Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
Public Member Functions | Protected Member Functions | Private Member Functions | Private Attributes | List of all members
Nektar::LocalRegions::SegExp Class Reference

#include <SegExp.h>

Inheritance diagram for Nektar::LocalRegions::SegExp:
Inheritance graph
[legend]
Collaboration diagram for Nektar::LocalRegions::SegExp:
Collaboration graph
[legend]

Public Member Functions

 SegExp (const LibUtilities::BasisKey &Ba, const SpatialDomains::Geometry1DSharedPtr &geom)
 Constructor using BasisKey class for quadrature points and order definition. More...
 
 SegExp (const SegExp &S)
 Copy Constructor. More...
 
 ~SegExp ()
 
- Public Member Functions inherited from Nektar::StdRegions::StdSegExp
 StdSegExp ()
 Default constructor. More...
 
 StdSegExp (const LibUtilities::BasisKey &Ba)
 Constructor using BasisKey class for quadrature points and order definition. More...
 
 StdSegExp (const StdSegExp &T)
 Copy Constructor. More...
 
 ~StdSegExp ()
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion1D
 StdExpansion1D ()
 
 StdExpansion1D (int numcoeffs, const LibUtilities::BasisKey &Ba)
 
 StdExpansion1D (const StdExpansion1D &T)
 
virtual ~StdExpansion1D ()
 
void PhysTensorDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Evaluate the derivative $ d/d{\xi_1} $ at the physical quadrature points given by inarray and return in outarray. More...
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion
 StdExpansion ()
 Default Constructor. More...
 
 StdExpansion (const int numcoeffs, const int numbases, const LibUtilities::BasisKey &Ba=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bb=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bc=LibUtilities::NullBasisKey)
 Constructor. More...
 
 StdExpansion (const StdExpansion &T)
 Copy Constructor. More...
 
virtual ~StdExpansion ()
 Destructor. More...
 
int GetNumBases () const
 This function returns the number of 1D bases used in the expansion. More...
 
const Array< OneD, const
LibUtilities::BasisSharedPtr > & 
GetBase () const
 This function gets the shared point to basis. More...
 
const
LibUtilities::BasisSharedPtr
GetBasis (int dir) const
 This function gets the shared point to basis in the dir direction. More...
 
int GetNcoeffs (void) const
 This function returns the total number of coefficients used in the expansion. More...
 
int GetTotPoints () const
 This function returns the total number of quadrature points used in the element. More...
 
LibUtilities::BasisType GetBasisType (const int dir) const
 This function returns the type of basis used in the dir direction. More...
 
int GetBasisNumModes (const int dir) const
 This function returns the number of expansion modes in the dir direction. More...
 
int EvalBasisNumModesMax (void) const
 This function returns the maximum number of expansion modes over all local directions. More...
 
LibUtilities::PointsType GetPointsType (const int dir) const
 This function returns the type of quadrature points used in the dir direction. More...
 
int GetNumPoints (const int dir) const
 This function returns the number of quadrature points in the dir direction. More...
 
const Array< OneD, const
NekDouble > & 
GetPoints (const int dir) const
 This function returns a pointer to the array containing the quadrature points in dir direction. More...
 
int GetNverts () const
 This function returns the number of vertices of the expansion domain. More...
 
int GetNedges () const
 This function returns the number of edges of the expansion domain. More...
 
int GetEdgeNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th edge. More...
 
int GetTotalEdgeIntNcoeffs () const
 
int GetEdgeNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th edge. More...
 
int DetCartesianDirOfEdge (const int edge)
 
const LibUtilities::BasisKey DetEdgeBasisKey (const int i) const
 
const LibUtilities::BasisKey DetFaceBasisKey (const int i, const int k) const
 
int GetFaceNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th face. More...
 
int GetFaceNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th face. More...
 
int GetFaceIntNcoeffs (const int i) const
 
int GetTotalFaceIntNcoeffs () const
 
int GetTraceNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th edge/face. More...
 
LibUtilities::PointsKey GetFacePointsKey (const int i, const int j) const
 
int NumBndryCoeffs (void) const
 
int NumDGBndryCoeffs (void) const
 
LibUtilities::BasisType GetEdgeBasisType (const int i) const
 This function returns the type of expansion basis on the i-th edge. More...
 
const LibUtilities::PointsKey GetNodalPointsKey () const
 This function returns the type of expansion Nodal point type if defined. More...
 
int GetNfaces () const
 This function returns the number of faces of the expansion domain. More...
 
int GetNtrace () const
 Returns the number of trace elements connected to this element. More...
 
LibUtilities::ShapeType DetShapeType () const
 This function returns the shape of the expansion domain. More...
 
boost::shared_ptr< StdExpansionGetStdExp (void) const
 
int GetShapeDimension () const
 
bool IsBoundaryInteriorExpansion ()
 
bool IsNodalNonTensorialExp ()
 
void BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Backward transformation from coefficient space to physical space. More...
 
void FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Forward transformation from physical space to coefficient space. More...
 
void FwdTrans_BndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble Integral (const Array< OneD, const NekDouble > &inarray)
 This function integrates the specified function over the domain. More...
 
void FillMode (const int mode, Array< OneD, NekDouble > &outarray)
 This function fills the array outarray with the mode-th mode of the expansion. More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 this function calculates the inner product of a given function f with the different modes of the expansion More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &base, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int coll_check)
 
void IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
int GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void SetElmtId (const int id)
 Set the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2=NullNekDouble1DArray, Array< OneD, NekDouble > &coords_3=NullNekDouble1DArray)
 this function returns the physical coordinates of the quadrature points of the expansion More...
 
void GetCoord (const Array< OneD, const NekDouble > &Lcoord, Array< OneD, NekDouble > &coord)
 given the coordinates of a point of the element in the local collapsed coordinate system, this function calculates the physical coordinates of the point More...
 
DNekMatSharedPtr GetStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr GetStdStaticCondMatrix (const StdMatrixKey &mkey)
 
IndexMapValuesSharedPtr GetIndexMap (const IndexMapKey &ikey)
 
const Array< OneD, const
NekDouble > & 
GetPhysNormals (void)
 
void SetPhysNormals (Array< OneD, const NekDouble > &normal)
 
virtual void SetUpPhysNormals (const int edge)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
DNekScalBlkMatSharedPtr GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
void DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
StdRegions::Orientation GetForient (int face)
 
StdRegions::Orientation GetEorient (int edge)
 
StdRegions::Orientation GetPorient (int point)
 
StdRegions::Orientation GetCartesianEorient (int edge)
 
void SetCoeffsToOrientation (Array< OneD, NekDouble > &coeffs, StdRegions::Orientation dir)
 
void SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
int CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
void ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int nmodes_offset, NekDouble *coeffs)
 
NekDouble StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
int GetCoordim ()
 
void GetBoundaryMap (Array< OneD, unsigned int > &outarray)
 
void GetInteriorMap (Array< OneD, unsigned int > &outarray)
 
int GetVertexMap (const int localVertexId, bool useCoeffPacking=false)
 
void GetEdgeInteriorMap (const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
 
void GetFaceInteriorMap (const int fid, const Orientation faceOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
 
void GetEdgeToElementMap (const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, int P=-1)
 
void GetFaceToElementMap (const int fid, const Orientation faceOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, int nummodesA=-1, int nummodesB=-1)
 
void GetEdgePhysVals (const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Extract the physical values along edge edge from inarray into outarray following the local edge orientation and point distribution defined by defined in EdgeExp. More...
 
void GetEdgePhysVals (const int edge, const boost::shared_ptr< StdExpansion > &EdgeExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GetTracePhysVals (const int edge, const boost::shared_ptr< StdExpansion > &EdgeExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GetVertexPhysVals (const int vertex, const Array< OneD, const NekDouble > &inarray, NekDouble &outarray)
 
void GetEdgeInterpVals (const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GetEdgeQFactors (const int edge, Array< OneD, NekDouble > &outarray)
 Extract the metric factors to compute the contravariant fluxes along edge edge and stores them into outarray following the local edge orientation (i.e. anticlockwise convention). More...
 
void GetFacePhysVals (const int face, const boost::shared_ptr< StdExpansion > &FaceExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient=eNoOrientation)
 
void GetEdgePhysMap (const int edge, Array< OneD, int > &outarray)
 
void GetFacePhysMap (const int face, Array< OneD, int > &outarray)
 
void MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
DNekMatSharedPtr CreateGeneralMatrix (const StdMatrixKey &mkey)
 this function generates the mass matrix $\mathbf{M}[i][j] = \int \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x}$ More...
 
void GeneralMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
DNekMatSharedPtr GenMatrix (const StdMatrixKey &mkey)
 
void PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void PhysDeriv_s (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_ds)
 
void PhysDeriv_n (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_dn)
 
void PhysDirectionalDeriv (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &direction, Array< OneD, NekDouble > &outarray)
 
void StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void AddRobinMassMatrix (const int edgeid, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat)
 
void AddRobinEdgeContribution (const int edgeid, const Array< OneD, const NekDouble > &primCoeffs, Array< OneD, NekDouble > &coeffs)
 
NekDouble PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
void LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
 Convert local cartesian coordinate xi into local collapsed coordinates eta. More...
 
const boost::shared_ptr
< SpatialDomains::GeomFactors > & 
GetMetricInfo (void) const
 
virtual int v_GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
virtual void v_SetPhysNormals (Array< OneD, const NekDouble > &normal)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
virtual StdRegions::Orientation v_GetForient (int face)
 
virtual StdRegions::Orientation v_GetEorient (int edge)
 
virtual StdRegions::Orientation v_GetCartesianEorient (int edge)
 
NekDouble Linf (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete $ L_\infty$ error $ |\epsilon|_\infty = \max |u - u_{exact}|$ where $ u_{exact}$ is given by the array sol. More...
 
NekDouble L2 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete $ L_2$ error, $ | \epsilon |_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 dx \right]^{1/2} d\xi_1 $ where $ u_{exact}$ is given by the array sol. More...
 
