Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
Public Member Functions | Protected Member Functions | Private Member Functions | Private Attributes | List of all members
Nektar::LocalRegions::TriExp Class Reference

#include <TriExp.h>

Inheritance diagram for Nektar::LocalRegions::TriExp:
Inheritance graph
[legend]
Collaboration diagram for Nektar::LocalRegions::TriExp:
Collaboration graph
[legend]

Public Member Functions

 TriExp (const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const SpatialDomains::TriGeomSharedPtr &geom)
 Constructor using BasisKey class for quadrature points and order definition. More...
 
 TriExp (const TriExp &T)
 
 ~TriExp ()
 
- Public Member Functions inherited from Nektar::StdRegions::StdTriExp
 StdTriExp ()
 
 StdTriExp (const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb)
 
 StdTriExp (const StdTriExp &T)
 
 ~StdTriExp ()
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion2D
 StdExpansion2D ()
 
 StdExpansion2D (int numcoeffs, const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb)
 
 StdExpansion2D (const StdExpansion2D &T)
 
virtual ~StdExpansion2D ()
 
void PhysTensorDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray_d0, Array< OneD, NekDouble > &outarray_d1)
 Calculate the 2D derivative in the local tensor/collapsed coordinate at the physical points. More...
 
NekDouble Integral (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &w0, const Array< OneD, const NekDouble > &w1)
 
void BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0=true, bool doCheckCollDir1=true)
 
void IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0=true, bool doCheckCollDir1=true)
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion
 StdExpansion ()
 Default Constructor. More...
 
 StdExpansion (const int numcoeffs, const int numbases, const LibUtilities::BasisKey &Ba=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bb=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bc=LibUtilities::NullBasisKey)
 Constructor. More...
 
 StdExpansion (const StdExpansion &T)
 Copy Constructor. More...
 
virtual ~StdExpansion ()
 Destructor. More...
 
int GetNumBases () const
 This function returns the number of 1D bases used in the expansion. More...
 
const Array< OneD, const
LibUtilities::BasisSharedPtr > & 
GetBase () const
 This function gets the shared point to basis. More...
 
const
LibUtilities::BasisSharedPtr
GetBasis (int dir) const
 This function gets the shared point to basis in the dir direction. More...
 
int GetNcoeffs (void) const
 This function returns the total number of coefficients used in the expansion. More...
 
int GetTotPoints () const
 This function returns the total number of quadrature points used in the element. More...
 
LibUtilities::BasisType GetBasisType (const int dir) const
 This function returns the type of basis used in the dir direction. More...
 
int GetBasisNumModes (const int dir) const
 This function returns the number of expansion modes in the dir direction. More...
 
int EvalBasisNumModesMax (void) const
 This function returns the maximum number of expansion modes over all local directions. More...
 
LibUtilities::PointsType GetPointsType (const int dir) const
 This function returns the type of quadrature points used in the dir direction. More...
 
int GetNumPoints (const int dir) const
 This function returns the number of quadrature points in the dir direction. More...
 
const Array< OneD, const
NekDouble > & 
GetPoints (const int dir) const
 This function returns a pointer to the array containing the quadrature points in dir direction. More...
 
int GetNverts () const
 This function returns the number of vertices of the expansion domain. More...
 
int GetNedges () const
 This function returns the number of edges of the expansion domain. More...
 
int GetEdgeNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th edge. More...
 
int GetTotalEdgeIntNcoeffs () const
 
int GetEdgeNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th edge. More...
 
int DetCartesianDirOfEdge (const int edge)
 
const LibUtilities::BasisKey DetEdgeBasisKey (const int i) const
 
const LibUtilities::BasisKey DetFaceBasisKey (const int i, const int k) const
 
int GetFaceNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th face. More...
 
int GetFaceNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th face. More...
 
int GetFaceIntNcoeffs (const int i) const
 
int GetTotalFaceIntNcoeffs () const
 
int GetTraceNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th edge/face. More...
 
LibUtilities::PointsKey GetFacePointsKey (const int i, const int j) const
 
int NumBndryCoeffs (void) const
 
int NumDGBndryCoeffs (void) const
 
LibUtilities::BasisType GetEdgeBasisType (const int i) const
 This function returns the type of expansion basis on the i-th edge. More...
 
const LibUtilities::PointsKey GetNodalPointsKey () const
 This function returns the type of expansion Nodal point type if defined. More...
 
int GetNfaces () const
 This function returns the number of faces of the expansion domain. More...
 
int GetNtrace () const
 Returns the number of trace elements connected to this element. More...
 
LibUtilities::ShapeType DetShapeType () const
 This function returns the shape of the expansion domain. More...
 
boost::shared_ptr< StdExpansionGetStdExp (void) const
 
int GetShapeDimension () const
 
bool IsBoundaryInteriorExpansion ()
 
bool IsNodalNonTensorialExp ()
 
void BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Backward transformation from coefficient space to physical space. More...
 
void FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Forward transformation from physical space to coefficient space. More...
 
void FwdTrans_BndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble Integral (const Array< OneD, const NekDouble > &inarray)
 This function integrates the specified function over the domain. More...
 
void FillMode (const int mode, Array< OneD, NekDouble > &outarray)
 This function fills the array outarray with the mode-th mode of the expansion. More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 this function calculates the inner product of a given function f with the different modes of the expansion More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &base, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int coll_check)
 
void IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
int GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void SetElmtId (const int id)
 Set the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2=NullNekDouble1DArray, Array< OneD, NekDouble > &coords_3=NullNekDouble1DArray)
 this function returns the physical coordinates of the quadrature points of the expansion More...
 
void GetCoord (const Array< OneD, const NekDouble > &Lcoord, Array< OneD, NekDouble > &coord)
 given the coordinates of a point of the element in the local collapsed coordinate system, this function calculates the physical coordinates of the point More...
 
DNekMatSharedPtr GetStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr GetStdStaticCondMatrix (const StdMatrixKey &mkey)
 
IndexMapValuesSharedPtr GetIndexMap (const IndexMapKey &ikey)
 
const Array< OneD, const
NekDouble > & 
GetPhysNormals (void)
 
void SetPhysNormals (Array< OneD, const NekDouble > &normal)
 
virtual void SetUpPhysNormals (const int edge)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
DNekScalBlkMatSharedPtr GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
void DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
StdRegions::Orientation GetForient (int face)
 
StdRegions::Orientation GetEorient (int edge)
 
StdRegions::Orientation GetPorient (int point)
 
StdRegions::Orientation GetCartesianEorient (int edge)
 
void SetCoeffsToOrientation (Array< OneD, NekDouble > &coeffs, StdRegions::Orientation dir)
 
void SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
int CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
void ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int nmodes_offset, NekDouble *coeffs)
 
