j},\xi_{3k}) J_{i,j,k} = {\bf B_3 U} $
$ g_{q} (\xi_{3k}) = \sum_{j=0}^{nq_1} \psi_{q}^a (\xi_{2j}) f_{pr} (\xi_{3k}) = {\bf B_2 F} $
$ (\phi_{pqr}, u)_{\delta} = \sum_{k=0}^{nq_0} \psi_{p}^a (\xi_{3k}) g_{q} (\xi_{3k}) = {\bf B_1 G} $

Reimplemented from Nektar::StdRegions::StdPrismExp.

Definition at line 272 of file PrismExp.cpp.

References v_IProductWRTBase_SumFac().

Referenced by v_FwdTrans().

275  {
276  v_IProductWRTBase_SumFac(inarray, outarray);
277  }
virtual void v_IProductWRTBase_SumFac(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
Definition: PrismExp.cpp:279
void Nektar::LocalRegions::PrismExp::v_IProductWRTBase_SumFac ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
bool  multiplybyweights = true 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdPrismExp.

Definition at line 279 of file PrismExp.cpp.

References Nektar::StdRegions::StdExpansion3D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, and Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric().

Referenced by v_IProductWRTBase().

283  {
284  const int nquad0 = m_base[0]->GetNumPoints();
285  const int nquad1 = m_base[1]->GetNumPoints();
286  const int nquad2 = m_base[2]->GetNumPoints();
287  const int order0 = m_base[0]->GetNumModes();
288  const int order1 = m_base[1]->GetNumModes();
289 
290  Array<OneD, NekDouble> wsp(order0*nquad2*(nquad1+order1));
291 
292  if(multiplybyweights)
293  {
294  Array<OneD, NekDouble> tmp(nquad0*nquad1*nquad2);
295 
296  MultiplyByQuadratureMetric(inarray, tmp);
297 
298  IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(),
299  m_base[1]->GetBdata(),
300  m_base[2]->GetBdata(),
301  tmp,outarray,wsp,
302  true,true,true);
303  }
304  else
305  {
306  IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(),
307  m_base[1]->GetBdata(),
308  m_base[2]->GetBdata(),
309  inarray,outarray,wsp,
310  true,true,true);
311  }
312  }
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:942
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Nektar::LocalRegions::PrismExp::v_IProductWRTDerivBase ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Calculates the inner product $ I_{pqr} = (u, \partial_{x_i} \phi_{pqr}) $.

The derivative of the basis functions is performed using the chain rule in order to incorporate the geometric factors. Assuming that the basis functions are a tensor product $\phi_{pqr}(\eta_1,\eta_2,\eta_3) = \phi_1(\eta_1)\phi_2(\eta_2)\phi_3(\eta_3)$, this yields the result

\[ I_{pqr} = \sum_{j=1}^3 \left(u, \frac{\partial u}{\partial \eta_j} \frac{\partial \eta_j}{\partial x_i}\right) \]

In the tetrahedral element, we must also incorporate a second set of geometric factors which incorporate the collapsed co-ordinate system, so that

\[ \frac{\partial\eta_j}{\partial x_i} = \sum_{k=1}^3 \frac{\partial\eta_j}{\partial\xi_k}\frac{\partial\xi_k}{\partial x_i} \]

These derivatives can be found on p152 of Sherwin & Karniadakis.

Parameters
dirDirection in which to take the derivative.
inarrayThe function $ u $.
outarrayValue of the inner product.

Reimplemented from Nektar::StdRegions::StdPrismExp.

Definition at line 344 of file PrismExp.cpp.

References v_IProductWRTDerivBase_SumFac().

348  {
349  v_IProductWRTDerivBase_SumFac(dir, inarray, outarray);
350  }
void v_IProductWRTDerivBase_SumFac(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: PrismExp.cpp:352
void Nektar::LocalRegions::PrismExp::v_IProductWRTDerivBase_SumFac ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdPrismExp.

Definition at line 352 of file PrismExp.cpp.

References Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion3D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::StdRegions::StdExpansion::m_ncoeffs, Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric(), Vmath::Smul(), Vmath::Vadd(), and Vmath::Vmul().

Referenced by v_IProductWRTDerivBase().

356  {
357  const int nquad0 = m_base[0]->GetNumPoints();
358  const int nquad1 = m_base[1]->GetNumPoints();
359  const int nquad2 = m_base[2]->GetNumPoints();
360  const int order0 = m_base[0]->GetNumModes ();
361  const int order1 = m_base[1]->GetNumModes ();
362  const int nqtot = nquad0*nquad1*nquad2;
363  int i;
364 
365  const Array<OneD, const NekDouble> &z0 = m_base[0]->GetZ();
366  const Array<OneD, const NekDouble> &z2 = m_base[2]->GetZ();
367 
368  Array<OneD, NekDouble> gfac0(nquad0 );
369  Array<OneD, NekDouble> gfac2(nquad2 );
370  Array<OneD, NekDouble> tmp1 (nqtot );
371  Array<OneD, NekDouble> tmp2 (nqtot );
372  Array<OneD, NekDouble> tmp3 (nqtot );
373  Array<OneD, NekDouble> tmp4 (nqtot );
374  Array<OneD, NekDouble> tmp5 (nqtot );
375  Array<OneD, NekDouble> tmp6 (m_ncoeffs);
376  Array<OneD, NekDouble> wsp (order0*nquad2*(nquad1+order1));
377 
378  const Array<TwoD, const NekDouble>& df =
379  m_metricinfo->GetDerivFactors(GetPointsKeys());
380 
381  MultiplyByQuadratureMetric(inarray, tmp1);
382 
383  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
384  {
385  Vmath::Vmul(nqtot,&df[3*dir][0], 1,tmp1.get(),1,tmp2.get(),1);
386  Vmath::Vmul(nqtot,&df[3*dir+1][0],1,tmp1.get(),1,tmp3.get(),1);
387  Vmath::Vmul(nqtot,&df[3*dir+2][0],1,tmp1.get(),1,tmp4.get(),1);
388  }
389  else
390  {
391  Vmath::Smul(nqtot, df[3*dir][0], tmp1.get(),1,tmp2.get(), 1);
392  Vmath::Smul(nqtot, df[3*dir+1][0],tmp1.get(),1,tmp3.get(), 1);
393  Vmath::Smul(nqtot, df[3*dir+2][0],tmp1.get(),1,tmp4.get(), 1);
394  }
395 
396  // set up geometric factor: (1+z0)/2
397  for (i = 0; i < nquad0; ++i)
398  {
399  gfac0[i] = 0.5*(1+z0[i]);
400  }
401 
402  // Set up geometric factor: 2/(1-z2)
403  for (i = 0; i < nquad2; ++i)
404  {
405  gfac2[i] = 2.0/(1-z2[i]);
406  }
407 
408  const int nq01 = nquad0*nquad1;
409 
410  for (i = 0; i < nquad2; ++i)
411  {
412  Vmath::Smul(nq01,gfac2[i],&tmp2[0]+i*nq01,1,&tmp2[0]+i*nq01,1);
413  Vmath::Smul(nq01,gfac2[i],&tmp4[0]+i*nq01,1,&tmp5[0]+i*nq01,1);
414  }
415 
416  for(i = 0; i < nquad1*nquad2; ++i)
417  {
418  Vmath::Vmul(nquad0,&gfac0[0],1,&tmp5[0]+i*nquad0,1,
419  &tmp5[0]+i*nquad0,1);
420  }
421 
422  Vmath::Vadd(nqtot, &tmp2[0], 1, &tmp5[0], 1, &tmp2[0], 1);
423 
424  IProductWRTBase_SumFacKernel(m_base[0]->GetDbdata(),
425  m_base[1]->GetBdata (),
426  m_base[2]->GetBdata (),
427  tmp2,outarray,wsp,
428  true,true,true);
429 
430  IProductWRTBase_SumFacKernel(m_base[0]->GetBdata (),
431  m_base[1]->GetDbdata(),
432  m_base[2]->GetBdata (),
433  tmp3,tmp6,wsp,
434  true,true,true);
435 
436  Vmath::Vadd(m_ncoeffs, tmp6, 1, outarray, 1, outarray, 1);
437 
438  IProductWRTBase_SumFacKernel(m_base[0]->GetBdata (),
439  m_base[1]->GetBdata (),
440  m_base[2]->GetDbdata(),
441  tmp4,tmp6,wsp,
442  true,true,true);
443 
444  Vmath::Vadd(m_ncoeffs, tmp6, 1, outarray, 1, outarray, 1);
445  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:942
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
Array< OneD, LibUtilities::BasisSharedPtr > m_base
Geometry is curved or has non-constant factors.
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:285
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
void Nektar::LocalRegions::PrismExp::v_LaplacianMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 966 of file PrismExp.cpp.