NekDouble H1 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete $ H^1$ error, $ | \epsilon |^1_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 + \nabla(u - u_{exact})\cdot\nabla(u - u_{exact})\cdot dx \right]^{1/2} d\xi_1 $ where $ u_{exact}$ is given by the array sol. More...
 
const NormalVectorGetEdgeNormal (const int edge) const
 
void ComputeEdgeNormal (const int edge)
 
void NegateEdgeNormal (const int edge)
 
bool EdgeNormalNegated (const int edge)
 
void ComputeFaceNormal (const int face)
 
void NegateFaceNormal (const int face)
 
bool FaceNormalNegated (const int face)
 
void ComputeVertexNormal (const int vertex)
 
const NormalVectorGetFaceNormal (const int face) const
 
const NormalVectorGetVertexNormal (const int vertex) const
 
const NormalVectorGetSurfaceNormal (const int id) const
 
const LibUtilities::PointsKeyVector GetPointsKeys () const
 
Array< OneD, unsigned int > GetEdgeInverseBoundaryMap (int eid)
 
Array< OneD, unsigned int > GetFaceInverseBoundaryMap (int fid, StdRegions::Orientation faceOrient=eNoOrientation)
 
DNekMatSharedPtr BuildInverseTransformationMatrix (const DNekScalMatSharedPtr &m_transformationmatrix)
 
void PhysInterpToSimplexEquiSpaced (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int npset=-1)
 This function performs an interpolation from the physical space points provided at input into an array of equispaced points which are not the collapsed coordinate. So for a tetrahedron you will only get a tetrahedral number of values. More...
 
void GetSimplexEquiSpacedConnectivity (Array< OneD, int > &conn, bool standard=true)
 This function provides the connectivity of local simplices (triangles or tets) to connect the equispaced data points provided by PhysInterpToSimplexEquiSpaced. More...
 
void EquiSpacedToCoeffs (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs a projection/interpolation from the equispaced points sometimes used in post-processing onto the coefficient space. More...
 
template<class T >
boost::shared_ptr< T > as ()
 
void IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
 
- Public Member Functions inherited from Nektar::LocalRegions::Expansion1D
 Expansion1D (SpatialDomains::Geometry1DSharedPtr pGeom)
 
virtual ~Expansion1D ()
 
void AddNormTraceInt (const int dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
Expansion2DSharedPtr GetLeftAdjacentElementExp () const
 
Expansion2DSharedPtr GetRightAdjacentElementExp () const
 
int GetLeftAdjacentElementEdge () const
 
int GetRightAdjacentElementEdge () const
 
void SetAdjacentElementExp (int edge, Expansion2DSharedPtr &e)
 
void AddHDGHelmholtzTraceTerms (const NekDouble tau, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
SpatialDomains::Geometry1DSharedPtr GetGeom1D () const
 
- Public Member Functions inherited from Nektar::LocalRegions::Expansion
 Expansion (SpatialDomains::GeometrySharedPtr pGeom)
 
 Expansion (const Expansion &pSrc)
 
virtual ~Expansion ()
 
DNekScalMatSharedPtr GetLocMatrix (const LocalRegions::MatrixKey &mkey)
 
DNekScalMatSharedPtr GetLocMatrix (const StdRegions::MatrixType mtype, const StdRegions::ConstFactorMap &factors=StdRegions::NullConstFactorMap, const StdRegions::VarCoeffMap &varcoeffs=StdRegions::NullVarCoeffMap)
 
SpatialDomains::GeometrySharedPtr GetGeom () const
 
void Reset ()
 
virtual const
SpatialDomains::GeomFactorsSharedPtr
v_GetMetricInfo () const
 
DNekMatSharedPtr BuildTransformationMatrix (const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType)
 
DNekMatSharedPtr BuildVertexMatrix (const DNekScalMatSharedPtr &r_bnd)
 
void AddEdgeNormBoundaryInt (const int edge, const boost::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void AddEdgeNormBoundaryInt (const int edge, const boost::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
void AddFaceNormBoundaryInt (const int face, const boost::shared_ptr< Expansion > &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
void DGDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, ExpansionSharedPtr > &EdgeExp, Array< OneD, Array< OneD, NekDouble > > &coeffs, Array< OneD, NekDouble > &outarray)
 

Protected Member Functions

virtual NekDouble v_Integral (const Array< OneD, const NekDouble > &inarray)
 Integrate the physical point list inarray over region and return the value. More...
 
virtual void v_PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 Evaluate the derivative $ d/d{\xi_1} $ at the physical quadrature points given by inarray and return in outarray. More...
 
virtual void v_PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Calculate the derivative of the physical points in a given direction. More...
 
virtual void v_PhysDeriv_s (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_ds)
 Evaluate the derivative along a line: $ d/ds=\frac{spacedim}{||tangent||}d/d{\xi} $. The derivative is calculated performing the product $ du/d{s}=\nabla u \cdot tangent $. More...
 
virtual void v_PhysDeriv_n (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_dn)
 Evaluate the derivative normal to a line: $ d/dn=\frac{spacedim}{||normal||}d/d{\xi} $. The derivative is calculated performing the product $ du/d{s}=\nabla u \cdot normal $. More...
 
virtual void v_FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Forward transform from physical quadrature space stored in inarray and evaluate the expansion coefficients and store in outarray. More...
 
virtual void v_FwdTrans_BndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Inner product of inarray over region with respect to the expansion basis (this)->_Base[0] and return in outarray. More...
 
virtual void v_IProductWRTBase (const Array< OneD, const NekDouble > &base, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int coll_check)
 Inner product of inarray over region with respect to expansion basis base and return in outarray. More...
 
virtual void v_IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
virtual NekDouble v_StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
virtual NekDouble v_PhysEvaluate (const Array< OneD, const NekDouble > &coord, const Array< OneD, const NekDouble > &physvals)
 
virtual void v_GetCoord (const Array< OneD, const NekDouble > &Lcoords, Array< OneD, NekDouble > &coords)
 
virtual void v_GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3)
 
virtual void v_GetVertexPhysVals (const int vertex, const Array< OneD, const NekDouble > &inarray, NekDouble &outarray)
 
virtual void v_GetTracePhysVals (const int edge, const StdRegions::StdExpansionSharedPtr &EdgeExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient)
 
virtual
StdRegions::StdExpansionSharedPtr 
v_GetStdExp (void) const
 
virtual int v_GetCoordim ()
 
virtual void v_SetCoeffsToOrientation (Array< OneD, NekDouble > &coeffs, StdRegions::Orientation dir)
 
virtual void v_SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual int v_GetNumPoints (const int dir) const
 
virtual int v_GetNcoeffs (void) const
 
virtual const
LibUtilities::BasisSharedPtr
v_GetBasis (int dir) const
 
virtual int v_NumBndryCoeffs () const
 
virtual int v_NumDGBndryCoeffs () const
 
virtual void v_ComputeVertexNormal (const int vertex)
 
virtual StdRegions::Orientation v_GetPorient (int point)
 
virtual SpatialDomains::GeomType v_MetricInfoType ()
 
virtual void v_ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int mode_offset, NekDouble *coeffs)
 Unpack data from input file assuming it comes from. More...
 
virtual const Array< OneD,
const NekDouble > & 
v_GetPhysNormals (void)
 
virtual void v_LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual DNekMatSharedPtr v_GenMatrix (const StdRegions::StdMatrixKey &mkey)
 
DNekScalMatSharedPtr CreateMatrix (const MatrixKey &mkey)
 
virtual DNekMatSharedPtr v_CreateStdMatrix (const StdRegions::StdMatrixKey &mkey)
 
DNekScalBlkMatSharedPtr CreateStaticCondMatrix (const MatrixKey &mkey)
 
virtual DNekScalMatSharedPtr v_GetLocMatrix (const MatrixKey &mkey)
 
virtual DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix (const MatrixKey &mkey)
 
void v_DropLocStaticCondMatrix (const MatrixKey &mkey)
 
- Protected Member Functions inherited from Nektar::StdRegions::StdSegExp
virtual void v_StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
virtual void v_StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Backward transform from coefficient space given in inarray and evaluate at the physical quadrature points outarray. More...
 
virtual void v_BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
 
virtual void v_MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_FillMode (const int mode, Array< OneD, NekDouble > &outarray)
 
virtual void v_GetBoundaryMap (Array< OneD, unsigned int > &outarray)
 
virtual void v_GetInteriorMap (Array< OneD, unsigned int > &outarray)
 
virtual int v_GetVertexMap (int localVertexId, bool useCoeffPacking=false)
 
virtual int v_GetNverts () const
 
virtual bool v_IsBoundaryInteriorExpansion ()
 
virtual int v_CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
virtual LibUtilities::ShapeType v_DetShapeType () const
 Return Shape of region, using ShapeType enum list. i.e. Segment. More...
 
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion
DNekMatSharedPtr CreateStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr CreateStdStaticCondMatrix (const StdMatrixKey &mkey)
 Create the static condensation of a matrix when using a boundary interior decomposition. More...
 
IndexMapValuesSharedPtr CreateIndexMap (const IndexMapKey &ikey)
 Create an IndexMap which contains mapping information linking any specific element shape with either its boundaries, edges, faces, verteces, etc. More...
 
void BwdTrans_MatOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GeneralMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree_Kernel (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
 
void LaplacianMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp_MatFree (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void HelmholtzMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
- Protected Member Functions inherited from Nektar::LocalRegions::Expansion1D
virtual void v_AddRobinMassMatrix (const int vert, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat)
 
virtual void v_AddRobinEdgeContribution (const int vert, const Array< OneD, const NekDouble > &primCoeffs, Array< OneD, NekDouble > &coeffs)
 
- Protected Member Functions inherited from Nektar::LocalRegions::Expansion
void ComputeLaplacianMetric ()
 
void ComputeQuadratureMetric ()
 
virtual void v_MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_ComputeLaplacianMetric ()
 
virtual DNekMatSharedPtr v_BuildTransformationMatrix (const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType)
 
virtual DNekMatSharedPtr v_BuildVertexMatrix (const DNekScalMatSharedPtr &r_bnd)
 
virtual void v_AddEdgeNormBoundaryInt (const int edge, const boost::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddEdgeNormBoundaryInt (const int edge, const boost::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddFaceNormBoundaryInt (const int face, const boost::shared_ptr< Expansion > &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
virtual void v_DGDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, ExpansionSharedPtr > &EdgeExp, Array< OneD, Array< OneD, NekDouble > > &coeffs, Array< OneD, NekDouble > &outarray)
 

Private Member Functions

 SegExp ()
 
void ReverseCoeffsAndSign (const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Reverse the coefficients in a boundary interior expansion this routine is of use when we need the segment coefficients corresponding to a expansion in the reverse coordinate direction. More...
 
void MultiplyByElmtInvMass (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 

Private Attributes

LibUtilities::NekManager
< MatrixKey, DNekScalMat,
MatrixKey::opLess
m_matrixManager
 
LibUtilities::NekManager
< MatrixKey, DNekScalBlkMat,
MatrixKey::opLess
m_staticCondMatrixManager
 

Additional Inherited Members

- Protected Attributes inherited from Nektar::StdRegions::StdExpansion1D
std::map< int, NormalVectorm_vertexNormals
 
- Protected Attributes inherited from Nektar::StdRegions::StdExpansion
Array< OneD,
LibUtilities::BasisSharedPtr
m_base
 
int m_elmt_id
 
int m_ncoeffs
 
LibUtilities::NekManager
< StdMatrixKey, DNekMat,
StdMatrixKey::opLess
m_stdMatrixManager
 
LibUtilities::NekManager
< StdMatrixKey, DNekBlkMat,
StdMatrixKey::opLess
m_stdStaticCondMatrixManager
 
LibUtilities::NekManager
< IndexMapKey, IndexMapValues,
IndexMapKey::opLess
m_IndexMapManager
 
- Protected Attributes inherited from Nektar::LocalRegions::Expansion
SpatialDomains::GeometrySharedPtr m_geom
 
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
 
MetricMap m_metrics
 

Detailed Description

Defines a Segment local expansion.

Definition at line 52 of file SegExp.h.

Constructor & Destructor Documentation

Nektar::LocalRegions::SegExp::SegExp ( const LibUtilities::BasisKey Ba,
const SpatialDomains::Geometry1DSharedPtr geom 
)

Constructor using BasisKey class for quadrature points and order definition.

Parameters
BaBasis key of segment expansion.
geomDescription of geometry.

Definition at line 58 of file SegExp.cpp.

59  :
60  StdExpansion(Ba.GetNumModes(), 1, Ba),
61  StdExpansion1D(Ba.GetNumModes(), Ba),
62  StdRegions::StdSegExp(Ba),
63  Expansion(geom),
64  Expansion1D(geom),
66  boost::bind(&SegExp::CreateMatrix, this, _1),
67  std::string("SegExpMatrix")),
69  boost::bind(&SegExp::CreateStaticCondMatrix, this, _1),
70  std::string("SegExpStaticCondMatrix"))
71  {
72  }
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: SegExp.h:248
Expansion(SpatialDomains::GeometrySharedPtr pGeom)
Definition: Expansion.cpp:48
Expansion1D(SpatialDomains::Geometry1DSharedPtr pGeom)
Definition: Expansion1D.h:65
DNekScalBlkMatSharedPtr CreateStaticCondMatrix(const MatrixKey &mkey)
Definition: SegExp.cpp:1432
DNekScalMatSharedPtr CreateMatrix(const MatrixKey &mkey)
Definition: SegExp.cpp:1198
StdExpansion()
Default Constructor.
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: SegExp.h:246
Nektar::LocalRegions::SegExp::SegExp ( const SegExp S)

Copy Constructor.