NekDouble StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
int GetCoordim ()
 
void GetBoundaryMap (Array< OneD, unsigned int > &outarray)
 
void GetInteriorMap (Array< OneD, unsigned int > &outarray)
 
int GetVertexMap (const int localVertexId, bool useCoeffPacking=false)
 
void GetEdgeInteriorMap (const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
 
void GetFaceInteriorMap (const int fid, const Orientation faceOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
 
void GetEdgeToElementMap (const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, int P=-1)
 
void GetFaceToElementMap (const int fid, const Orientation faceOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, int nummodesA=-1, int nummodesB=-1)
 
void GetEdgePhysVals (const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Extract the physical values along edge edge from inarray into outarray following the local edge orientation and point distribution defined by defined in EdgeExp. More...
 
void GetEdgePhysVals (const int edge, const boost::shared_ptr< StdExpansion > &EdgeExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GetTracePhysVals (const int edge, const boost::shared_ptr< StdExpansion > &EdgeExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GetVertexPhysVals (const int vertex, const Array< OneD, const NekDouble > &inarray, NekDouble &outarray)
 
void GetEdgeInterpVals (const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GetEdgeQFactors (const int edge, Array< OneD, NekDouble > &outarray)
 Extract the metric factors to compute the contravariant fluxes along edge edge and stores them into outarray following the local edge orientation (i.e. anticlockwise convention). More...
 
void GetFacePhysVals (const int face, const boost::shared_ptr< StdExpansion > &FaceExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient=eNoOrientation)
 
void GetEdgePhysMap (const int edge, Array< OneD, int > &outarray)
 
void GetFacePhysMap (const int face, Array< OneD, int > &outarray)
 
void MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
DNekMatSharedPtr CreateGeneralMatrix (const StdMatrixKey &mkey)
 this function generates the mass matrix $\mathbf{M}[i][j] = \int \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x}$ More...
 
void GeneralMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
DNekMatSharedPtr GenMatrix (const StdMatrixKey &mkey)
 
void PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void PhysDeriv_s (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_ds)
 
void PhysDeriv_n (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_dn)
 
void PhysDirectionalDeriv (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &direction, Array< OneD, NekDouble > &outarray)
 
void StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void AddRobinMassMatrix (const int edgeid, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat)
 
void AddRobinEdgeContribution (const int edgeid, const Array< OneD, const NekDouble > &primCoeffs, Array< OneD, NekDouble > &coeffs)
 
NekDouble PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
void LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
 Convert local cartesian coordinate xi into local collapsed coordinates eta. More...
 
const boost::shared_ptr
< SpatialDomains::GeomFactors > & 
GetMetricInfo (void) const
 
virtual int v_GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
virtual const Array< OneD,
const NekDouble > & 
v_GetPhysNormals (void)
 
virtual void v_SetPhysNormals (Array< OneD, const NekDouble > &normal)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual StdRegions::Orientation v_GetForient (int face)
 
virtual StdRegions::Orientation v_GetPorient (int point)
 
NekDouble Linf (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete $ L_\infty$ error $ |\epsilon|_\infty = \max |u - u_{exact}|$ where $ u_{exact}$ is given by the array sol. More...
 
NekDouble L2 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete $ L_2$ error, $ | \epsilon |_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 dx \right]^{1/2} d\xi_1 $ where $ u_{exact}$ is given by the array sol. More...
 
NekDouble H1 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete $ H^1$ error, $ | \epsilon |^1_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 + \nabla(u - u_{exact})\cdot\nabla(u - u_{exact})\cdot dx \right]^{1/2} d\xi_1 $ where $ u_{exact}$ is given by the array sol. More...
 
const NormalVectorGetEdgeNormal (const int edge) const
 
void ComputeEdgeNormal (const int edge)
 
void NegateEdgeNormal (const int edge)
 
bool EdgeNormalNegated (const int edge)
 
void ComputeFaceNormal (const int face)
 
void NegateFaceNormal (const int face)
 
bool FaceNormalNegated (const int face)
 
void ComputeVertexNormal (const int vertex)
 
const NormalVectorGetFaceNormal (const int face) const
 
const NormalVectorGetVertexNormal (const int vertex) const
 
const NormalVectorGetSurfaceNormal (const int id) const
 
const LibUtilities::PointsKeyVector GetPointsKeys () const
 
Array< OneD, unsigned int > GetEdgeInverseBoundaryMap (int eid)
 
Array< OneD, unsigned int > GetFaceInverseBoundaryMap (int fid, StdRegions::Orientation faceOrient=eNoOrientation)
 
DNekMatSharedPtr BuildInverseTransformationMatrix (const DNekScalMatSharedPtr &m_transformationmatrix)
 
void PhysInterpToSimplexEquiSpaced (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int npset=-1)
 This function performs an interpolation from the physical space points provided at input into an array of equispaced points which are not the collapsed coordinate. So for a tetrahedron you will only get a tetrahedral number of values. More...
 
void GetSimplexEquiSpacedConnectivity (Array< OneD, int > &conn, bool standard=true)
 This function provides the connectivity of local simplices (triangles or tets) to connect the equispaced data points provided by PhysInterpToSimplexEquiSpaced. More...
 
void EquiSpacedToCoeffs (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs a projection/interpolation from the equispaced points sometimes used in post-processing onto the coefficient space. More...
 
template<class T >
boost::shared_ptr< T > as ()
 
void IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
 
- Public Member Functions inherited from Nektar::LocalRegions::Expansion2D
 Expansion2D (SpatialDomains::Geometry2DSharedPtr pGeom)
 
virtual ~Expansion2D ()
 
void SetTraceToGeomOrientation (Array< OneD, ExpansionSharedPtr > &EdgeExp, Array< OneD, NekDouble > &inout)
 
Expansion1DSharedPtr GetEdgeExp (int edge, bool SetUpNormal=true)
 
void SetEdgeExp (const int edge, Expansion1DSharedPtr &e)
 
void AddNormTraceInt (const int dir, Array< OneD, ExpansionSharedPtr > &EdgeExp, Array< OneD, Array< OneD, NekDouble > > &edgeCoeffs, Array< OneD, NekDouble > &outarray)
 
void AddNormTraceInt (const int dir, Array< OneD, const NekDouble > &inarray, Array< OneD, ExpansionSharedPtr > &EdgeExp, Array< OneD, NekDouble > &outarray, const StdRegions::VarCoeffMap &varcoeffs)
 
void AddEdgeBoundaryInt (const int edge, ExpansionSharedPtr &EdgeExp, Array< OneD, NekDouble > &edgePhys, Array< OneD, NekDouble > &outarray, const StdRegions::VarCoeffMap &varcoeffs=StdRegions::NullVarCoeffMap)
 
void AddHDGHelmholtzEdgeTerms (const NekDouble tau, const int edge, Array< OneD, ExpansionSharedPtr > &EdgeExp, Array< OneD, NekDouble > &edgePhys, const StdRegions::VarCoeffMap &dirForcing, Array< OneD, NekDouble > &outarray)
 
void AddHDGHelmholtzTraceTerms (const NekDouble tau, const Array< OneD, const NekDouble > &inarray, Array< OneD, ExpansionSharedPtr > &EdgeExp, const StdRegions::VarCoeffMap &dirForcing, Array< OneD, NekDouble > &outarray)
 