References Nektar::StdRegions::StdExpansion::LaplacianMatrixOp_MatFree().

970  {
971  PrismExp::LaplacianMatrixOp_MatFree(inarray,outarray,mkey);
972  }
void LaplacianMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void Nektar::LocalRegions::PrismExp::v_LaplacianMatrixOp ( const int  k1,
const int  k2,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 974 of file PrismExp.cpp.

980  {
981  StdExpansion::LaplacianMatrixOp_MatFree(k1,k2,inarray,outarray,mkey);
982  }
void Nektar::LocalRegions::PrismExp::v_LaplacianMatrixOp_MatFree_Kernel ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp 
)
privatevirtual

Calculate the Laplacian multiplication in a matrix-free manner.

This function is the kernel of the Laplacian matrix-free operator, and is used in v_HelmholtzMatrixOp_MatFree to determine the effect of the Helmholtz operator in a similar fashion.

The majority of the calculation is precisely the same as in the hexahedral expansion; however the collapsed co-ordinate system must be taken into account when constructing the geometric factors. How this is done is detailed more exactly in the tetrahedral expansion. On entry to this function, the input #inarray must be in its backwards-transformed state (i.e. $\mathbf{u} = \mathbf{B}\hat{\mathbf{u}}$). The output is in coefficient space.

See also
TetExp::v_HelmholtzMatrixOp_MatFree

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1546 of file PrismExp.cpp.

References Nektar::SpatialDomains::eDeformed, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion3D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::StdRegions::StdExpansion::m_ncoeffs, Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric(), Vmath::Svtsvtp(), Vmath::Svtvp(), Vmath::Vadd(), Vmath::Vvtvp(), and Vmath::Vvtvvtp().