Parameters
SExisting segment to duplicate.

Definition at line 79 of file SegExp.cpp.

79  :
80  StdExpansion(S),
81  StdExpansion1D(S),
82  StdRegions::StdSegExp(S),
83  Expansion(S),
84  Expansion1D(S),
85  m_matrixManager(S.m_matrixManager),
86  m_staticCondMatrixManager(S.m_staticCondMatrixManager)
87  {
88  }
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: SegExp.h:248
Expansion(SpatialDomains::GeometrySharedPtr pGeom)
Definition: Expansion.cpp:48
Expansion1D(SpatialDomains::Geometry1DSharedPtr pGeom)
Definition: Expansion1D.h:65
StdExpansion()
Default Constructor.
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: SegExp.h:246
Nektar::LocalRegions::SegExp::~SegExp ( )

Definition at line 94 of file SegExp.cpp.

95  {
96  }
Nektar::LocalRegions::SegExp::SegExp ( )
private

Member Function Documentation

DNekScalMatSharedPtr Nektar::LocalRegions::SegExp::CreateMatrix ( const MatrixKey mkey)
protected

Definition at line 1198 of file SegExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), ASSERTL1, ASSERTL2, Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::eFactorGaussVertex, Nektar::StdRegions::eFactorLambda, ErrorUtil::efatal, Nektar::StdRegions::eHelmholtz, Nektar::StdRegions::eHybridDGHelmBndLam, Nektar::StdRegions::eHybridDGHelmholtz, Nektar::StdRegions::eHybridDGLamToQ0, Nektar::StdRegions::eHybridDGLamToU, Nektar::StdRegions::eInterpGauss, Nektar::StdRegions::eInvHybridDGHelmholtz, Nektar::StdRegions::eInvMass, Nektar::StdRegions::eLaplacian, Nektar::StdRegions::eMass, Nektar::SpatialDomains::eNoGeomType, Nektar::StdRegions::eWeakDeriv0, Nektar::StdRegions::eWeakDeriv1, Nektar::StdRegions::eWeakDeriv2, Nektar::StdRegions::StdExpansion::GenMatrix(), Nektar::StdRegions::StdMatrixKey::GetConstFactor(), Nektar::StdRegions::StdMatrixKey::GetConstFactors(), Nektar::StdRegions::StdMatrixKey::GetMatrixType(), Nektar::StdRegions::StdMatrixKey::GetNVarCoeff(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdMatrixKey::GetShapeType(), Nektar::StdRegions::StdExpansion::GetStdMatrix(), Nektar::StdRegions::StdMatrixKey::GetVarCoeffs(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_geom, m_matrixManager, Nektar::LocalRegions::Expansion::m_metricinfo, and NEKERROR.

1199  {
1200  DNekScalMatSharedPtr returnval;
1201  NekDouble fac;
1203 
1204  ASSERTL2(m_metricinfo->GetGtype() !=
1206  "Geometric information is not set up");
1207 
1208  switch (mkey.GetMatrixType())
1209  {
1210  case StdRegions::eMass:
1211  {
1212  if ((m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1213  || (mkey.GetNVarCoeff()))
1214  {
1215  fac = 1.0;
1216  goto UseLocRegionsMatrix;
1217  }
1218  else
1219  {
1220  fac = (m_metricinfo->GetJac(ptsKeys))[0];
1221  goto UseStdRegionsMatrix;
1222  }
1223  }
1224  break;
1225  case StdRegions::eInvMass:
1226  {
1227  if ((m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1228  || (mkey.GetNVarCoeff()))
1229  {
1230  NekDouble one = 1.0;
1231  StdRegions::StdMatrixKey masskey(
1232  StdRegions::eMass,DetShapeType(), *this);
1233  DNekMatSharedPtr mat = GenMatrix(masskey);
1234  mat->Invert();
1235 
1236  returnval = MemoryManager<DNekScalMat>::
1237  AllocateSharedPtr(one,mat);
1238  }
1239  else
1240  {
1241  fac = 1.0/(m_metricinfo->GetJac(ptsKeys))[0];
1242  goto UseStdRegionsMatrix;
1243  }
1244  }
1245  break;
1249  {
1250  if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed ||
1251  mkey.GetNVarCoeff())
1252  {
1253  fac = 1.0;
1254  goto UseLocRegionsMatrix;
1255  }
1256  else
1257  {
1258  int dir = 0;
1259  switch(mkey.GetMatrixType())
1260  {
1262  dir = 0;
1263  break;
1265  ASSERTL1(m_geom->GetCoordim() >= 2,
1266  "Cannot call eWeakDeriv2 in a "
1267  "coordinate system which is not at "
1268  "least two-dimensional");
1269  dir = 1;
1270  break;
1272  ASSERTL1(m_geom->GetCoordim() == 3,
1273  "Cannot call eWeakDeriv2 in a "
1274  "coordinate system which is not "
1275  "three-dimensional");
1276  dir = 2;
1277  break;
1278  default:
1279  break;
1280  }
1281 
1282  MatrixKey deriv0key(StdRegions::eWeakDeriv0,
1283  mkey.GetShapeType(), *this);
1284 
1285  DNekMatSharedPtr WeakDerivStd = GetStdMatrix(deriv0key);
1286  fac = m_metricinfo->GetDerivFactors(ptsKeys)[dir][0]*
1287  m_metricinfo->GetJac(ptsKeys)[0];
1288 
1289  returnval = MemoryManager<DNekScalMat>::
1290  AllocateSharedPtr(fac,WeakDerivStd);
1291  }
1292  }
1293  break;
1295  {
1296  if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1297  {
1298  fac = 1.0;
1299  goto UseLocRegionsMatrix;
1300  }
1301  else
1302  {
1303  int coordim = m_geom->GetCoordim();
1304  fac = 0.0;
1305  for (int i = 0; i < coordim; ++i)
1306  {
1307  fac += m_metricinfo->GetDerivFactors(ptsKeys)[i][0]*
1308  m_metricinfo->GetDerivFactors(ptsKeys)[i][0];
1309  }
1310  fac *= m_metricinfo->GetJac(ptsKeys)[0];
1311  goto UseStdRegionsMatrix;
1312  }
1313  }
1314  break;
1316  {
1317  NekDouble factor =
1318  mkey.GetConstFactor(StdRegions::eFactorLambda);
1319  MatrixKey masskey(StdRegions::eMass,
1320  mkey.GetShapeType(), *this);
1321  DNekScalMat &MassMat = *(this->m_matrixManager[masskey]);
1322  MatrixKey lapkey(StdRegions::eLaplacian, mkey.GetShapeType(),
1323  *this, mkey.GetConstFactors(),
1324  mkey.GetVarCoeffs());
1325  DNekScalMat &LapMat = *(this->m_matrixManager[lapkey]);
1326 
1327  int rows = LapMat.GetRows();
1328  int cols = LapMat.GetColumns();
1329 
1330  DNekMatSharedPtr helm =
1332 
1333  NekDouble one = 1.0;
1334  (*helm) = LapMat + factor*MassMat;
1335 
1336  returnval =
1338  }
1339  break;
1344  {
1345  NekDouble one = 1.0;
1346 
1347  DNekMatSharedPtr mat = GenMatrix(mkey);
1348  returnval =
1350  }
1351  break;
1353  {
1354  NekDouble one = 1.0;
1355 
1356 // StdRegions::StdMatrixKey hkey(StdRegions::eHybridDGHelmholtz,
1357 // DetShapeType(),*this,
1358 // mkey.GetConstant(0),
1359 // mkey.GetConstant(1));
1360  MatrixKey hkey(StdRegions::eHybridDGHelmholtz,
1361  DetShapeType(),
1362  *this, mkey.GetConstFactors(),
1363  mkey.GetVarCoeffs());
1364  DNekMatSharedPtr mat = GenMatrix(hkey);
1365 
1366  mat->Invert();
1367  returnval =
1369  }
1370  break;
1372  {
1373  DNekMatSharedPtr m_Ix;
1374  Array<OneD, NekDouble> coords(1, 0.0);
1375  StdRegions::ConstFactorMap factors = mkey.GetConstFactors();
1376  int vertex = (int)factors[StdRegions::eFactorGaussVertex];
1377 
1378  coords[0] = (vertex == 0) ? -1.0 : 1.0;
1379 
1380  m_Ix = m_base[0]->GetI(coords);
1381  returnval =
1383  }
1384  break;
1385 
1386  UseLocRegionsMatrix:
1387  {
1388  DNekMatSharedPtr mat = GenMatrix(mkey);
1389  returnval =
1391  }
1392  break;
1393  UseStdRegionsMatrix:
1394  {
1395  DNekMatSharedPtr mat = GetStdMatrix(mkey);
1396  returnval =
1398  }
1399  break;
1400  default:
1401  NEKERROR(ErrorUtil::efatal, "Matrix creation not defined");
1402  break;
1403  }
1404 
1405  return returnval;
1406  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
Definition: StdExpansion.h:470
DNekMatSharedPtr GenMatrix(const StdMatrixKey &mkey)
#define NEKERROR(type, msg)
Assert Level 0 – Fundamental assert which is used whether in FULLDEBUG, DEBUG or OPT compilation mod...
Definition: ErrorUtil.hpp:158
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:220
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
std::map< ConstFactorType, NekDouble > ConstFactorMap
Definition: StdRegions.hpp:251
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:125
boost::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:70
DNekMatSharedPtr GetStdMatrix(const StdMatrixKey &mkey)
Definition: StdExpansion.h:700
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
double NekDouble
#define ASSERTL2(condition, msg)
Assert Level 2 – Debugging which is used FULLDEBUG compilation mode. This level assert is designed t...
Definition: ErrorUtil.hpp:213
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
Array< OneD, LibUtilities::BasisSharedPtr > m_base
Geometry is curved or has non-constant factors.
NekMatrix< NekMatrix< NekDouble, StandardMatrixTag >, ScaledMatrixTag > DNekScalMat
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: SegExp.h:246
DNekScalBlkMatSharedPtr Nektar::LocalRegions::SegExp::CreateStaticCondMatrix ( const MatrixKey mkey)
protected
Todo:
Really need a constructor which takes Arrays

Definition at line 1432 of file SegExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), ASSERTL2, Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::eHelmholtz, Nektar::StdRegions::eLaplacian, Nektar::SpatialDomains::eNoGeomType, Nektar::StdRegions::StdExpansion::GetBoundaryMap(), Nektar::StdRegions::StdExpansion::GetInteriorMap(), Nektar::LocalRegions::Expansion::GetLocMatrix(), Nektar::StdRegions::StdMatrixKey::GetMatrixType(), Nektar::StdRegions::StdExpansion::GetStdStaticCondMatrix(), Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::StdRegions::StdExpansion::m_ncoeffs, and Nektar::StdRegions::StdExpansion::NumBndryCoeffs().