Expansion3DSharedPtr GetLeftAdjacentElementExp () const
 
Expansion3DSharedPtr GetRightAdjacentElementExp () const
 
int GetLeftAdjacentElementFace () const
 
int GetRightAdjacentElementFace () const
 
void SetAdjacentElementExp (int face, Expansion3DSharedPtr &f)
 
SpatialDomains::Geometry2DSharedPtr GetGeom2D () const
 
void ReOrientEdgePhysMap (const int nvert, const StdRegions::Orientation orient, const int nq0, Array< OneD, int > &idmap)
 
- Public Member Functions inherited from Nektar::LocalRegions::Expansion
 Expansion (SpatialDomains::GeometrySharedPtr pGeom)
 
 Expansion (const Expansion &pSrc)
 
virtual ~Expansion ()
 
DNekScalMatSharedPtr GetLocMatrix (const LocalRegions::MatrixKey &mkey)
 
DNekScalMatSharedPtr GetLocMatrix (const StdRegions::MatrixType mtype, const StdRegions::ConstFactorMap &factors=StdRegions::NullConstFactorMap, const StdRegions::VarCoeffMap &varcoeffs=StdRegions::NullVarCoeffMap)
 
SpatialDomains::GeometrySharedPtr GetGeom () const
 
void Reset ()
 
virtual const
SpatialDomains::GeomFactorsSharedPtr
v_GetMetricInfo () const
 
DNekMatSharedPtr BuildTransformationMatrix (const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType)
 
DNekMatSharedPtr BuildVertexMatrix (const DNekScalMatSharedPtr &r_bnd)
 
void AddEdgeNormBoundaryInt (const int edge, const boost::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void AddEdgeNormBoundaryInt (const int edge, const boost::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
void AddFaceNormBoundaryInt (const int face, const boost::shared_ptr< Expansion > &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
void DGDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, ExpansionSharedPtr > &EdgeExp, Array< OneD, Array< OneD, NekDouble > > &coeffs, Array< OneD, NekDouble > &outarray)
 

Protected Member Functions

virtual NekDouble v_Integral (const Array< OneD, const NekDouble > &inarray)
 Integrates the specified function over the domain. More...
 
virtual void v_PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 Calculate the derivative of the physical points. More...
 
virtual void v_PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Calculate the derivative of the physical points in a given direction. More...
 
virtual void v_PhysDirectionalDeriv (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &direction, Array< OneD, NekDouble > &out)
 Physical derivative along a direction vector. More...
 
virtual void v_FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Transform a given function from physical quadrature space to coefficient space. More...
 
virtual void v_FwdTrans_BndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Calculate the inner product of inarray with respect to the basis B=base0[p]*base1[pq] and put into outarray. More...
 
virtual void v_IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
 
virtual void v_IProductWRTBase_MatOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_IProductWRTDerivBase_MatOp (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
virtual
StdRegions::StdExpansionSharedPtr 
v_GetStdExp (void) const
 
virtual void v_GetCoord (const Array< OneD, const NekDouble > &Lcoords, Array< OneD, NekDouble > &coords)
 
virtual void v_GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3)
 
virtual NekDouble v_StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
virtual NekDouble v_PhysEvaluate (const Array< OneD, const NekDouble > &coord, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
virtual void v_GetEdgePhysVals (const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Extract the physical values along edge edge from inarray into outarray following the local edge orientation and point distribution defined by defined in EdgeExp. More...
 
virtual void v_GetEdgePhysVals (const int edge, const StdRegions::StdExpansionSharedPtr &EdgeExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_GetTracePhysVals (const int edge, const StdRegions::StdExpansionSharedPtr &EdgeExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient)
 
virtual void v_GetEdgeInterpVals (const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_GetEdgeQFactors (const int edge, Array< OneD, NekDouble > &outarray)
 
virtual void v_ComputeEdgeNormal (const int edge)
 
virtual int v_GetCoordim ()
 
virtual void v_ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int mode_offset, NekDouble *coeffs)
 Unpack data from input file assuming it comes from the same expansion type. More...
 
virtual StdRegions::Orientation v_GetEorient (int edge)
 
virtual StdRegions::Orientation v_GetCartesianEorient (int edge)
 
virtual const
LibUtilities::BasisSharedPtr
v_GetBasis (int dir) const
 
virtual int v_GetNumPoints (const int dir) const
 
virtual void v_GetEdgePhysMap (const int edge, Array< OneD, int > &outarray)
 
virtual DNekMatSharedPtr v_GenMatrix (const StdRegions::StdMatrixKey &mkey)
 
virtual DNekMatSharedPtr v_CreateStdMatrix (const StdRegions::StdMatrixKey &mkey)
 
virtual DNekScalMatSharedPtr CreateMatrix (const MatrixKey &mkey)
 
virtual DNekScalBlkMatSharedPtr CreateStaticCondMatrix (const MatrixKey &mkey)
 
virtual DNekScalMatSharedPtr v_GetLocMatrix (const MatrixKey &mkey)
 
virtual DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix (const MatrixKey &mkey)
 
void v_DropLocStaticCondMatrix (const MatrixKey &mkey)
 
virtual void v_MassMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_LaplacianMatrixOp (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_WeakDerivMatrixOp (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_WeakDirectionalDerivMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_MassLevelCurvatureMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_GeneralMatrixOp_MatOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_LaplacianMatrixOp_MatFree_Kernel (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
 
virtual void v_ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_ComputeLaplacianMetric ()
 
virtual void v_SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdRegions::StdMatrixKey &mkey)
 
- Protected Member Functions inherited from Nektar::StdRegions::StdTriExp
virtual void v_StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
virtual void v_StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Backward tranform for triangular elements. More...
 
virtual void v_BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1)
 
virtual void v_IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1)
 
virtual void v_LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
 
virtual void v_FillMode (const int mode, Array< OneD, NekDouble > &outarray)
 
virtual int v_GetNverts () const
 
virtual int v_GetNedges () const
 
virtual LibUtilities::ShapeType v_DetShapeType () const
 
virtual int v_NumBndryCoeffs () const
 
virtual int v_NumDGBndryCoeffs () const
 
virtual int v_GetEdgeNcoeffs (const int i) const
 
virtual int v_GetEdgeNumPoints (const int i) const
 
virtual int v_CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
virtual LibUtilities::BasisType v_GetEdgeBasisType (const int i) const
 
virtual bool v_IsBoundaryInteriorExpansion ()
 
virtual int v_DetCartesianDirOfEdge (const int edge)
 
virtual const
LibUtilities::BasisKey 
v_DetEdgeBasisKey (const int edge) const
 
virtual void v_GetEdgeToElementMap (const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, int P=-1)
 
virtual int v_GetVertexMap (int localVertexId, bool useCoeffPacking=false)
 
virtual void v_GetEdgeInteriorMap (const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
 
virtual void v_GetInteriorMap (Array< OneD, unsigned int > &outarray)
 
virtual void v_GetBoundaryMap (Array< OneD, unsigned int > &outarray)
 
virtual void v_MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_GetSimplexEquiSpacedConnectivity (Array< OneD, int > &conn, bool standard=true)
 
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion2D
virtual NekDouble v_PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
 
virtual void v_LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual int v_GetTraceNcoeffs (const int i) const
 
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion
DNekMatSharedPtr CreateStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr CreateStdStaticCondMatrix (const StdMatrixKey &mkey)
 Create the static condensation of a matrix when using a boundary interior decomposition. More...
 