1550  {
1551  int nquad0 = m_base[0]->GetNumPoints();
1552  int nquad1 = m_base[1]->GetNumPoints();
1553  int nquad2 = m_base[2]->GetNumPoints();
1554  int nqtot = nquad0*nquad1*nquad2;
1555  int i;
1556 
1557  // Set up temporary storage.
1558  Array<OneD,NekDouble> alloc(11*nqtot,0.0);
1559  Array<OneD,NekDouble> wsp1 (alloc ); // TensorDeriv 1
1560  Array<OneD,NekDouble> wsp2 (alloc+ 1*nqtot); // TensorDeriv 2
1561  Array<OneD,NekDouble> wsp3 (alloc+ 2*nqtot); // TensorDeriv 3
1562  Array<OneD,NekDouble> g0 (alloc+ 3*nqtot); // g0
1563  Array<OneD,NekDouble> g1 (alloc+ 4*nqtot); // g1
1564  Array<OneD,NekDouble> g2 (alloc+ 5*nqtot); // g2
1565  Array<OneD,NekDouble> g3 (alloc+ 6*nqtot); // g3
1566  Array<OneD,NekDouble> g4 (alloc+ 7*nqtot); // g4
1567  Array<OneD,NekDouble> g5 (alloc+ 8*nqtot); // g5
1568  Array<OneD,NekDouble> h0 (alloc+ 3*nqtot); // h0 == g0
1569  Array<OneD,NekDouble> h1 (alloc+ 6*nqtot); // h1 == g3
1570  Array<OneD,NekDouble> wsp4 (alloc+ 4*nqtot); // wsp4 == g1
1571  Array<OneD,NekDouble> wsp5 (alloc+ 5*nqtot); // wsp5 == g2
1572  Array<OneD,NekDouble> wsp6 (alloc+ 8*nqtot); // wsp6 == g5
1573  Array<OneD,NekDouble> wsp7 (alloc+ 3*nqtot); // wsp7 == g0
1574  Array<OneD,NekDouble> wsp8 (alloc+ 9*nqtot); // wsp8
1575  Array<OneD,NekDouble> wsp9 (alloc+10*nqtot); // wsp9
1576 
1577  const Array<OneD, const NekDouble>& base0 = m_base[0]->GetBdata();
1578  const Array<OneD, const NekDouble>& base1 = m_base[1]->GetBdata();
1579  const Array<OneD, const NekDouble>& base2 = m_base[2]->GetBdata();
1580  const Array<OneD, const NekDouble>& dbase0 = m_base[0]->GetDbdata();
1581  const Array<OneD, const NekDouble>& dbase1 = m_base[1]->GetDbdata();
1582  const Array<OneD, const NekDouble>& dbase2 = m_base[2]->GetDbdata();
1583 
1584  // Step 1. LAPLACIAN MATRIX OPERATION
1585  // wsp1 = du_dxi1 = D_xi1 * wsp0 = D_xi1 * u
1586  // wsp2 = du_dxi2 = D_xi2 * wsp0 = D_xi2 * u
1587  // wsp3 = du_dxi3 = D_xi3 * wsp0 = D_xi3 * u
1588  StdExpansion3D::PhysTensorDeriv(inarray,wsp1,wsp2,wsp3);
1589 
1590  const Array<TwoD, const NekDouble>& df =
1591  m_metricinfo->GetDerivFactors(GetPointsKeys());
1592  const Array<OneD, const NekDouble>& z0 = m_base[0]->GetZ();
1593  const Array<OneD, const NekDouble>& z2 = m_base[2]->GetZ();
1594 
1595  // Step 2. Calculate the metric terms of the collapsed
1596  // coordinate transformation (Spencer's book P152)
1597  for (i = 0; i < nquad2; ++i)
1598  {
1599  Vmath::Fill(nquad0*nquad1, 2.0/(1.0-z2[i]), &h0[0]+i*nquad0*nquad1,1);
1600  Vmath::Fill(nquad0*nquad1, 2.0/(1.0-z2[i]), &h1[0]+i*nquad0*nquad1,1);
1601  }
1602  for (i = 0; i < nquad0; i++)
1603  {
1604  Blas::Dscal(nquad1*nquad2, 0.5*(1+z0[i]), &h1[0]+i, nquad0);
1605  }
1606 