1434  {
1435  DNekScalBlkMatSharedPtr returnval;
1436 
1437  ASSERTL2(m_metricinfo->GetGtype() !=
1439  "Geometric information is not set up");
1440 
1441  // set up block matrix system
1442  int nbdry = NumBndryCoeffs();
1443  int nint = m_ncoeffs - nbdry;
1444  Array<OneD, unsigned int> exp_size(2);
1445  exp_size[0] = nbdry;
1446  exp_size[1] = nint;
1447 
1448  /// \todo Really need a constructor which takes Arrays
1450  AllocateSharedPtr(exp_size,exp_size);
1451  NekDouble factor = 1.0;
1452 
1453  switch (mkey.GetMatrixType())
1454  {
1456  case StdRegions::eHelmholtz: // special case since Helmholtz
1457  // not defined in StdRegions
1458 
1459  // use Deformed case for both regular and deformed geometries
1460  factor = 1.0;
1461  goto UseLocRegionsMatrix;
1462  break;
1463  default:
1464  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1465  {
1466  factor = 1.0;
1467  goto UseLocRegionsMatrix;
1468  }
1469  else
1470  {
1471  DNekScalMatSharedPtr mat = GetLocMatrix(mkey);
1472  factor = mat->Scale();
1473  goto UseStdRegionsMatrix;
1474  }
1475  break;
1476  UseStdRegionsMatrix:
1477  {
1478  NekDouble invfactor = 1.0/factor;
1479  NekDouble one = 1.0;
1481  DNekScalMatSharedPtr Atmp;
1482  DNekMatSharedPtr Asubmat;
1483 
1484  returnval->SetBlock(0,0,Atmp =
1485  MemoryManager<DNekScalMat>::AllocateSharedPtr(
1486  factor,Asubmat = mat->GetBlock(0,0)));
1487  returnval->SetBlock(0,1,Atmp =
1488  MemoryManager<DNekScalMat>::AllocateSharedPtr(
1489  one,Asubmat = mat->GetBlock(0,1)));
1490  returnval->SetBlock(1,0,Atmp =
1491  MemoryManager<DNekScalMat>::AllocateSharedPtr(
1492  factor,Asubmat = mat->GetBlock(1,0)));
1493  returnval->SetBlock(1,1,Atmp =
1494  MemoryManager<DNekScalMat>::AllocateSharedPtr(
1495  invfactor,Asubmat = mat->GetBlock(1,1)));
1496  }
1497  break;
1498  UseLocRegionsMatrix:
1499  {
1500  int i,j;
1501  NekDouble invfactor = 1.0/factor;
1502  NekDouble one = 1.0;
1503  DNekScalMat &mat = *GetLocMatrix(mkey);
1504  DNekMatSharedPtr A =
1506  DNekMatSharedPtr B =
1508  DNekMatSharedPtr C =
1510  DNekMatSharedPtr D =
1512 
1513  Array<OneD,unsigned int> bmap(nbdry);
1514  Array<OneD,unsigned int> imap(nint);
1515  GetBoundaryMap(bmap);
1516  GetInteriorMap(imap);
1517 
1518  for (i = 0; i < nbdry; ++i)
1519  {
1520  for (j = 0; j < nbdry; ++j)
1521  {
1522  (*A)(i,j) = mat(bmap[i],bmap[j]);
1523  }
1524 
1525  for (j = 0; j < nint; ++j)
1526  {
1527  (*B)(i,j) = mat(bmap[i],imap[j]);
1528  }
1529  }
1530 
1531  for (i = 0; i < nint; ++i)
1532  {
1533  for (j = 0; j < nbdry; ++j)
1534  {
1535  (*C)(i,j) = mat(imap[i],bmap[j]);
1536  }
1537 
1538  for (j = 0; j < nint; ++j)
1539  {
1540  (*D)(i,j) = mat(imap[i],imap[j]);
1541  }
1542  }
1543 
1544  // Calculate static condensed system
1545  if (nint)
1546  {
1547  D->Invert();
1548  (*B) = (*B)*(*D);
1549  (*A) = (*A) - (*B)*(*C);
1550  }
1551 
1552  DNekScalMatSharedPtr Atmp;
1553 
1554  returnval->SetBlock(0,0,Atmp = MemoryManager<DNekScalMat>::
1555  AllocateSharedPtr(factor,A));
1556  returnval->SetBlock(0,1,Atmp = MemoryManager<DNekScalMat>::
1557  AllocateSharedPtr(one,B));
1558  returnval->SetBlock(1,0,Atmp = MemoryManager<DNekScalMat>::
1559  AllocateSharedPtr(factor,C));
1560  returnval->SetBlock(1,1,Atmp = MemoryManager<DNekScalMat>::
1561  AllocateSharedPtr(invfactor,D));
1562  }
1563  }
1564 
1565 
1566  return returnval;
1567  }
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
boost::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:70
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
DNekBlkMatSharedPtr GetStdStaticCondMatrix(const StdMatrixKey &mkey)
Definition: StdExpansion.h:705
boost::shared_ptr< DNekScalBlkMat > DNekScalBlkMatSharedPtr
Definition: NekTypeDefs.hpp:74
void GetInteriorMap(Array< OneD, unsigned int > &outarray)
Definition: StdExpansion.h:821
double NekDouble
boost::shared_ptr< DNekBlkMat > DNekBlkMatSharedPtr
Definition: NekTypeDefs.hpp:72
DNekScalMatSharedPtr GetLocMatrix(const LocalRegions::MatrixKey &mkey)
Definition: Expansion.cpp:85
#define ASSERTL2(condition, msg)
Assert Level 2 – Debugging which is used FULLDEBUG compilation mode. This level assert is designed t...
Definition: ErrorUtil.hpp:213
Geometry is curved or has non-constant factors.
NekMatrix< NekMatrix< NekDouble, StandardMatrixTag >, ScaledMatrixTag > DNekScalMat
void GetBoundaryMap(Array< OneD, unsigned int > &outarray)
Definition: StdExpansion.h:816
void Nektar::LocalRegions::SegExp::MultiplyByElmtInvMass ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
private
Todo:
Same method exists in ExpList and everyone references ExpList::MultiplyByElmtInvMass. Remove this one?

Definition at line 1621 of file SegExp.cpp.

References Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::eCopy, Nektar::StdRegions::eInvMass, Nektar::eWrapper, m_matrixManager, and Nektar::StdRegions::StdExpansion::m_ncoeffs.

1624  {
1625  // get Mass matrix inverse
1626  MatrixKey masskey(StdRegions::eInvMass,
1627  DetShapeType(),*this);
1628  DNekScalMatSharedPtr matsys = m_matrixManager[masskey];
1629 
1630  NekVector<NekDouble> in(m_ncoeffs,inarray,eCopy);
1631  NekVector<NekDouble> out(m_ncoeffs,outarray,eWrapper);
1632 
1633  out = (*matsys)*in;
1634  }
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
Definition: StdExpansion.h:470
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: SegExp.h:246
void Nektar::LocalRegions::SegExp::ReverseCoeffsAndSign ( const Array< OneD, NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
private

Reverse the coefficients in a boundary interior expansion this routine is of use when we need the segment coefficients corresponding to a expansion in the reverse coordinate direction.

Definition at line 1579 of file SegExp.cpp.

References ASSERTL0, ASSERTL1, Nektar::LibUtilities::eGauss_Lagrange, Nektar::LibUtilities::eGLL_Lagrange, Nektar::LibUtilities::eModified_A, Nektar::StdRegions::StdExpansion::GetBasisType(), and Nektar::StdRegions::StdExpansion::m_ncoeffs.

Referenced by v_SetCoeffsToOrientation().

1582  {
1583 
1584  int m;
1585  NekDouble sgn = 1;
1586 
1587  ASSERTL1(&inarray[0] != &outarray[0],
1588  "inarray and outarray can not be the same");
1589  switch(GetBasisType(0))
1590  {
1592  //Swap vertices
1593  outarray[0] = inarray[1];
1594  outarray[1] = inarray[0];
1595  // negate odd modes
1596  for(m = 2; m < m_ncoeffs; ++m)
1597  {
1598  outarray[m] = sgn*inarray[m];
1599  sgn = -sgn;
1600  }
1601  break;
1604  for(m = 0; m < m_ncoeffs; ++m)
1605  {
1606  outarray[m_ncoeffs-1-m] = inarray[m];
1607  }
1608  break;
1609  default:
1610  ASSERTL0(false,"This basis is not allowed in this method");
1611  break;
1612  }
1613  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
Principle Modified Functions .
Definition: BasisType.h:49
Lagrange Polynomials using the Gauss points .
Definition: BasisType.h:54
double NekDouble
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:165
Lagrange for SEM basis .
Definition: BasisType.h:53
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
void Nektar::LocalRegions::SegExp::v_ComputeVertexNormal ( const int  vertex)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 885 of file SegExp.cpp.

References ASSERTL0, Nektar::SpatialDomains::eMovingRegular, Nektar::SpatialDomains::eRegular, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetCoordim(), Nektar::LocalRegions::Expansion::GetGeom(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion1D::m_vertexNormals, Vmath::Smul(), and Nektar::NekMeshUtils::vert.

886  {
887  int i;
888  const SpatialDomains::GeomFactorsSharedPtr &geomFactors =
889  GetGeom()->GetMetricInfo();
890  SpatialDomains::GeomType type = geomFactors->GetGtype();
891  const Array<TwoD, const NekDouble> &gmat =
892  geomFactors->GetDerivFactors(GetPointsKeys());
893  int nqe = 1;
894  int vCoordDim = GetCoordim();
895 
896  m_vertexNormals[vertex] =
897  Array<OneD, Array<OneD, NekDouble> >(vCoordDim);
898  Array<OneD, Array<OneD, NekDouble> > &normal =
899  m_vertexNormals[vertex];
900  for (i = 0; i < vCoordDim; ++i)
901  {
902  normal[i] = Array<OneD, NekDouble>(nqe);
903  }
904 
905  // Regular geometry case
906  if ((type == SpatialDomains::eRegular) ||
908  {
909  NekDouble vert;
910  // Set up normals
911  switch (vertex)
912  {
913  case 0:
914  for(i = 0; i < vCoordDim; ++i)
915  {
916  Vmath::Fill(nqe, -gmat[i][0], normal[i], 1);
917  }
918  break;
919  case 1:
920  for(i = 0; i < vCoordDim; ++i)
921  {
922  Vmath::Fill(nqe, gmat[i][0], normal[i], 1);
923  }
924  break;
925  default:
926  ASSERTL0(false,
927  "point is out of range (point < 2)");
928  }
929 
930  // normalise
931  vert = 0.0;
932  for (i =0 ; i < vCoordDim; ++i)
933  {
934  vert += normal[i][0]*normal[i][0];
935  }
936  vert = 1.0/sqrt(vert);
937  for (i = 0; i < vCoordDim; ++i)
938  {
939  Vmath::Smul(nqe, vert, normal[i], 1, normal[i], 1);
940  }
941  }
942  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
std::map< int, NormalVector > m_vertexNormals
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:46
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
double NekDouble
SpatialDomains::GeometrySharedPtr GetGeom() const
Definition: Expansion.cpp:150
boost::shared_ptr< GeomFactors > GeomFactorsSharedPtr
Pointer to a GeomFactors object.
Definition: GeomFactors.h:62
Geometry is straight-sided with constant geometric factors.
GeomType
Indicates the type of element geometry.
DNekMatSharedPtr Nektar::LocalRegions::SegExp::v_CreateStdMatrix ( const StdRegions::StdMatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 1187 of file SegExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and Nektar::StdRegions::StdExpansion::m_base.

1189  {
1190  LibUtilities::BasisKey bkey = m_base[0]->GetBasisKey();
1193 
1194  return tmp->GetStdMatrix(mkey);
1195  }
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
boost::shared_ptr< StdSegExp > StdSegExpSharedPtr
Definition: StdSegExp.h:47
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Nektar::LocalRegions::SegExp::v_DropLocStaticCondMatrix ( const MatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1176 of file SegExp.cpp.

References m_staticCondMatrixManager.

1177  {
1178  m_staticCondMatrixManager.DeleteObject(mkey);
1179  }
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: SegExp.h:248
void Nektar::LocalRegions::SegExp::v_ExtractDataToCoeffs ( const NekDouble data,
const std::vector< unsigned int > &  nummodes,
const int  mode_offset,
NekDouble coeffs 
)
protectedvirtual

Unpack data from input file assuming it comes from.