IndexMapValuesSharedPtr CreateIndexMap (const IndexMapKey &ikey)
 Create an IndexMap which contains mapping information linking any specific element shape with either its boundaries, edges, faces, verteces, etc. More...
 
void BwdTrans_MatOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GeneralMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree_Kernel (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
 
void LaplacianMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp_MatFree (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void HelmholtzMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
virtual void v_SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_SetCoeffsToOrientation (Array< OneD, NekDouble > &coeffs, StdRegions::Orientation dir)
 
- Protected Member Functions inherited from Nektar::LocalRegions::Expansion2D
virtual void v_DGDeriv (const int dir, const Array< OneD, const NekDouble > &incoeffs, Array< OneD, ExpansionSharedPtr > &EdgeExp, Array< OneD, Array< OneD, NekDouble > > &edgeCoeffs, Array< OneD, NekDouble > &out_d)
 
virtual void v_AddEdgeNormBoundaryInt (const int edge, const ExpansionSharedPtr &EdgeExp, const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddEdgeNormBoundaryInt (const int edge, const ExpansionSharedPtr &EdgeExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddRobinMassMatrix (const int edgeid, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat)
 
virtual void v_AddRobinEdgeContribution (const int edgeid, const Array< OneD, const NekDouble > &primCoeffs, Array< OneD, NekDouble > &coeffs)
 
virtual DNekMatSharedPtr v_BuildVertexMatrix (const DNekScalMatSharedPtr &r_bnd)
 
void GetPhysEdgeVarCoeffsFromElement (const int edge, ExpansionSharedPtr &EdgeExp, const Array< OneD, const NekDouble > &varcoeff, Array< OneD, NekDouble > &outarray)
 
void ReOrientQuadEdgePhysMap (const StdRegions::Orientation orient, const int nq0, Array< OneD, int > &idmap)
 
Array< OneD, unsigned int > v_GetEdgeInverseBoundaryMap (int eid)
 
virtual void v_NegateEdgeNormal (const int edge)
 
virtual bool v_EdgeNormalNegated (const int edge)
 
virtual void v_SetUpPhysNormals (const int edge)
 
const StdRegions::NormalVectorv_GetEdgeNormal (const int edge) const
 
const StdRegions::NormalVectorv_GetSurfaceNormal (const int id) const
 
- Protected Member Functions inherited from Nektar::LocalRegions::Expansion
void ComputeLaplacianMetric ()
 
void ComputeQuadratureMetric ()
 
virtual void v_MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual DNekMatSharedPtr v_BuildTransformationMatrix (const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType)
 
virtual void v_AddEdgeNormBoundaryInt (const int edge, const boost::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddEdgeNormBoundaryInt (const int edge, const boost::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddFaceNormBoundaryInt (const int face, const boost::shared_ptr< Expansion > &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 

Private Member Functions

 TriExp ()
 

Private Attributes

LibUtilities::NekManager
< MatrixKey, DNekScalMat,
MatrixKey::opLess
m_matrixManager
 
LibUtilities::NekManager
< MatrixKey, DNekScalBlkMat,
MatrixKey::opLess
m_staticCondMatrixManager
 

Additional Inherited Members

- Protected Attributes inherited from Nektar::StdRegions::StdExpansion
Array< OneD,
LibUtilities::BasisSharedPtr
m_base
 
int m_elmt_id
 
int m_ncoeffs
 
LibUtilities::NekManager
< StdMatrixKey, DNekMat,
StdMatrixKey::opLess
m_stdMatrixManager
 
LibUtilities::NekManager
< StdMatrixKey, DNekBlkMat,
StdMatrixKey::opLess
m_stdStaticCondMatrixManager
 
LibUtilities::NekManager
< IndexMapKey, IndexMapValues,
IndexMapKey::opLess
m_IndexMapManager
 
- Protected Attributes inherited from Nektar::LocalRegions::Expansion2D
std::vector< Expansion1DWeakPtrm_edgeExp
 
std::vector< bool > m_requireNeg
 
std::map< int,
StdRegions::NormalVector
m_edgeNormals
 
std::map< int, bool > m_negatedNormals
 
Expansion3DWeakPtr m_elementLeft
 
Expansion3DWeakPtr m_elementRight
 
int m_elementFaceLeft
 
int m_elementFaceRight
 
- Protected Attributes inherited from Nektar::LocalRegions::Expansion
SpatialDomains::GeometrySharedPtr m_geom
 
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
 
MetricMap m_metrics
 

Detailed Description

Definition at line 51 of file TriExp.h.

Constructor & Destructor Documentation

Nektar::LocalRegions::TriExp::TriExp ( const LibUtilities::BasisKey Ba,
const LibUtilities::BasisKey Bb,
const SpatialDomains::TriGeomSharedPtr geom 
)

Constructor using BasisKey class for quadrature points and order definition.

Definition at line 47 of file TriExp.cpp.

49  :
50  StdExpansion (LibUtilities::StdTriData::getNumberOfCoefficients(Ba.GetNumModes(),(Bb.GetNumModes())),2,Ba,Bb),
51  StdExpansion2D(LibUtilities::StdTriData::getNumberOfCoefficients(Ba.GetNumModes(),(Bb.GetNumModes())),Ba,Bb),
52  StdTriExp(Ba,Bb),
53  Expansion (geom),
54  Expansion2D (geom),
56  boost::bind(&TriExp::CreateMatrix, this, _1),
57  std::string("TriExpMatrix")),
59  boost::bind(&TriExp::CreateStaticCondMatrix, this, _1),
60  std::string("TriExpStaticCondMatrix"))
61  {
62  }
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: TriExp.h:284
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: TriExp.h:285
Expansion(SpatialDomains::GeometrySharedPtr pGeom)
Definition: Expansion.cpp:48
virtual DNekScalBlkMatSharedPtr CreateStaticCondMatrix(const MatrixKey &mkey)
Definition: TriExp.cpp:1335
int getNumberOfCoefficients(int Na, int Nb)
Definition: ShapeType.hpp:111
Expansion2D(SpatialDomains::Geometry2DSharedPtr pGeom)
Definition: Expansion2D.cpp:49
StdExpansion()
Default Constructor.
virtual DNekScalMatSharedPtr CreateMatrix(const MatrixKey &mkey)
Definition: TriExp.cpp:1068
Nektar::LocalRegions::TriExp::TriExp ( const TriExp T)

Definition at line 65 of file TriExp.cpp.