1607  // Step 3. Construct combined metric terms for physical space to
1608  // collapsed coordinate system. Order of construction optimised
1609  // to minimise temporary storage
1610  if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1611  {
1612  // wsp4 = d eta_1/d x_1
1613  Vmath::Vvtvvtp(nqtot, &df[0][0], 1, &h0[0], 1, &df[2][0], 1, &h1[0], 1, &wsp4[0], 1);
1614  // wsp5 = d eta_2/d x_1
1615  Vmath::Vvtvvtp(nqtot, &df[3][0], 1, &h0[0], 1, &df[5][0], 1, &h1[0], 1, &wsp5[0], 1);
1616  // wsp6 = d eta_3/d x_1d
1617  Vmath::Vvtvvtp(nqtot, &df[6][0], 1, &h0[0], 1, &df[8][0], 1, &h1[0], 1, &wsp6[0], 1);
1618 
1619  // g0 (overwrites h0)
1620  Vmath::Vvtvvtp(nqtot, &wsp4[0], 1, &wsp4[0], 1, &wsp5[0], 1, &wsp5[0], 1, &g0[0], 1);
1621  Vmath::Vvtvp (nqtot, &wsp6[0], 1, &wsp6[0], 1, &g0[0], 1, &g0[0], 1);
1622 
1623  // g3 (overwrites h1)
1624  Vmath::Vvtvvtp(nqtot, &df[1][0], 1, &wsp4[0], 1, &df[4][0], 1, &wsp5[0], 1, &g3[0], 1);
1625  Vmath::Vvtvp (nqtot, &df[7][0], 1, &wsp6[0], 1, &g3[0], 1, &g3[0], 1);
1626 
1627  // g4
1628  Vmath::Vvtvvtp(nqtot, &df[2][0], 1, &wsp4[0], 1, &df[5][0], 1, &wsp5[0], 1, &g4[0], 1);
1629  Vmath::Vvtvp (nqtot, &df[8][0], 1, &wsp6[0], 1, &g4[0], 1, &g4[0], 1);
1630 
1631  // Overwrite wsp4/5/6 with g1/2/5
1632  // g1
1633  Vmath::Vvtvvtp(nqtot, &df[1][0], 1, &df[1][0], 1, &df[4][0], 1, &df[4][0], 1, &g1[0], 1);
1634  Vmath::Vvtvp (nqtot, &df[7][0], 1, &df[7][0], 1, &g1[0], 1, &g1[0], 1);
1635 
1636  // g2
1637  Vmath::Vvtvvtp(nqtot, &df[2][0], 1, &df[2][0], 1, &df[5][0], 1, &df[5][0], 1, &g2[0], 1);
1638  Vmath::Vvtvp (nqtot, &df[8][0], 1, &df[8][0], 1, &g2[0], 1, &g2[0], 1);
1639 
1640  // g5
1641  Vmath::Vvtvvtp(nqtot, &df[1][0], 1, &df[2][0], 1, &df[4][0], 1, &df[5][0], 1, &g5[0], 1);
1642  Vmath::Vvtvp (nqtot, &df[7][0], 1, &df[8][0], 1, &g5[0], 1, &g5[0], 1);
1643  }
1644  else
1645  {
1646  // wsp4 = d eta_1/d x_1
1647  Vmath::Svtsvtp(nqtot, df[0][0], &h0[0], 1, df[2][0], &h1[0], 1, &wsp4[0], 1);
1648  // wsp5 = d eta_2/d x_1
1649  Vmath::Svtsvtp(nqtot, df[3][0], &h0[0], 1, df[5][0], &h1[0], 1, &wsp5[0], 1);
1650  // wsp6 = d eta_3/d x_1
1651  Vmath::Svtsvtp(nqtot, df[6][0], &h0[0], 1, df[8][0], &h1[0], 1, &wsp6[0], 1);
1652 
1653  // g0 (overwrites h0)
1654  Vmath::Vvtvvtp(nqtot, &wsp4[0], 1, &wsp4[0], 1, &wsp5[0], 1, &wsp5[0], 1, &g0[0], 1);
1655  Vmath::Vvtvp (nqtot, &wsp6[0], 1, &wsp6[0], 1, &g0[0], 1, &g0[0], 1);
1656 
1657  // g3 (overwrites h1)
1658  Vmath::Svtsvtp(nqtot, df[1][0], &wsp4[0], 1, df[4][0], &wsp5[0], 1, &g3[0], 1);
1659  Vmath::Svtvp (nqtot, df[7][0], &wsp6[0], 1, &g3[0], 1, &g3[0], 1);
1660 
1661  // g4
1662  Vmath::Svtsvtp(nqtot, df[2][0], &wsp4[0], 1, df[5][0], &wsp5[0], 1, &g4[0], 1);