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 841 of file SegExp.cpp.

References ASSERTL0, Nektar::LibUtilities::eGauss_Lagrange, Nektar::LibUtilities::eGaussGaussLegendre, Nektar::LibUtilities::eGaussLobattoLegendre, Nektar::LibUtilities::eGLL_Lagrange, Nektar::LibUtilities::eModified_A, Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::LibUtilities::Interp1D(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, Vmath::Vcopy(), and Vmath::Zero().

846  {
847  switch(m_base[0]->GetBasisType())
848  {
850  {
851  int fillorder = min((int) nummodes[mode_offset],m_ncoeffs);
852 
853  Vmath::Zero(m_ncoeffs,coeffs,1);
854  Vmath::Vcopy(fillorder,&data[0],1,&coeffs[0],1);
855  }
856  break;
858  {
859  // Assume that input is also Gll_Lagrange
860  // but no way to check;
861  LibUtilities::PointsKey p0(
862  nummodes[mode_offset],
865  p0,data, m_base[0]->GetPointsKey(), coeffs);
866  }
867  break;
869  {
870  // Assume that input is also Gauss_Lagrange
871  // but no way to check;
872  LibUtilities::PointsKey p0(
873  nummodes[mode_offset],
876  p0,data, m_base[0]->GetPointsKey(), coeffs);
877  }
878  break;
879  default:
880  ASSERTL0(false,
881  "basis is either not set up or not hierarchicial");
882  }
883  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
Principle Modified Functions .
Definition: BasisType.h:49
Lagrange Polynomials using the Gauss points .
Definition: BasisType.h:54
1D Gauss-Gauss-Legendre quadrature points
Definition: PointsType.h:47
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:165
void Interp1D(const BasisKey &fbasis0, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, Array< OneD, NekDouble > &to)
this function interpolates a 1D function evaluated at the quadrature points of the basis fbasis0 to ...
Definition: Interp.cpp:54
Lagrange for SEM basis .
Definition: BasisType.h:53
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:359
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1047
1D Gauss-Lobatto-Legendre quadrature points
Definition: PointsType.h:50
void Nektar::LocalRegions::SegExp::v_FwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Forward transform from physical quadrature space stored in inarray and evaluate the expansion coefficients and store in outarray.

Perform a forward transform using a Galerkin projection by taking the inner product of the physical points and multiplying by the inverse of the mass matrix using the Solve method of the standard matrix container holding the local mass matrix, i.e. $ {\bf \hat{u}} = {\bf M}^{-1} {\bf I} $ where $ {\bf I}[p] = \int^1_{-1} \phi_p(\xi_1) u(\xi_1) d\xi_1 $

Inputs:

  • inarray: array of physical quadrature points to be transformed

Outputs:

  • outarray: updated array of expansion coefficients.

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 376 of file SegExp.cpp.

References Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::eCopy, Nektar::StdRegions::eInvMass, Nektar::eWrapper, Nektar::StdRegions::StdExpansion::m_base, m_matrixManager, Nektar::StdRegions::StdExpansion::m_ncoeffs, v_IProductWRTBase(), and Vmath::Vcopy().

Referenced by v_FwdTrans_BndConstrained().

379  {
380  if (m_base[0]->Collocation())
381  {
382  Vmath::Vcopy(m_ncoeffs, inarray, 1, outarray, 1);
383  }
384  else
385  {
386  v_IProductWRTBase(inarray,outarray);
387 
388  // get Mass matrix inverse
389  MatrixKey masskey(StdRegions::eInvMass, DetShapeType(), *this);
390  DNekScalMatSharedPtr matsys = m_matrixManager[masskey];
391 
392  // copy inarray in case inarray == outarray
393  NekVector<NekDouble> in(m_ncoeffs,outarray,eCopy);
394  NekVector<NekDouble> out(m_ncoeffs,outarray,eWrapper);
395 
396  out = (*matsys)*in;
397  }
398  }
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
Definition: StdExpansion.h:470
virtual void v_IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Inner product of inarray over region with respect to the expansion basis (this)->_Base[0] and return ...
Definition: SegExp.cpp:503
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1047
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: SegExp.h:246
void Nektar::LocalRegions::SegExp::v_FwdTrans_BndConstrained ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 400 of file SegExp.cpp.

References ASSERTL0, ASSERTL1, Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::LibUtilities::eGauss_Lagrange, Nektar::LibUtilities::eGaussLobattoLegendre, Nektar::LibUtilities::eGLL_Lagrange, Nektar::StdRegions::eMass, Nektar::LibUtilities::eModified_A, Nektar::LibUtilities::eModified_B, Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::StdRegions::StdExpansion::GetPointsType(), Nektar::StdRegions::StdExpansion::GetVertexMap(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, m_staticCondMatrixManager, Nektar::StdRegions::StdExpansion::MassMatrixOp(), v_FwdTrans(), v_IProductWRTBase(), Vmath::Vcopy(), and Vmath::Vsub().

403  {
404  if(m_base[0]->Collocation())
405  {
406  Vmath::Vcopy(m_ncoeffs, inarray, 1, outarray, 1);
407  }
408  else
409  {
410  int nInteriorDofs = m_ncoeffs-2;
411  int offset;
412 
413  switch (m_base[0]->GetBasisType())
414  {
416  {
417  offset = 1;
418  }
419  break;
421  {
422  nInteriorDofs = m_ncoeffs;
423  offset = 0;
424  }
425  break;
428  {
429  ASSERTL1(m_base[0]->GetPointsType() == LibUtilities::eGaussLobattoLegendre,"Cannot use FwdTrans_BndConstrained method with non GLL points");
430  offset = 2;
431  }
432  break;
433  default:
434  ASSERTL0(false,"This type of FwdTrans is not defined"
435  "for this expansion type");
436  }
437 
438  fill(outarray.get(), outarray.get()+m_ncoeffs, 0.0 );
439 
441  {
442 
443  outarray[GetVertexMap(0)] = inarray[0];
444  outarray[GetVertexMap(1)] =
445  inarray[m_base[0]->GetNumPoints()-1];
446 
447  if (m_ncoeffs>2)
448  {
449  // ideally, we would like to have tmp0 to be replaced
450  // by outarray (currently MassMatrixOp does not allow
451  // aliasing)
452  Array<OneD, NekDouble> tmp0(m_ncoeffs);
453  Array<OneD, NekDouble> tmp1(m_ncoeffs);
454 
455  StdRegions::StdMatrixKey stdmasskey(
457  MassMatrixOp(outarray,tmp0,stdmasskey);
458  v_IProductWRTBase(inarray,tmp1);
459 
460  Vmath::Vsub(m_ncoeffs, tmp1, 1, tmp0, 1, tmp1, 1);
461 
462  // get Mass matrix inverse (only of interior DOF)
463  MatrixKey masskey(
465  DNekScalMatSharedPtr matsys =
466  (m_staticCondMatrixManager[masskey])->GetBlock(1,1);
467 
468  Blas::Dgemv('N',nInteriorDofs,nInteriorDofs,
469  matsys->Scale(),
470  &((matsys->GetOwnedMatrix())->GetPtr())[0],
471  nInteriorDofs,tmp1.get()+offset,1,0.0,
472  outarray.get()+offset,1);
473  }
474  }
475  else
476  {
477  SegExp::v_FwdTrans(inarray, outarray);
478 
479  }
480  }
481  }
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
Definition: StdExpansion.h:470
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
void MassMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
Definition: StdExpansion.h:971
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: SegExp.h:248
virtual void v_FwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Forward transform from physical quadrature space stored in inarray and evaluate the expansion coeffic...
Definition: SegExp.cpp:376
Principle Modified Functions .
Definition: BasisType.h:49
Lagrange Polynomials using the Gauss points .
Definition: BasisType.h:54
virtual void v_IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Inner product of inarray over region with respect to the expansion basis (this)->_Base[0] and return ...
Definition: SegExp.cpp:503
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
int GetVertexMap(const int localVertexId, bool useCoeffPacking=false)
Definition: StdExpansion.h:826
Principle Modified Functions .
Definition: BasisType.h:50
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:165
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.cpp:329
Lagrange for SEM basis .
Definition: BasisType.h:53
LibUtilities::PointsType GetPointsType(const int dir) const
This function returns the type of quadrature points used in the dir direction.
Definition: StdExpansion.h:216
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1047
1D Gauss-Lobatto-Legendre quadrature points
Definition: PointsType.h:50
DNekMatSharedPtr Nektar::LocalRegions::SegExp::v_GenMatrix ( const StdRegions::StdMatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 1408 of file SegExp.cpp.

References Nektar::StdRegions::eHybridDGHelmBndLam, Nektar::StdRegions::eHybridDGHelmholtz, Nektar::StdRegions::eHybridDGLamToQ0, Nektar::StdRegions::eHybridDGLamToQ1, Nektar::StdRegions::eHybridDGLamToQ2, Nektar::StdRegions::eHybridDGLamToU, Nektar::StdRegions::StdMatrixKey::GetMatrixType(), and Nektar::LocalRegions::Expansion1D::v_GenMatrix().

1410  {
1411  DNekMatSharedPtr returnval;
1412 
1413  switch (mkey.GetMatrixType())
1414  {
1421  returnval = Expansion1D::v_GenMatrix(mkey);
1422  break;
1423  default:
1424  returnval = StdSegExp::v_GenMatrix(mkey);
1425  break;
1426  }
1427 
1428  return returnval;
1429  }
virtual DNekMatSharedPtr v_GenMatrix(const StdRegions::StdMatrixKey &mkey)
Definition: Expansion1D.cpp:45
boost::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:70
const LibUtilities::BasisSharedPtr & Nektar::LocalRegions::SegExp::v_GetBasis ( int  dir) const
protectedvirtual

Definition at line 821 of file SegExp.cpp.

References Nektar::StdRegions::StdExpansion::GetBasis().

822  {
823  return GetBasis(dir);
824  }
const LibUtilities::BasisSharedPtr & GetBasis(int dir) const
This function gets the shared point to basis in the dir direction.
Definition: StdExpansion.h:118
void Nektar::LocalRegions::SegExp::v_GetCoord ( const Array< OneD, const NekDouble > &  Lcoords,
Array< OneD, NekDouble > &  coords 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 679 of file SegExp.cpp.

References ASSERTL1, and Nektar::LocalRegions::Expansion::m_geom.

682  {
683  int i;
684 
685  ASSERTL1(Lcoords[0] >= -1.0&& Lcoords[0] <= 1.0,
686  "Local coordinates are not in region [-1,1]");
687 
688  m_geom->FillGeom();
689  for(i = 0; i < m_geom->GetCoordim(); ++i)
690  {
691  coords[i] = m_geom->GetCoord(i,Lcoords);
692  }
693  }
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:125
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
int Nektar::LocalRegions::SegExp::v_GetCoordim ( void  )
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion1D.

Definition at line 795 of file SegExp.cpp.

References Nektar::LocalRegions::Expansion::m_geom.

796  {
797  return m_geom->GetCoordim();
798  }
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:125
void Nektar::LocalRegions::SegExp::v_GetCoords ( Array< OneD, NekDouble > &  coords_1,
Array< OneD, NekDouble > &  coords_2,
Array< OneD, NekDouble > &  coords_3 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 695 of file SegExp.cpp.

References Nektar::LocalRegions::Expansion::v_GetCoords().

699  {
700  Expansion::v_GetCoords(coords_0, coords_1, coords_2);
701  }
virtual void v_GetCoords(Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3)
Definition: Expansion.cpp:213
DNekScalMatSharedPtr Nektar::LocalRegions::SegExp::v_GetLocMatrix ( const MatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 1181 of file SegExp.cpp.