65  :
66  StdExpansion(T),
67  StdExpansion2D(T),
68  StdTriExp(T),
69  Expansion(T),
70  Expansion2D(T),
71  m_matrixManager(T.m_matrixManager),
72  m_staticCondMatrixManager(T.m_staticCondMatrixManager)
73  {
74  }
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: TriExp.h:284
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: TriExp.h:285
Expansion(SpatialDomains::GeometrySharedPtr pGeom)
Definition: Expansion.cpp:48
Expansion2D(SpatialDomains::Geometry2DSharedPtr pGeom)
Definition: Expansion2D.cpp:49
StdExpansion()
Default Constructor.
Nektar::LocalRegions::TriExp::~TriExp ( )

Definition at line 77 of file TriExp.cpp.

78  {
79  }
Nektar::LocalRegions::TriExp::TriExp ( )
private

Member Function Documentation

DNekScalMatSharedPtr Nektar::LocalRegions::TriExp::CreateMatrix ( const MatrixKey mkey)
protectedvirtual

Definition at line 1068 of file TriExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), ASSERTL2, Nektar::LocalRegions::Expansion::BuildVertexMatrix(), Nektar::StdRegions::StdMatrixKey::ConstFactorExists(), Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::eFactorLambda, Nektar::StdRegions::eFactorSVVCutoffRatio, Nektar::StdRegions::eHelmholtz, Nektar::StdRegions::eHybridDGHelmholtz, Nektar::StdRegions::eInvHybridDGHelmholtz, Nektar::StdRegions::eInvLaplacianWithUnityMean, Nektar::StdRegions::eInvMass, Nektar::StdRegions::eIProductWRTBase, Nektar::StdRegions::eIProductWRTDerivBase0, Nektar::StdRegions::eIProductWRTDerivBase1, Nektar::StdRegions::eIProductWRTDerivBase2, Nektar::StdRegions::eLaplacian, Nektar::StdRegions::eLaplacian00, Nektar::StdRegions::eLaplacian01, Nektar::StdRegions::eLaplacian11, Nektar::StdRegions::eMass, Nektar::SpatialDomains::eNoGeomType, Nektar::StdRegions::ePreconLinearSpace, Nektar::StdRegions::eWeakDeriv0, Nektar::StdRegions::eWeakDeriv1, Nektar::StdRegions::eWeakDeriv2, Nektar::StdRegions::StdExpansion::GenMatrix(), Nektar::StdRegions::StdMatrixKey::GetConstFactor(), Nektar::StdRegions::StdMatrixKey::GetConstFactors(), Nektar::StdRegions::StdExpansion::GetLocStaticCondMatrix(), Nektar::StdRegions::StdMatrixKey::GetMatrixType(), Nektar::StdRegions::StdMatrixKey::GetNVarCoeff(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdMatrixKey::GetShapeType(), Nektar::StdRegions::StdExpansion::GetStdMatrix(), Nektar::StdRegions::StdMatrixKey::GetVarCoeffs(), m_matrixManager, Nektar::LocalRegions::Expansion::m_metricinfo, and Nektar::Transpose().