1663  Vmath::Svtvp (nqtot, df[8][0], &wsp6[0], 1, &g4[0], 1, &g4[0], 1);
1664 
1665  // Overwrite wsp4/5/6 with g1/2/5
1666  // g1
1667  Vmath::Fill(nqtot, df[1][0]*df[1][0] + df[4][0]*df[4][0] + df[7][0]*df[7][0], &g1[0], 1);
1668 
1669  // g2
1670  Vmath::Fill(nqtot, df[2][0]*df[2][0] + df[5][0]*df[5][0] + df[8][0]*df[8][0], &g2[0], 1);
1671 
1672  // g5
1673  Vmath::Fill(nqtot, df[1][0]*df[2][0] + df[4][0]*df[5][0] + df[7][0]*df[8][0], &g5[0], 1);
1674  }
1675  // Compute component derivatives into wsp7, 8, 9 (wsp7 overwrites
1676  // g0).
1677  Vmath::Vvtvvtp(nqtot,&g0[0],1,&wsp1[0],1,&g3[0],1,&wsp2[0],1,&wsp7[0],1);
1678  Vmath::Vvtvp (nqtot,&g4[0],1,&wsp3[0],1,&wsp7[0],1,&wsp7[0],1);
1679  Vmath::Vvtvvtp(nqtot,&g1[0],1,&wsp2[0],1,&g3[0],1,&wsp1[0],1,&wsp8[0],1);
1680  Vmath::Vvtvp (nqtot,&g5[0],1,&wsp3[0],1,&wsp8[0],1,&wsp8[0],1);
1681  Vmath::Vvtvvtp(nqtot,&g2[0],1,&wsp3[0],1,&g4[0],1,&wsp1[0],1,&wsp9[0],1);
1682  Vmath::Vvtvp (nqtot,&g5[0],1,&wsp2[0],1,&wsp9[0],1,&wsp9[0],1);
1683 
1684  // Step 4.
1685  // Multiply by quadrature metric
1686  MultiplyByQuadratureMetric(wsp7,wsp7);
1687  MultiplyByQuadratureMetric(wsp8,wsp8);
1688  MultiplyByQuadratureMetric(wsp9,wsp9);
1689 
1690  // Perform inner product w.r.t derivative bases.
1691  IProductWRTBase_SumFacKernel(dbase0,base1,base2,wsp7,wsp1, wsp,false,true,true);
1692  IProductWRTBase_SumFacKernel(base0,dbase1,base2,wsp8,wsp2, wsp,true,false,true);
1693  IProductWRTBase_SumFacKernel(base0,base1,dbase2,wsp9,outarray,wsp,true,true,false);
1694 
1695  // Step 5.
1696  // Sum contributions from wsp1, wsp2 and outarray.
1697  Vmath::Vadd(m_ncoeffs,wsp1.get(),1,outarray.get(),1,outarray.get(),1);
1698  Vmath::Vadd(m_ncoeffs,wsp2.get(),1,outarray.get(),1,outarray.get(),1);
1699  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:942
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:46
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
Definition: Vmath.cpp:471
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:428
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
void Vvtvvtp(int n, const T *v, int incv, const T *w, int incw, const T *x, int incx, const T *y, int incy, T *z, int incz)
vvtvvtp (vector times vector plus vector times vector):
Definition: Vmath.cpp:523
void Svtsvtp(int n, const T alpha, const T *x, int incx, const T beta, const T *y, int incy, T *z, int incz)
vvtvvtp (scalar times vector plus scalar times vector):
Definition: Vmath.cpp:577
Array< OneD, LibUtilities::BasisSharedPtr > m_base
Geometry is curved or has non-constant factors.
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:285
void Nektar::LocalRegions::PrismExp::v_MassMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 958 of file PrismExp.cpp.