References m_matrixManager.

1182  {
1183  return m_matrixManager[mkey];
1184  }
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: SegExp.h:246
DNekScalBlkMatSharedPtr Nektar::LocalRegions::SegExp::v_GetLocStaticCondMatrix ( const MatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1170 of file SegExp.cpp.

References m_staticCondMatrixManager.

1172  {
1173  return m_staticCondMatrixManager[mkey];
1174  }
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: SegExp.h:248
int Nektar::LocalRegions::SegExp::v_GetNcoeffs ( void  ) const
protectedvirtual

Definition at line 816 of file SegExp.cpp.

References Nektar::StdRegions::StdExpansion::m_ncoeffs.

817  {
818  return m_ncoeffs;
819  }
int Nektar::LocalRegions::SegExp::v_GetNumPoints ( const int  dir) const
protectedvirtual

Definition at line 811 of file SegExp.cpp.

References Nektar::StdRegions::StdExpansion::GetNumPoints().

812  {
813  return GetNumPoints(dir);
814  }
int GetNumPoints(const int dir) const
This function returns the number of quadrature points in the dir direction.
Definition: StdExpansion.h:229
const Array< OneD, const NekDouble > & Nektar::LocalRegions::SegExp::v_GetPhysNormals ( void  )
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 800 of file SegExp.cpp.

References ErrorUtil::efatal, NEKERROR, and Nektar::NullNekDouble1DArray.

801  {
802  NEKERROR(ErrorUtil::efatal, "Got to SegExp");
803  return NullNekDouble1DArray;
804  }
#define NEKERROR(type, msg)
Assert Level 0 – Fundamental assert which is used whether in FULLDEBUG, DEBUG or OPT compilation mod...
Definition: ErrorUtil.hpp:158
static Array< OneD, NekDouble > NullNekDouble1DArray
StdRegions::Orientation Nektar::LocalRegions::SegExp::v_GetPorient ( int  point)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 783 of file SegExp.cpp.

References Nektar::LocalRegions::Expansion::m_geom.

784  {
785  return m_geom->GetPorient(point);
786  }
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:125
StdRegions::StdExpansionSharedPtr Nektar::LocalRegions::SegExp::v_GetStdExp ( void  ) const
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 789 of file SegExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and Nektar::StdRegions::StdExpansion::m_base.

790  {
792  ::AllocateSharedPtr(m_base[0]->GetBasisKey());
793  }
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Nektar::LocalRegions::SegExp::v_GetTracePhysVals ( const int  edge,
const StdRegions::StdExpansionSharedPtr EdgeExp,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
StdRegions::Orientation  orient 
)
protectedvirtual

Definition at line 740 of file SegExp.cpp.

References v_GetVertexPhysVals().

746  {
747  NekDouble result;
748  v_GetVertexPhysVals(edge, inarray, result);
749  outarray[0] = result;
750  }
double NekDouble
virtual void v_GetVertexPhysVals(const int vertex, const Array< OneD, const NekDouble > &inarray, NekDouble &outarray)
Definition: SegExp.cpp:704
void Nektar::LocalRegions::SegExp::v_GetVertexPhysVals ( const int  vertex,
const Array< OneD, const NekDouble > &  inarray,
NekDouble outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 704 of file SegExp.cpp.

References Vmath::Ddot(), Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::StdRegions::eFactorGaussVertex, Nektar::LibUtilities::eGaussGaussLegendre, Nektar::StdRegions::eInterpGauss, Nektar::StdRegions::StdExpansion::GetPointsType(), Nektar::StdRegions::StdExpansion::m_base, and m_matrixManager.

Referenced by v_GetTracePhysVals().

708  {
709  int nquad = m_base[0]->GetNumPoints();
710 
712  {
713  switch (vertex)
714  {
715  case 0:
716  outarray = inarray[0];
717  break;
718  case 1:
719  outarray = inarray[nquad - 1];
720  break;
721  }
722  }
723  else
724  {
726  factors[StdRegions::eFactorGaussVertex] = vertex;
727 
728  StdRegions::StdMatrixKey key(
730  DetShapeType(),*this,factors);
731 
732  DNekScalMatSharedPtr mat_gauss = m_matrixManager[key];
733 
734  outarray = Blas::Ddot(nquad, mat_gauss->GetOwnedMatrix()
735  ->GetPtr().get(), 1, &inarray[0], 1);
736  }
737  }
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
Definition: StdExpansion.h:470
std::map< ConstFactorType, NekDouble > ConstFactorMap
Definition: StdRegions.hpp:251
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
1D Gauss-Gauss-Legendre quadrature points
Definition: PointsType.h:47
T Ddot(int n, const Array< OneD, const T > &w, const int incw, const Array< OneD, const T > &x, const int incx, const Array< OneD, const int > &y, const int incy)
Definition: VmathArray.hpp:434
LibUtilities::PointsType GetPointsType(const int dir) const
This function returns the type of quadrature points used in the dir direction.
Definition: StdExpansion.h:216
Array< OneD, LibUtilities::BasisSharedPtr > m_base
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: SegExp.h:246
void Nektar::LocalRegions::SegExp::v_HelmholtzMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 1055 of file SegExp.cpp.

References ASSERTL0, Nektar::StdRegions::StdExpansion::BwdTrans(), Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::eFactorLambda, Nektar::StdRegions::StdMatrixKey::GetConstFactor(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_geom, Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::StdRegions::StdExpansion::m_ncoeffs, Nektar::StdRegions::StdExpansion::PhysDeriv(), v_IProductWRTBase(), Vmath::Vmul(), and Vmath::Vvtvp().

1059  {
1060  int nquad = m_base[0]->GetNumPoints();
1061  const Array<TwoD, const NekDouble>& gmat =
1062  m_metricinfo->GetDerivFactors(GetPointsKeys());
1063  const NekDouble lambda =
1064  mkey.GetConstFactor(StdRegions::eFactorLambda);
1065 
1066  Array<OneD,NekDouble> physValues(nquad);
1067  Array<OneD,NekDouble> dPhysValuesdx(nquad);
1068  Array<OneD,NekDouble> wsp(m_ncoeffs);
1069 
1070  BwdTrans(inarray, physValues);
1071 
1072  // mass matrix operation
1073  v_IProductWRTBase((m_base[0]->GetBdata()),physValues,wsp,1);
1074 
1075  // Laplacian matrix operation
1076  switch (m_geom->GetCoordim())
1077  {
1078  case 1:
1079  {
1080  PhysDeriv(physValues,dPhysValuesdx);
1081 
1082  // multiply with the proper geometric factors
1083  if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1084  {
1085  Vmath::Vmul(nquad,
1086  &gmat[0][0],1,dPhysValuesdx.get(),1,
1087  dPhysValuesdx.get(),1);
1088  }
1089  else
1090  {
1091  Blas::Dscal(nquad, gmat[0][0], dPhysValuesdx.get(), 1);
1092  }
1093  }
1094  break;
1095  case 2:
1096  {
1097  Array<OneD,NekDouble> dPhysValuesdy(nquad);
1098 
1099  PhysDeriv(physValues, dPhysValuesdx, dPhysValuesdy);
1100 
1101  // multiply with the proper geometric factors
1102  if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1103  {
1104  Vmath::Vmul (nquad,
1105  &gmat[0][0], 1, dPhysValuesdx.get(), 1,
1106  dPhysValuesdx.get(), 1);
1107  Vmath::Vvtvp(nquad,
1108  &gmat[1][0], 1, dPhysValuesdy.get(), 1,
1109  dPhysValuesdx.get(), 1,
1110  dPhysValuesdx.get(), 1);
1111  }
1112  else
1113  {
1114  Blas::Dscal(nquad, gmat[0][0], dPhysValuesdx.get(), 1);
1115  Blas::Daxpy(nquad,
1116  gmat[1][0], dPhysValuesdy.get(), 1,
1117  dPhysValuesdx.get(), 1);
1118  }
1119  }
1120  break;
1121  case 3:
1122  {
1123  Array<OneD,NekDouble> dPhysValuesdy(nquad);
1124  Array<OneD,NekDouble> dPhysValuesdz(nquad);
1125 
1126  PhysDeriv(physValues, dPhysValuesdx,
1127  dPhysValuesdy, dPhysValuesdz);
1128 
1129  // multiply with the proper geometric factors
1130  if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1131  {
1132  Vmath::Vmul (nquad,
1133  &gmat[0][0], 1, dPhysValuesdx.get(), 1,
1134  dPhysValuesdx.get(), 1);
1135  Vmath::Vvtvp(nquad,
1136  &gmat[1][0], 1, dPhysValuesdy.get(), 1,
1137  dPhysValuesdx.get(), 1,
1138  dPhysValuesdx.get(), 1);
1139  Vmath::Vvtvp(nquad,
1140  &gmat[2][0], 1, dPhysValuesdz.get(), 1,
1141  dPhysValuesdx.get(), 1,
1142  dPhysValuesdx.get(), 1);
1143  }
1144  else
1145  {
1146  Blas::Dscal(nquad, gmat[0][0], dPhysValuesdx.get(), 1);
1147  Blas::Daxpy(nquad,
1148  gmat[1][0], dPhysValuesdy.get(), 1,
1149  dPhysValuesdx.get(), 1);
1150  Blas::Daxpy(nquad,
1151  gmat[2][0], dPhysValuesdz.get(),
1152  1, dPhysValuesdx.get(), 1);
1153  }
1154  }
1155  break;
1156  default:
1157  ASSERTL0(false,"Wrong number of dimensions");
1158  break;
1159  }
1160 
1161  v_IProductWRTBase(m_base[0]->GetDbdata(),dPhysValuesdx,outarray,1);
1162  Blas::Daxpy(m_ncoeffs, lambda, wsp.get(), 1, outarray.get(), 1);
1163  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:428
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:125
virtual void v_IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Inner product of inarray over region with respect to the expansion basis (this)->_Base[0] and return ...
Definition: SegExp.cpp:503
void PhysDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
double NekDouble
void BwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
This function performs the Backward transformation from coefficient space to physical space...
Definition: StdExpansion.h:525
Array< OneD, LibUtilities::BasisSharedPtr > m_base
Geometry is curved or has non-constant factors.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
NekDouble Nektar::LocalRegions::SegExp::v_Integral ( const Array< OneD, const NekDouble > &  inarray)
protectedvirtual

Integrate the physical point list inarray over region and return the value.

Inputs:

  • inarray: definition of function to be returned at quadrature point of expansion.

Outputs:

  • returns $\int^1_{-1} u(\xi_1)d \xi_1 $ where $inarray[i] = u(\xi_{1i}) $

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 117 of file SegExp.cpp.

References Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Smul(), and Vmath::Vmul().

119  {
120  int nquad0 = m_base[0]->GetNumPoints();
121  Array<OneD, const NekDouble> jac = m_metricinfo->GetJac(GetPointsKeys());
122  NekDouble ival;
123  Array<OneD,NekDouble> tmp(nquad0);
124 
125  // multiply inarray with Jacobian
126  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
127  {
128  Vmath::Vmul(nquad0, jac, 1, inarray, 1, tmp,1);
129  }
130  else
131  {
132  Vmath::Smul(nquad0, jac[0], inarray, 1, tmp, 1);
133  }
134 
135  // call StdSegExp version;
136  ival = StdSegExp::v_Integral(tmp);
137  //ival = StdSegExp::Integral(tmp);
138  return ival;
139  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
double NekDouble
Array< OneD, LibUtilities::BasisSharedPtr > m_base
Geometry is curved or has non-constant factors.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
void Nektar::LocalRegions::SegExp::v_IProductWRTBase ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Inner product of inarray over region with respect to the expansion basis (this)->_Base[0] and return in outarray.