1069  {
1070  DNekScalMatSharedPtr returnval;
1072 
1073  ASSERTL2(m_metricinfo->GetGtype() != SpatialDomains::eNoGeomType,"Geometric information is not set up");
1074 
1075  switch(mkey.GetMatrixType())
1076  {
1077  case StdRegions::eMass:
1078  {
1079  if((m_metricinfo->GetGtype() == SpatialDomains::eDeformed)||
1080  (mkey.GetNVarCoeff()))
1081  {
1082  NekDouble one = 1.0;
1083  DNekMatSharedPtr mat = GenMatrix(mkey);
1084  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1085  }
1086  else
1087  {
1088  NekDouble jac = (m_metricinfo->GetJac(ptsKeys))[0];
1089  DNekMatSharedPtr mat = GetStdMatrix(mkey);
1090  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(jac,mat);
1091  }
1092  }
1093  break;
1094  case StdRegions::eInvMass:
1095  {
1096  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1097  {
1098  NekDouble one = 1.0;
1099  StdRegions::StdMatrixKey masskey(StdRegions::eMass,DetShapeType(),
1100  *this);
1101  DNekMatSharedPtr mat = GenMatrix(masskey);
1102  mat->Invert();
1103 
1104  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1105  }
1106  else
1107  {
1108  NekDouble fac = 1.0/(m_metricinfo->GetJac(ptsKeys))[0];
1109  DNekMatSharedPtr mat = GetStdMatrix(mkey);
1110  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(fac,mat);
1111 
1112  }
1113  }
1114  break;
1118  {
1119  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed || mkey.GetNVarCoeff())
1120  {
1121  NekDouble one = 1.0;
1122  DNekMatSharedPtr mat = GenMatrix(mkey);
1123 
1124  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1125  }
1126  else
1127  {
1128  NekDouble jac = (m_metricinfo->GetJac(ptsKeys))[0];
1129  Array<TwoD, const NekDouble> df = m_metricinfo->GetDerivFactors(ptsKeys);
1130  int dir = 0;
1131  switch(mkey.GetMatrixType())
1132  {
1134  dir = 0;
1135  break;
1137  dir = 1;
1138  break;
1140  dir = 2;
1141  break;
1142  default:
1143  break;
1144  }
1145 
1146  MatrixKey deriv0key(StdRegions::eWeakDeriv0,
1147  mkey.GetShapeType(), *this);
1148  MatrixKey deriv1key(StdRegions::eWeakDeriv1,
1149  mkey.GetShapeType(), *this);
1150 
1151  DNekMat &deriv0 = *GetStdMatrix(deriv0key);
1152  DNekMat &deriv1 = *GetStdMatrix(deriv1key);
1153 
1154  int rows = deriv0.GetRows();
1155  int cols = deriv1.GetColumns();
1156 
1158  (*WeakDeriv) = df[2*dir][0]*deriv0 + df[2*dir+1][0]*deriv1;
1159 
1160  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(jac,WeakDeriv);
1161  }
1162  }
1163  break;
1165  {
1166  if( (m_metricinfo->GetGtype() == SpatialDomains::eDeformed) ||
1167  (mkey.GetNVarCoeff() > 0)||(mkey.ConstFactorExists(StdRegions::eFactorSVVCutoffRatio)))
1168  {
1169  NekDouble one = 1.0;
1170  DNekMatSharedPtr mat = GenMatrix(mkey);
1171 
1172  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1173  }
1174  else
1175  {
1176  MatrixKey lap00key(StdRegions::eLaplacian00,
1177  mkey.GetShapeType(), *this);
1178  MatrixKey lap01key(StdRegions::eLaplacian01,
1179  mkey.GetShapeType(), *this);
1180  MatrixKey lap11key(StdRegions::eLaplacian11,
1181  mkey.GetShapeType(), *this);
1182 
1183  DNekMat &lap00 = *GetStdMatrix(lap00key);
1184  DNekMat &lap01 = *GetStdMatrix(lap01key);
1185  DNekMat &lap11 = *GetStdMatrix(lap11key);
1186 
1187  NekDouble jac = (m_metricinfo->GetJac(ptsKeys))[0];
1188  Array<TwoD, const NekDouble> gmat =
1189  m_metricinfo->GetGmat(ptsKeys);
1190 
1191  int rows = lap00.GetRows();
1192  int cols = lap00.GetColumns();
1193 
1195 
1196  (*lap) = gmat[0][0] * lap00 +
1197  gmat[1][0] * (lap01 + Transpose(lap01)) +
1198  gmat[3][0] * lap11;
1199 
1200  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(jac,lap);
1201  }
1202  }
1203  break;
1205  {
1206  DNekMatSharedPtr mat = GenMatrix(mkey);
1207  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(1.0,mat);
1208  }
1209  break;
1211  {
1212  NekDouble factor = mkey.GetConstFactor(StdRegions::eFactorLambda);
1213 
1214  MatrixKey masskey(mkey, StdRegions::eMass);
1215  DNekScalMat &MassMat = *(this->m_matrixManager[masskey]);
1216 
1217  MatrixKey lapkey(mkey, StdRegions::eLaplacian);
1218  DNekScalMat &LapMat = *(this->m_matrixManager[lapkey]);
1219 
1220  int rows = LapMat.GetRows();
1221  int cols = LapMat.GetColumns();
1222 
1224 
1225  NekDouble one = 1.0;
1226  (*helm) = LapMat + factor*MassMat;
1227 
1228  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,helm);
1229  }
1230  break;
1232  {
1233  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1234  {
1235  NekDouble one = 1.0;
1236  DNekMatSharedPtr mat = GenMatrix(mkey);
1237  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1238  }
1239  else
1240  {
1241  NekDouble jac = (m_metricinfo->GetJac(ptsKeys))[0];
1242  DNekMatSharedPtr mat = GetStdMatrix(mkey);
1243  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(jac,mat);
1244  }
1245  }
1246  break;
1250  {
1251  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1252  {
1253  NekDouble one = 1.0;
1254  DNekMatSharedPtr mat = GenMatrix(mkey);
1255  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1256  }
1257  else
1258  {
1259  NekDouble jac = (m_metricinfo->GetJac(ptsKeys))[0];
1260 
1261  const Array<TwoD, const NekDouble>& df = m_metricinfo->GetDerivFactors(ptsKeys);
1262  int dir = 0;
1263 
1264  switch(mkey.GetMatrixType())
1265  {
1267  dir = 0;
1268  break;
1270  dir = 1;
1271  break;
1273  dir = 2;
1274  break;
1275  default:
1276  break;
1277  }
1278 
1279  MatrixKey iProdDeriv0Key(StdRegions::eIProductWRTDerivBase0,
1280  mkey.GetShapeType(), *this);
1281  MatrixKey iProdDeriv1Key(StdRegions::eIProductWRTDerivBase1,
1282  mkey.GetShapeType(), *this);
1283 
1284  DNekMat &stdiprod0 = *GetStdMatrix(iProdDeriv0Key);
1285  DNekMat &stdiprod1 = *GetStdMatrix(iProdDeriv0Key);
1286 
1287  int rows = stdiprod0.GetRows();
1288  int cols = stdiprod1.GetColumns();
1289 
1291  (*mat) = df[2*dir][0]*stdiprod0 + df[2*dir+1][0]*stdiprod1;
1292 
1293  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(jac,mat);
1294  }
1295  }
1296  break;
1297 
1299  {
1300  NekDouble one = 1.0;
1301 
1302  MatrixKey hkey(StdRegions::eHybridDGHelmholtz, DetShapeType(), *this, mkey.GetConstFactors(), mkey.GetVarCoeffs());
1303 
1304  DNekMatSharedPtr mat = GenMatrix(hkey);
1305 
1306  mat->Invert();
1307  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1308  }
1309  break;
1311  {
1312  NekDouble one = 1.0;
1313  MatrixKey helmkey(StdRegions::eHelmholtz, mkey.GetShapeType(), *this, mkey.GetConstFactors(), mkey.GetVarCoeffs());
1314  DNekScalBlkMatSharedPtr helmStatCond = GetLocStaticCondMatrix(helmkey);
1315  DNekScalMatSharedPtr A =helmStatCond->GetBlock(0,0);
1317 
1319  }
1320  break;
1321  default:
1322  {
1323  NekDouble one = 1.0;
1324  DNekMatSharedPtr mat = GenMatrix(mkey);
1325 
1326  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1327  }
1328  break;
1329  }
1330 
1331  return returnval;
1332  }
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: TriExp.h:284
const LibUtilities::PointsKeyVector GetPointsKeys() const
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
Definition: StdExpansion.h:470
DNekMatSharedPtr GenMatrix(const StdMatrixKey &mkey)
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:220
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
DNekMatSharedPtr BuildVertexMatrix(const DNekScalMatSharedPtr &r_bnd)
Definition: Expansion.cpp:98
DNekScalBlkMatSharedPtr GetLocStaticCondMatrix(const LocalRegions::MatrixKey &mkey)
Definition: StdExpansion.h:747
boost::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:70
DNekMatSharedPtr GetStdMatrix(const StdMatrixKey &mkey)
Definition: StdExpansion.h:700
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
boost::shared_ptr< DNekScalBlkMat > DNekScalBlkMatSharedPtr
Definition: NekTypeDefs.hpp:74
NekMatrix< InnerMatrixType, BlockMatrixTag > Transpose(NekMatrix< InnerMatrixType, BlockMatrixTag > &rhs)
NekMatrix< NekDouble, StandardMatrixTag > DNekMat
Definition: NekTypeDefs.hpp:52
double NekDouble
#define ASSERTL2(condition, msg)
Assert Level 2 – Debugging which is used FULLDEBUG compilation mode. This level assert is designed t...
Definition: ErrorUtil.hpp:213
Geometry is curved or has non-constant factors.
NekMatrix< NekMatrix< NekDouble, StandardMatrixTag >, ScaledMatrixTag > DNekScalMat
DNekScalBlkMatSharedPtr Nektar::LocalRegions::TriExp::CreateStaticCondMatrix ( const MatrixKey mkey)
protectedvirtual

Definition at line 1335 of file TriExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), ASSERTL2, Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::eMass, Nektar::SpatialDomains::eNoGeomType, Nektar::StdRegions::StdExpansion::GetBoundaryMap(), Nektar::StdRegions::StdExpansion::GetInteriorMap(), Nektar::LocalRegions::Expansion::GetLocMatrix(), Nektar::StdRegions::StdMatrixKey::GetMatrixType(), Nektar::StdRegions::StdMatrixKey::GetNVarCoeff(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::GetStdStaticCondMatrix(), Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::StdRegions::StdExpansion::m_ncoeffs, and Nektar::StdRegions::StdExpansion::NumBndryCoeffs().