962  {
963  StdExpansion::MassMatrixOp_MatFree(inarray,outarray,mkey);
964  }
void Nektar::LocalRegions::PrismExp::v_PhysDeriv ( const Array< OneD, const NekDouble > &  u_physical,
Array< OneD, NekDouble > &  out_dxi1,
Array< OneD, NekDouble > &  out_dxi2,
Array< OneD, NekDouble > &  out_dxi3 
)
protectedvirtual

Calculate the derivative of the physical points.

The derivative is evaluated at the nodal physical points. Derivatives with respect to the local Cartesian coordinates.

$\begin{Bmatrix} \frac {\partial} {\partial \xi_1} \\ \frac {\partial} {\partial \xi_2} \\ \frac {\partial} {\partial \xi_3} \end{Bmatrix} = \begin{Bmatrix} \frac 2 {(1-\eta_3)} \frac \partial {\partial \bar \eta_1} \\ \frac {\partial} {\partial \xi_2} \ \ \frac {(1 + \bar \eta_1)} {(1 - \eta_3)} \frac \partial {\partial \bar \eta_1} + \frac {\partial} {\partial \eta_3} \end{Bmatrix}$

Reimplemented from Nektar::StdRegions::StdPrismExp.

Definition at line 137 of file PrismExp.cpp.

References Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::GetTotPoints(), Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Smul(), Vmath::Vmul(), and Vmath::Vvtvp().

141  {
142  int nqtot = GetTotPoints();
143 
144  Array<TwoD, const NekDouble> df =
145  m_metricinfo->GetDerivFactors(GetPointsKeys());
146  Array<OneD, NekDouble> diff0(nqtot);
147  Array<OneD, NekDouble> diff1(nqtot);
148  Array<OneD, NekDouble> diff2(nqtot);
149 
150  StdPrismExp::v_PhysDeriv(inarray, diff0, diff1, diff2);
151 
152  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
153  {
154  if(out_d0.num_elements())
155  {
156  Vmath::Vmul (nqtot,&df[0][0],1,&diff0[0],1,&out_d0[0],1);
157  Vmath::Vvtvp (nqtot,&df[1][0],1,&diff1[0],1,&out_d0[0],1,&out_d0[0],1);
158  Vmath::Vvtvp (nqtot,&df[2][0],1,&diff2[0],1,&out_d0[0],1,&out_d0[0],1);
159  }
160 
161  if(out_d1.num_elements())
162  {
163  Vmath::Vmul (nqtot,&df[3][0],1,&diff0[0],1,&out_d1[0],1);
164  Vmath::Vvtvp (nqtot,&df[4][0],1,&diff1[0],1,&out_d1[0],1,&out_d1[0],1);
165  Vmath::Vvtvp (nqtot,&df[5][0],1,&diff2[0],1,&out_d1[0],1,&out_d1[0],1);
166  }
167 
168  if(out_d2.num_elements())
169  {
170  Vmath::Vmul (nqtot,&df[6][0],1,&diff0[0],1,&out_d2[0],1);
171  Vmath::Vvtvp (nqtot,&df[7][0],1,&diff1[0],1,&out_d2[0],1,&out_d2[0],1);
172  Vmath::Vvtvp (nqtot,&df[8][0],1,&diff2[0],1,&out_d2[0],1,&out_d2[0],1);
173  }
174  }
175  else // regular geometry
176  {
177  if(out_d0.num_elements())
178  {
179  Vmath::Smul (nqtot,df[0][0],&diff0[0],1,&out_d0[0],1);
180  Blas::Daxpy (nqtot,df[1][0],&diff1[0],1,&out_d0[0],1);
181  Blas::Daxpy (nqtot,df[2][0],&diff2[0],1,&out_d0[0],1);
182  }
183 
184  if(out_d1.num_elements())
185  {
186  Vmath::Smul (nqtot,df[3][0],&diff0[0],1,&out_d1[0],1);
187  Blas::Daxpy (nqtot,df[4][0],&diff1[0],1,&out_d1[0],1);
188  Blas::Daxpy (nqtot,df[5][0],&diff2[0],1,&out_d1[0],1);
189  }
190 
191  if(out_d2.num_elements())
192  {
193  Vmath::Smul (nqtot,df[6][0],&diff0[0],1,&out_d2[0],1);
194  Blas::Daxpy (nqtot,df[7][0],&diff1[0],1,&out_d2[0],1);
195  Blas::Daxpy (nqtot,df[8][0],&diff2[0],1,&out_d2[0],1);
196  }
197  }
198  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:428
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:141
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
Geometry is curved or has non-constant factors.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
NekDouble Nektar::LocalRegions::PrismExp::v_PhysEvaluate ( const Array< OneD, const NekDouble > &  coords,
const Array< OneD, const NekDouble > &  physvals 
)
protectedvirtual

This function evaluates the expansion at a single (arbitrary) point of the domain.