Wrapper call to SegExp::IProduct_WRT_B

Input:

  • inarray: array of function evaluated at the physical collocation points

Output:

  • outarray: array of inner product with respect to each basis over region

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 503 of file SegExp.cpp.

References Nektar::StdRegions::StdExpansion::m_base.

Referenced by v_FwdTrans(), v_FwdTrans_BndConstrained(), v_HelmholtzMatrixOp(), v_IProductWRTDerivBase(), v_LaplacianMatrixOp(), and v_NormVectorIProductWRTBase().

506  {
507  v_IProductWRTBase(m_base[0]->GetBdata(),inarray,outarray,1);
508  }
virtual void v_IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Inner product of inarray over region with respect to the expansion basis (this)->_Base[0] and return ...
Definition: SegExp.cpp:503
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Nektar::LocalRegions::SegExp::v_IProductWRTBase ( const Array< OneD, const NekDouble > &  base,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
int  coll_check 
)
protectedvirtual

Inner product of inarray over region with respect to expansion basis base and return in outarray.

Calculate $ I[p] = \int^{1}_{-1} \phi_p(\xi_1) u(\xi_1) d\xi_1 = \sum_{i=0}^{nq-1} \phi_p(\xi_{1i}) u(\xi_{1i}) w_i $ where $ outarray[p] = I[p], inarray[i] = u(\xi_{1i}), base[p*nq+i] = \phi_p(\xi_{1i}) $.

Inputs:

  • base: an array definiing the local basis for the inner product usually passed from Basis->get_bdata() or Basis->get_Dbdata()
  • inarray: physical point array of function to be integrated $ u(\xi_1) $
  • coll_check: Flag to identify when a Basis->collocation() call should be performed to see if this is a GLL_Lagrange basis with a collocation property. (should be set to 0 if taking the inner product with respect to the derivative of basis)

Output:

  • outarray: array of coefficients representing the inner product of function with ever mode in the exapnsion

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 538 of file SegExp.cpp.

References Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Smul(), and Vmath::Vmul().

543  {
544  int nquad0 = m_base[0]->GetNumPoints();
545  Array<OneD, const NekDouble> jac = m_metricinfo->GetJac(GetPointsKeys());
546  Array<OneD,NekDouble> tmp(nquad0);
547 
548 
549  // multiply inarray with Jacobian
550  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
551  {
552  Vmath::Vmul(nquad0, jac, 1, inarray, 1, tmp, 1);
553  }
554  else
555  {
556  Vmath::Smul(nquad0, jac[0], inarray, 1, tmp, 1);
557  }
558  StdSegExp::v_IProductWRTBase(base,tmp,outarray,coll_check);
559  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
Array< OneD, LibUtilities::BasisSharedPtr > m_base
Geometry is curved or has non-constant factors.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
void Nektar::LocalRegions::SegExp::v_IProductWRTDerivBase ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 562 of file SegExp.cpp.

References ASSERTL1, Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_geom, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Smul(), v_IProductWRTBase(), and Vmath::Vmul().

566  {
567  int nquad = m_base[0]->GetNumPoints();
568  const Array<TwoD, const NekDouble>& gmat =
569  m_metricinfo->GetDerivFactors(GetPointsKeys());
570 
571  Array<OneD, NekDouble> tmp1(nquad);
572 
573  switch(dir)
574  {
575  case 0:
576  {
577  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
578  {
579  Vmath::Vmul(nquad,gmat[0],1,inarray,1,tmp1,1);
580  }
581  else
582  {
583  Vmath::Smul(nquad, gmat[0][0], inarray, 1, tmp1, 1);
584  }
585  }
586  break;
587  case 1:
588  {
589  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
590  {
591  Vmath::Vmul(nquad,gmat[1],1,inarray,1,tmp1,1);
592  }
593  else
594  {
595  Vmath::Smul(nquad, gmat[1][0], inarray, 1, tmp1, 1);
596  }
597  }
598  break;
599  case 2:
600  {
601  ASSERTL1(m_geom->GetCoordim() == 3,"input dir is out of range");
602  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
603  {
604  Vmath::Vmul(nquad,gmat[2],1,inarray,1,tmp1,1);
605  }
606  else
607  {
608  Vmath::Smul(nquad, gmat[2][0], inarray, 1, tmp1, 1);
609  }
610  }
611  break;
612  default:
613  {
614  ASSERTL1(false,"input dir is out of range");
615  }
616  break;
617  }
618  v_IProductWRTBase(m_base[0]->GetDbdata(),tmp1,outarray,1);
619  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:125
virtual void v_IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Inner product of inarray over region with respect to the expansion basis (this)->_Base[0] and return ...
Definition: SegExp.cpp:503
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
Array< OneD, LibUtilities::BasisSharedPtr > m_base
Geometry is curved or has non-constant factors.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
void Nektar::LocalRegions::SegExp::v_LaplacianMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 949 of file SegExp.cpp.

References ASSERTL0, Nektar::StdRegions::StdExpansion::BwdTrans(), Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_geom, Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::StdRegions::StdExpansion::PhysDeriv(), v_IProductWRTBase(), Vmath::Vmul(), and Vmath::Vvtvp().

953  {
954  int nquad = m_base[0]->GetNumPoints();
955  const Array<TwoD, const NekDouble>& gmat =
956  m_metricinfo->GetDerivFactors(GetPointsKeys());
957 
958  Array<OneD,NekDouble> physValues(nquad);
959  Array<OneD,NekDouble> dPhysValuesdx(nquad);
960 
961  BwdTrans(inarray,physValues);
962 
963  // Laplacian matrix operation
964  switch (m_geom->GetCoordim())
965  {
966  case 1:
967  {
968  PhysDeriv(physValues,dPhysValuesdx);
969 
970  // multiply with the proper geometric factors
971  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
972  {
973  Vmath::Vmul(nquad,
974  &gmat[0][0],1,dPhysValuesdx.get(),1,
975  dPhysValuesdx.get(),1);
976  }
977  else
978  {
979  Blas::Dscal(nquad,
980  gmat[0][0], dPhysValuesdx.get(), 1);
981  }
982  }
983  break;
984  case 2:
985  {
986  Array<OneD,NekDouble> dPhysValuesdy(nquad);
987 
988  PhysDeriv(physValues,dPhysValuesdx,dPhysValuesdy);
989 
990  // multiply with the proper geometric factors
991  if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
992  {
993  Vmath::Vmul (nquad,
994  &gmat[0][0],1,dPhysValuesdx.get(),1,
995  dPhysValuesdx.get(),1);
996  Vmath::Vvtvp(nquad,
997  &gmat[1][0],1,dPhysValuesdy.get(),1,
998  dPhysValuesdx.get(),1,
999  dPhysValuesdx.get(),1);
1000  }
1001  else
1002  {
1003  Blas::Dscal(nquad,
1004  gmat[0][0], dPhysValuesdx.get(), 1);
1005  Blas::Daxpy(nquad,
1006  gmat[1][0], dPhysValuesdy.get(), 1,
1007  dPhysValuesdx.get(), 1);
1008  }
1009  }
1010  break;
1011  case 3:
1012  {
1013  Array<OneD,NekDouble> dPhysValuesdy(nquad);
1014  Array<OneD,NekDouble> dPhysValuesdz(nquad);
1015 
1016  PhysDeriv(physValues,dPhysValuesdx,
1017  dPhysValuesdy,dPhysValuesdz);
1018 
1019  // multiply with the proper geometric factors
1020  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1021  {
1022  Vmath::Vmul (nquad,
1023  &gmat[0][0], 1, dPhysValuesdx.get(), 1,
1024  dPhysValuesdx.get(),1);
1025  Vmath::Vvtvp(nquad,
1026  &gmat[1][0], 1, dPhysValuesdy.get(), 1,
1027  dPhysValuesdx.get(),1,
1028  dPhysValuesdx.get(),1);
1029  Vmath::Vvtvp(nquad,
1030  &gmat[2][0], 1, dPhysValuesdz.get(), 1,
1031  dPhysValuesdx.get(),1,
1032  dPhysValuesdx.get(),1);
1033  }
1034  else
1035  {
1036  Blas::Dscal(nquad, gmat[0][0], dPhysValuesdx.get(), 1);
1037  Blas::Daxpy(nquad,
1038  gmat[1][0], dPhysValuesdy.get(), 1,
1039  dPhysValuesdx.get(), 1);
1040  Blas::Daxpy(nquad,
1041  gmat[2][0], dPhysValuesdz.get(), 1,
1042  dPhysValuesdx.get(), 1);
1043  }
1044  }
1045  break;
1046  default:
1047  ASSERTL0(false,"Wrong number of dimensions");
1048  break;
1049  }
1050 
1051  v_IProductWRTBase(m_base[0]->GetDbdata(),dPhysValuesdx,outarray,1);
1052  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:428
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:125
virtual void v_IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Inner product of inarray over region with respect to the expansion basis (this)->_Base[0] and return ...
Definition: SegExp.cpp:503
void PhysDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
void BwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
This function performs the Backward transformation from coefficient space to physical space...
Definition: StdExpansion.h:525
Array< OneD, LibUtilities::BasisSharedPtr > m_base
Geometry is curved or has non-constant factors.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
SpatialDomains::GeomType Nektar::LocalRegions::SegExp::v_MetricInfoType ( )
protectedvirtual

Definition at line 806 of file SegExp.cpp.

References Nektar::LocalRegions::Expansion::m_metricinfo.

807  {
808  return m_metricinfo->GetGtype();
809  }
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
void Nektar::LocalRegions::SegExp::v_NormVectorIProductWRTBase ( const Array< OneD, const NekDouble > &  Fx,
const Array< OneD, const NekDouble > &  Fy,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 621 of file SegExp.cpp.

References Nektar::StdRegions::StdExpansion::GetEdgeNormal(), Nektar::LocalRegions::Expansion1D::GetLeftAdjacentElementEdge(), Nektar::LocalRegions::Expansion1D::GetLeftAdjacentElementExp(), Nektar::StdRegions::StdExpansion::m_base, v_IProductWRTBase(), Vmath::Vmul(), and Vmath::Vvtvp().

625  {
626  int nq = m_base[0]->GetNumPoints();
627  Array<OneD, NekDouble > Fn(nq);
628 // cout << "I am segment " << GetGeom()->GetGlobalID() << endl;
629 // cout << "I want edge " << GetLeftAdjacentElementEdge() << endl;
630 // @TODO: This routine no longer makes sense as a normal is not unique to an edge
631  const Array<OneD, const Array<OneD, NekDouble> >
632  &normals =
635  Vmath::Vmul (nq, &Fx[0], 1, &normals[0][0], 1, &Fn[0], 1);
636  Vmath::Vvtvp(nq, &Fy[0], 1, &normals[1][0], 1, &Fn[0], 1, &Fn[0], 1);
637 
638  v_IProductWRTBase(Fn,outarray);
639  }
const NormalVector & GetEdgeNormal(const int edge) const
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:428
virtual void v_IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Inner product of inarray over region with respect to the expansion basis (this)->_Base[0] and return ...
Definition: SegExp.cpp:503
Expansion2DSharedPtr GetLeftAdjacentElementExp() const
Definition: Expansion1D.h:123
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
void Nektar::LocalRegions::SegExp::v_NormVectorIProductWRTBase ( const Array< OneD, const Array< OneD, NekDouble > > &  Fvec,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 641 of file SegExp.cpp.

References Nektar::StdRegions::StdExpansion::NormVectorIProductWRTBase().

644  {
645  NormVectorIProductWRTBase(Fvec[0], Fvec[1], outarray);
646  }
void NormVectorIProductWRTBase(const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:727
int Nektar::LocalRegions::SegExp::v_NumBndryCoeffs ( ) const
protectedvirtual

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 827 of file SegExp.cpp.