1336  {
1337  DNekScalBlkMatSharedPtr returnval;
1339 
1340  ASSERTL2(m_metricinfo->GetGtype() != SpatialDomains::eNoGeomType,"Geometric information is not set up");
1341 
1342  // set up block matrix system
1343  unsigned int nbdry = NumBndryCoeffs();
1344  unsigned int nint = (unsigned int)(m_ncoeffs - nbdry);
1345  unsigned int exp_size[] = {nbdry,nint};
1346  unsigned int nblks = 2;
1347  returnval = MemoryManager<DNekScalBlkMat>::AllocateSharedPtr(nblks,nblks,exp_size,exp_size); //Really need a constructor which takes Arrays
1348  NekDouble factor = 1.0;
1349 
1350  switch(mkey.GetMatrixType())
1351  {
1352  // this can only use stdregions statically condensed system for mass matrix
1353  case StdRegions::eMass:
1354  if((m_metricinfo->GetGtype() == SpatialDomains::eDeformed)||(mkey.GetNVarCoeff()))
1355  {
1356  factor = 1.0;
1357  goto UseLocRegionsMatrix;
1358  }
1359  else
1360  {
1361  factor = (m_metricinfo->GetJac(ptsKeys))[0];
1362  goto UseStdRegionsMatrix;
1363  }
1364  break;
1365  default: // use Deformed case for both regular and deformed geometries
1366  factor = 1.0;
1367  goto UseLocRegionsMatrix;
1368  break;
1369  UseStdRegionsMatrix:
1370  {
1371  NekDouble invfactor = 1.0/factor;
1372  NekDouble one = 1.0;
1374  DNekScalMatSharedPtr Atmp;
1375  DNekMatSharedPtr Asubmat;
1376 
1377  returnval->SetBlock(0,0,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(factor,Asubmat = mat->GetBlock(0,0)));
1378  returnval->SetBlock(0,1,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,Asubmat = mat->GetBlock(0,1)));
1379  returnval->SetBlock(1,0,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(factor,Asubmat = mat->GetBlock(1,0)));
1380  returnval->SetBlock(1,1,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(invfactor,Asubmat = mat->GetBlock(1,1)));
1381  }
1382  break;
1383 
1384  UseLocRegionsMatrix:
1385  {
1386  int i,j;
1387  NekDouble invfactor = 1.0/factor;
1388  NekDouble one = 1.0;
1389 
1390  DNekScalMat &mat = *GetLocMatrix(mkey);
1391 
1396 
1397  Array<OneD,unsigned int> bmap(nbdry);
1398  Array<OneD,unsigned int> imap(nint);
1399  GetBoundaryMap(bmap);
1400  GetInteriorMap(imap);
1401 
1402  for(i = 0; i < nbdry; ++i)
1403  {
1404  for(j = 0; j < nbdry; ++j)
1405  {
1406  (*A)(i,j) = mat(bmap[i],bmap[j]);
1407  }
1408 
1409  for(j = 0; j < nint; ++j)
1410  {
1411  (*B)(i,j) = mat(bmap[i],imap[j]);
1412  }
1413  }
1414 
1415  for(i = 0; i < nint; ++i)
1416  {
1417  for(j = 0; j < nbdry; ++j)
1418  {
1419  (*C)(i,j) = mat(imap[i],bmap[j]);
1420  }
1421 
1422  for(j = 0; j < nint; ++j)
1423  {
1424  (*D)(i,j) = mat(imap[i],imap[j]);
1425  }
1426  }
1427 
1428  // Calculate static condensed system
1429  if(nint)
1430  {
1431  D->Invert();
1432  (*B) = (*B)*(*D);
1433  (*A) = (*A) - (*B)*(*C);
1434  }
1435 
1436  DNekScalMatSharedPtr Atmp;
1437 
1438  returnval->SetBlock(0,0,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(factor,A));
1439  returnval->SetBlock(0,1,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,B));
1440  returnval->SetBlock(1,0,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(factor,C));
1441  returnval->SetBlock(1,1,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(invfactor,D));
1442 
1443  }
1444  }
1445 
1446  return returnval;
1447  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:220
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
boost::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:70
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
DNekBlkMatSharedPtr GetStdStaticCondMatrix(const StdMatrixKey &mkey)
Definition: StdExpansion.h:705
boost::shared_ptr< DNekScalBlkMat > DNekScalBlkMatSharedPtr
Definition: NekTypeDefs.hpp:74
void GetInteriorMap(Array< OneD, unsigned int > &outarray)
Definition: StdExpansion.h:821
double NekDouble
boost::shared_ptr< DNekBlkMat > DNekBlkMatSharedPtr
Definition: NekTypeDefs.hpp:72
DNekScalMatSharedPtr GetLocMatrix(const LocalRegions::MatrixKey &mkey)
Definition: Expansion.cpp:85
#define ASSERTL2(condition, msg)
Assert Level 2 – Debugging which is used FULLDEBUG compilation mode. This level assert is designed t...
Definition: ErrorUtil.hpp:213
Geometry is curved or has non-constant factors.
NekMatrix< NekMatrix< NekDouble, StandardMatrixTag >, ScaledMatrixTag > DNekScalMat
void GetBoundaryMap(Array< OneD, unsigned int > &outarray)
Definition: StdExpansion.h:816
void Nektar::LocalRegions::TriExp::v_ComputeEdgeNormal ( const int  edge)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 803 of file TriExp.cpp.

References ASSERTL0, Nektar::StdRegions::eBackwards, Nektar::SpatialDomains::eDeformed, Nektar::SpatialDomains::eMovingRegular, Nektar::SpatialDomains::eRegular, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetCoordim(), Nektar::StdRegions::StdExpansion::GetEorient(), Nektar::LocalRegions::Expansion::GetGeom(), Nektar::LibUtilities::PointsKey::GetNumPoints(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::LibUtilities::Interp1D(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion2D::m_edgeNormals, Vmath::Reverse(), Vmath::Sdiv(), Vmath::Smul(), Vmath::Vmul(), Vmath::Vsqrt(), Vmath::Vvtvp(), and Vmath::Zero().