Based on the value of the expansion at the quadrature points, this function calculates the value of the expansion at an arbitrary single points (with coordinates $ \mathbf{x_c}$ given by the pointer coords). This operation, equivalent to

\[ u(\mathbf{x_c}) = \sum_p \phi_p(\mathbf{x_c}) \hat{u}_p \]

is evaluated using Lagrangian interpolants through the quadrature points:

\[ u(\mathbf{x_c}) = \sum_p h_p(\mathbf{x_c}) u_p\]

This function requires that the physical value array $\mathbf{u}$ (implemented as the attribute #phys) is set.

Parameters
coordsthe coordinates of the single point
Returns
returns the value of the expansion at the single point

Reimplemented from Nektar::StdRegions::StdExpansion3D.

Definition at line 502 of file PrismExp.cpp.

References ASSERTL0, and Nektar::LocalRegions::Expansion::m_geom.

504  {
505  Array<OneD, NekDouble> Lcoord(3);
506 
507  ASSERTL0(m_geom,"m_geom not defined");
508 
509  m_geom->GetLocCoords(coord, Lcoord);
510 
511  return StdPrismExp::v_PhysEvaluate(Lcoord, physvals);
512  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:125
NekDouble Nektar::LocalRegions::PrismExp::v_StdPhysEvaluate ( const Array< OneD, const NekDouble > &  Lcoord,
const Array< OneD, const NekDouble > &  physvals 
)
protectedvirtual

Given the local cartesian coordinate Lcoord evaluate the value of physvals at this point by calling through to the StdExpansion method

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 494 of file PrismExp.cpp.

497  {
498  // Evaluate point in local (eta) coordinates.
499  return StdPrismExp::v_PhysEvaluate(Lcoord,physvals);
500  }
void Nektar::LocalRegions::PrismExp::v_SVVLaplacianFilter ( Array< OneD, NekDouble > &  array,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdPrismExp.

Definition at line 1014 of file PrismExp.cpp.

References Nektar::SpatialDomains::eDeformed, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::GetTotPoints(), Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Vdiv(), Vmath::Vmul(), and Vmath::Vsqrt().

1017  {
1018  int nq = GetTotPoints();
1019 
1020  // Calculate sqrt of the Jacobian
1021  Array<OneD, const NekDouble> jac =
1022  m_metricinfo->GetJac(GetPointsKeys());
1023  Array<OneD, NekDouble> sqrt_jac(nq);
1024  if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1025  {
1026  Vmath::Vsqrt(nq,jac,1,sqrt_jac,1);
1027  }
1028  else
1029  {
1030  Vmath::Fill(nq,sqrt(jac[0]),sqrt_jac,1);
1031  }
1032 
1033  // Multiply array by sqrt(Jac)
1034  Vmath::Vmul(nq,sqrt_jac,1,array,1,array,1);
1035 
1036  // Apply std region filter
1037  StdPrismExp::v_SVVLaplacianFilter( array, mkey);
1038 
1039  // Divide by sqrt(Jac)
1040  Vmath::Vdiv(nq,array,1,sqrt_jac,1,array,1);
1041  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
Definition: Vmath.cpp:394
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:46
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:227
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:141
Geometry is curved or has non-constant factors.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169

Member Data Documentation

LibUtilities::NekManager<MatrixKey, DNekScalMat, MatrixKey::opLess> Nektar::LocalRegions::PrismExp::m_matrixManager
private

Definition at line 206 of file PrismExp.h.

Referenced by CreateMatrix(), v_FwdTrans(), and v_GetLocMatrix().

LibUtilities::NekManager<MatrixKey, DNekScalBlkMat, MatrixKey::opLess> Nektar::LocalRegions::PrismExp::m_staticCondMatrixManager
private

Definition at line 208 of file PrismExp.h.

Referenced by v_DropLocStaticCondMatrix(), and v_GetLocStaticCondMatrix().