828  {
829  return 2;
830  }
int Nektar::LocalRegions::SegExp::v_NumDGBndryCoeffs ( ) const
protectedvirtual

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 833 of file SegExp.cpp.

834  {
835  return 2;
836  }
void Nektar::LocalRegions::SegExp::v_PhysDeriv ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out_d0,
Array< OneD, NekDouble > &  out_d1 = NullNekDouble1DArray,
Array< OneD, NekDouble > &  out_d2 = NullNekDouble1DArray 
)
protectedvirtual

Evaluate the derivative $ d/d{\xi_1} $ at the physical quadrature points given by inarray and return in outarray.

This is a wrapper around StdExpansion1D::Tensor_Deriv

Input:

  • n: number of derivatives to be evaluated where $ n \leq dim$
  • inarray: array of function evaluated at the quadrature points

Output:

  • outarray: array of the derivatives $ du/d_{\xi_1}|_{\xi_{1i}} d\xi_1/dx, du/d_{\xi_1}|_{\xi_{1i}} d\xi_1/dy, du/d_{\xi_1}|_{\xi_{1i}} d\xi_1/dz, $ depending on value of dim

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 165 of file SegExp.cpp.

References Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::StdRegions::StdExpansion1D::PhysTensorDeriv(), Vmath::Smul(), and Vmath::Vmul().

Referenced by v_PhysDeriv_n().

170  {
171  int nquad0 = m_base[0]->GetNumPoints();
172  Array<TwoD, const NekDouble> gmat =
173  m_metricinfo->GetDerivFactors(GetPointsKeys());
174  Array<OneD,NekDouble> diff(nquad0);
175 
176  //StdExpansion1D::PhysTensorDeriv(inarray,diff);
177  PhysTensorDeriv(inarray,diff);
178  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
179  {
180  if(out_d0.num_elements())
181  {
182  Vmath::Vmul(nquad0,&gmat[0][0],1,&diff[0],1,
183  &out_d0[0],1);
184  }
185 
186  if(out_d1.num_elements())
187  {
188  Vmath::Vmul(nquad0,&gmat[1][0],1,&diff[0],1,
189  &out_d1[0],1);
190  }
191 
192  if(out_d2.num_elements())
193  {
194  Vmath::Vmul(nquad0,&gmat[2][0],1,&diff[0],1,
195  &out_d2[0],1);
196  }
197  }
198  else
199  {
200  if(out_d0.num_elements())
201  {
202  Vmath::Smul(nquad0, gmat[0][0], diff, 1,
203  out_d0, 1);
204  }
205 
206  if(out_d1.num_elements())
207  {
208  Vmath::Smul(nquad0, gmat[1][0], diff, 1,
209  out_d1, 1);
210  }
211 
212  if(out_d2.num_elements())
213  {
214  Vmath::Smul(nquad0, gmat[2][0], diff, 1,
215  out_d2, 1);
216  }
217  }
218  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
void PhysTensorDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Evaluate the derivative at the physical quadrature points given by inarray and return in outarray...
Array< OneD, LibUtilities::BasisSharedPtr > m_base
Geometry is curved or has non-constant factors.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
void Nektar::LocalRegions::SegExp::v_PhysDeriv ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out_d0 
)
protectedvirtual

Calculate the derivative of the physical points in a given direction.

See also
StdRegions::StdExpansion::PhysDeriv

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 318 of file SegExp.cpp.

References ASSERTL1, Nektar::NullNekDouble1DArray, and Nektar::StdRegions::StdExpansion::PhysDeriv().

321  {
322  switch(dir)
323  {
324  case 0:
325  {
326  PhysDeriv(inarray, outarray, NullNekDouble1DArray,
328  }
329  break;
330  case 1:
331  {
332  PhysDeriv(inarray, NullNekDouble1DArray, outarray,
334  }
335  break;
336  case 2:
337  {
339  NullNekDouble1DArray, outarray);
340  }
341  break;
342  default:
343  {
344  ASSERTL1(false,"input dir is out of range");
345  }
346  break;
347  }
348  }
static Array< OneD, NekDouble > NullNekDouble1DArray
void PhysDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
void Nektar::LocalRegions::SegExp::v_PhysDeriv_n ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out_dn 
)
protectedvirtual

Evaluate the derivative normal to a line: $ d/dn=\frac{spacedim}{||normal||}d/d{\xi} $. The derivative is calculated performing the product $ du/d{s}=\nabla u \cdot normal $.

Parameters
inarrayfunction to derive
out_dnresult of the derivative operation

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 268 of file SegExp.cpp.

References ASSERTL0, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_geom, Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::NullNekDoubleArrayofArray, v_PhysDeriv(), Vmath::Vadd(), Vmath::Vmul(), and Vmath::Zero().

271  {
272  int nquad0 = m_base[0]->GetNumPoints();
273  Array<TwoD, const NekDouble> gmat =
274  m_metricinfo->GetDerivFactors(GetPointsKeys());
275  int coordim = m_geom->GetCoordim();
276  Array<OneD, NekDouble> out_dn_tmp(nquad0,0.0);
277  switch(coordim)
278  {
279  case 2:
280 
281  Array<OneD, NekDouble> inarray_d0(nquad0);
282  Array<OneD, NekDouble> inarray_d1(nquad0);
283 
284  v_PhysDeriv(inarray,inarray_d0,inarray_d1);
285  Array<OneD, Array<OneD, NekDouble> > normals;
286  normals = Array<OneD, Array<OneD, NekDouble> >(coordim);
287  cout<<"der_n"<<endl;
288  for(int k=0; k<coordim; ++k)
289  {
290  normals[k]= Array<OneD, NekDouble>(nquad0);
291  }
292 // @TODO: this routine no longer makes sense, since normals are not unique on
293 // an edge
294 // normals = GetMetricInfo()->GetNormal();
295  for(int i=0; i<nquad0; i++)
296  {
297 cout<<"nx= "<<normals[0][i]<<" ny="<<normals[1][i]<<endl;
298  }
300  "normal vectors do not exist: check if a"
301  "boundary region is defined as I ");
302  // \nabla u \cdot normal
303  Vmath::Vmul(nquad0,normals[0],1,inarray_d0,1,out_dn_tmp,1);
304  Vmath::Vadd(nquad0,out_dn_tmp,1,out_dn,1,out_dn,1);
305  Vmath::Zero(nquad0,out_dn_tmp,1);
306  Vmath::Vmul(nquad0,normals[1],1,inarray_d1,1,out_dn_tmp,1);
307  Vmath::Vadd(nquad0,out_dn_tmp,1,out_dn,1,out_dn,1);
308 
309  for(int i=0; i<nquad0; i++)
310  {
311 cout<<"deps/dx ="<<inarray_d0[i]<<" deps/dy="<<inarray_d1[i]<<endl;
312  }
313 
314 
315  }
316 
317  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:125
virtual void v_PhysDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
Evaluate the derivative at the physical quadrature points given by inarray and return in outarray...
Definition: SegExp.cpp:165
static Array< OneD, Array< OneD, NekDouble > > NullNekDoubleArrayofArray
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:359
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:285
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
void Nektar::LocalRegions::SegExp::v_PhysDeriv_s ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out_ds 
)
protectedvirtual

Evaluate the derivative along a line: $ d/ds=\frac{spacedim}{||tangent||}d/d{\xi} $. The derivative is calculated performing the product $ du/d{s}=\nabla u \cdot tangent $.

Parameters
inarrayfunction to derive
out_dsresult of the derivative operation

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 228 of file SegExp.cpp.

References Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_geom, Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::StdRegions::StdExpansion1D::PhysTensorDeriv(), Vmath::Smul(), Vmath::Vdiv(), and Vmath::Zero().

231  {
232  int nquad0 = m_base[0]->GetNumPoints();
233  int coordim = m_geom->GetCoordim();
234  Array<OneD, NekDouble> diff (nquad0);
235  //this operation is needed if you put out_ds==inarray
236  Vmath::Zero(nquad0,out_ds,1);
237  switch(coordim)
238  {
239  case 2:
240  //diff= dU/de
241  Array<OneD,NekDouble> diff(nquad0);
242 
243  PhysTensorDeriv(inarray,diff);
244 
245  //get dS/de= (Jac)^-1
246  Array<OneD, NekDouble> Jac = m_metricinfo->GetJac(GetPointsKeys());
247  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
248  {
249  //calculate the derivative as (dU/de)*(Jac)^-1
250  Vmath::Vdiv(nquad0,diff,1,Jac ,1,out_ds,1);
251  }
252  else
253  {
254  NekDouble invJac = 1/Jac[0];
255  Vmath::Smul(nquad0, invJac,diff,1,out_ds,1);
256  }
257  }
258  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:227
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:125
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
double NekDouble
void PhysTensorDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Evaluate the derivative at the physical quadrature points given by inarray and return in outarray...
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:359
Array< OneD, LibUtilities::BasisSharedPtr > m_base
Geometry is curved or has non-constant factors.
NekDouble Nektar::LocalRegions::SegExp::v_PhysEvaluate ( const Array< OneD, const NekDouble > &  coord,
const Array< OneD, const NekDouble > &  physvals 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdSegExp.

Definition at line 666 of file SegExp.cpp.

References ASSERTL0, and Nektar::LocalRegions::Expansion::m_geom.

669  {
670  Array<OneD,NekDouble> Lcoord = Array<OneD,NekDouble>(1);
671 
672  ASSERTL0(m_geom,"m_geom not defined");
673  m_geom->GetLocCoords(coord,Lcoord);
674 
675  return StdSegExp::v_PhysEvaluate(Lcoord, physvals);
676  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:125
void Nektar::LocalRegions::SegExp::v_SetCoeffsToOrientation ( Array< OneD, NekDouble > &  coeffs,
StdRegions::Orientation  dir 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 756 of file SegExp.cpp.

759  {
760  v_SetCoeffsToOrientation(dir,coeffs,coeffs);
761  }
virtual void v_SetCoeffsToOrientation(Array< OneD, NekDouble > &coeffs, StdRegions::Orientation dir)
Definition: SegExp.cpp:756
void Nektar::LocalRegions::SegExp::v_SetCoeffsToOrientation ( StdRegions::Orientation  dir,
Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 763 of file SegExp.cpp.

References Nektar::StdRegions::eBackwards, and ReverseCoeffsAndSign().

767  {
768 
769  if (dir == StdRegions::eBackwards)
770  {
771  if (&inarray[0] != &outarray[0])
772  {
773  Array<OneD,NekDouble> intmp (inarray);
774  ReverseCoeffsAndSign(intmp,outarray);
775  }
776  else
777  {
778  ReverseCoeffsAndSign(inarray,outarray);
779  }
780  }
781  }
void ReverseCoeffsAndSign(const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Reverse the coefficients in a boundary interior expansion this routine is of use when we need the seg...
Definition: SegExp.cpp:1579
NekDouble Nektar::LocalRegions::SegExp::v_StdPhysEvaluate ( const Array< OneD, const NekDouble > &  Lcoord,
const Array< OneD, const NekDouble > &  physvals 
)
protectedvirtual

Given the local cartesian coordinate Lcoord evaluate the value of physvals at this point by calling through to the StdExpansion method

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 658 of file SegExp.cpp.

661  {
662  // Evaluate point in local (eta) coordinates.
663  return StdSegExp::v_PhysEvaluate(Lcoord,physvals);
664  }

Member Data Documentation

LibUtilities::NekManager<MatrixKey, DNekScalMat, MatrixKey::opLess> Nektar::LocalRegions::SegExp::m_matrixManager
private
LibUtilities::NekManager<MatrixKey, DNekScalBlkMat, MatrixKey::opLess> Nektar::LocalRegions::SegExp::m_staticCondMatrixManager
private