804  {
805  int i;
806  const SpatialDomains::GeomFactorsSharedPtr & geomFactors = GetGeom()->GetMetricInfo();
808  const SpatialDomains::GeomType type = geomFactors->GetGtype();
809  const Array<TwoD, const NekDouble> & df = geomFactors->GetDerivFactors(ptsKeys);
810  const Array<OneD, const NekDouble> & jac = geomFactors->GetJac(ptsKeys);
811  int nqe = m_base[0]->GetNumPoints();
812  int dim = GetCoordim();
813 
814  m_edgeNormals[edge] = Array<OneD, Array<OneD, NekDouble> >(dim);
815  Array<OneD, Array<OneD, NekDouble> > &normal = m_edgeNormals[edge];
816  for (i = 0; i < dim; ++i)
817  {
818  normal[i] = Array<OneD, NekDouble>(nqe);
819  }
820 
821  // Regular geometry case
823  {
824  NekDouble fac;
825  // Set up normals
826  switch(edge)
827  {
828  case 0:
829  for(i = 0; i < GetCoordim(); ++i)
830  {
831  Vmath::Fill(nqe,-df[2*i+1][0],normal[i],1);
832  }
833  break;
834  case 1:
835  for(i = 0; i < GetCoordim(); ++i)
836  {
837  Vmath::Fill(nqe,df[2*i+1][0] + df[2*i][0],normal[i],1);
838  }
839  break;
840  case 2:
841  for(i = 0; i < GetCoordim(); ++i)
842  {
843  Vmath::Fill(nqe,-df[2*i][0],normal[i],1);
844  }
845  break;
846  default:
847  ASSERTL0(false,"Edge is out of range (edge < 3)");
848  }
849 
850  // normalise
851  fac = 0.0;
852  for(i =0 ; i < GetCoordim(); ++i)
853  {
854  fac += normal[i][0]*normal[i][0];
855  }
856  fac = 1.0/sqrt(fac);
857  for (i = 0; i < GetCoordim(); ++i)
858  {
859  Vmath::Smul(nqe,fac,normal[i],1,normal[i],1);
860  }
861  }
862  else // Set up deformed normals
863  {
864  int j;
865 
866  int nquad0 = ptsKeys[0].GetNumPoints();
867  int nquad1 = ptsKeys[1].GetNumPoints();
868 
869  LibUtilities::PointsKey from_key;
870 
871  Array<OneD,NekDouble> normals(GetCoordim()*max(nquad0,nquad1),0.0);
872  Array<OneD,NekDouble> edgejac(GetCoordim()*max(nquad0,nquad1),0.0);
873 
874  // Extract Jacobian along edges and recover local
875  // derivates (dx/dr) for polynomial interpolation by
876  // multiplying m_gmat by jacobian
877  switch(edge)
878  {
879  case 0:
880  for(j = 0; j < nquad0; ++j)
881  {
882  edgejac[j] = jac[j];
883  for(i = 0; i < GetCoordim(); ++i)
884  {
885  normals[i*nquad0+j] = -df[2*i+1][j]*edgejac[j];
886  }
887  }
888  from_key = ptsKeys[0];
889  break;
890  case 1:
891  for(j = 0; j < nquad1; ++j)
892  {
893  edgejac[j] = jac[nquad0*j+nquad0-1];
894  for(i = 0; i < GetCoordim(); ++i)
895  {
896  normals[i*nquad1+j] = (df[2*i][nquad0*j + nquad0-1] + df[2*i+1][nquad0*j + nquad0-1])*edgejac[j];
897  }
898  }
899  from_key = ptsKeys[1];
900  break;
901  case 2:
902  for(j = 0; j < nquad1; ++j)
903  {
904  edgejac[j] = jac[nquad0*j];
905  for(i = 0; i < GetCoordim(); ++i)
906  {
907  normals[i*nquad1+j] = -df[2*i][nquad0*j]*edgejac[j];
908  }
909  }
910  from_key = ptsKeys[1];
911  break;
912  default:
913  ASSERTL0(false,"edge is out of range (edge < 3)");
914 
915  }
916 
917  int nq = from_key.GetNumPoints();
918  Array<OneD,NekDouble> work(nqe,0.0);
919 
920  // interpolate Jacobian and invert
921  LibUtilities::Interp1D(from_key,jac,m_base[0]->GetPointsKey(),work);
922  Vmath::Sdiv(nq,1.0,&work[0],1,&work[0],1);
923 
924  // interpolate
925  for(i = 0; i < GetCoordim(); ++i)
926  {
927  LibUtilities::Interp1D(from_key,&normals[i*nq],m_base[0]->GetPointsKey(),&normal[i][0]);
928  Vmath::Vmul(nqe,work,1,normal[i],1,normal[i],1);
929  }
930 
931  //normalise normal vectors
932  Vmath::Zero(nqe,work,1);
933  for(i = 0; i < GetCoordim(); ++i)
934  {
935  Vmath::Vvtvp(nqe,normal[i],1, normal[i],1,work,1,work,1);
936  }
937 
938  Vmath::Vsqrt(nqe,work,1,work,1);
939  Vmath::Sdiv(nqe,1.0,work,1,work,1);
940 
941  for(i = 0; i < GetCoordim(); ++i)
942  {
943  Vmath::Vmul(nqe,normal[i],1,work,1,normal[i],1);
944  }
945 
946  // Reverse direction so that points are in
947  // anticlockwise direction if edge >=2
948  if(edge >= 2)
949  {
950  for(i = 0; i < GetCoordim(); ++i)
951  {
952  Vmath::Reverse(nqe,normal[i],1, normal[i],1);
953  }
954  }
955  }
957  {
958  for(i = 0; i < GetCoordim(); ++i)
959  {
960  if(geomFactors->GetGtype() == SpatialDomains::eDeformed)
961  {
962  Vmath::Reverse(nqe, normal[i], 1, normal[i],1);
963  }
964  }
965  }
966  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:220
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
Definition: Vmath.cpp:394
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:46
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:428
std::map< int, StdRegions::NormalVector > m_edgeNormals
Definition: Expansion2D.h:135
StdRegions::Orientation GetEorient(int edge)
Definition: StdExpansion.h:762
void Sdiv(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha/y.
Definition: Vmath.cpp:257
void Reverse(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1071
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
double NekDouble
SpatialDomains::GeometrySharedPtr GetGeom() const
Definition: Expansion.cpp:150
boost::shared_ptr< GeomFactors > GeomFactorsSharedPtr
Pointer to a GeomFactors object.
Definition: GeomFactors.h:62
Geometry is straight-sided with constant geometric factors.
void Interp1D(const BasisKey &fbasis0, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, Array< OneD, NekDouble > &to)
this function interpolates a 1D function evaluated at the quadrature points of the basis fbasis0 to ...
Definition: Interp.cpp:54
GeomType
Indicates the type of element geometry.
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:359
Array< OneD, LibUtilities::BasisSharedPtr > m_base
Geometry is curved or has non-constant factors.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
void Nektar::LocalRegions::TriExp::v_ComputeLaplacianMetric ( )
protectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 1601 of file TriExp.cpp.

References Nektar::LocalRegions::Expansion::ComputeQuadratureMetric(), Nektar::LocalRegions::eMetricLaplacian00, Nektar::LocalRegions::eMetricLaplacian01, Nektar::LocalRegions::eMetricLaplacian02, Nektar::LocalRegions::eMetricLaplacian11, Nektar::LocalRegions::eMetricLaplacian12, Nektar::LocalRegions::eMetricLaplacian22, Nektar::LocalRegions::eMetricQuadrature, Nektar::SpatialDomains::eMovingRegular, Nektar::SpatialDomains::eRegular, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetCoordim(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::GetTotPoints(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::LocalRegions::Expansion::m_metrics, Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric(), Vmath::Smul(), Vmath::Svtvp(), Vmath::Vmul(), and Vmath::Vvtvp().

1602  {
1603  if (m_metrics.count(eMetricQuadrature) == 0)
1604  {
1606  }
1607 
1608  unsigned int i, j;
1609  const SpatialDomains::GeomType type = m_metricinfo->GetGtype();
1610  const unsigned int nqtot = GetTotPoints();
1611  const unsigned int dim = 2;
1615  };
1616 
1617  Array<OneD, NekDouble> dEta_dXi[2] = {Array<OneD, NekDouble>(nqtot,1.0),
1618  Array<OneD, NekDouble>(nqtot,1.0)};
1619 
1620  for (i = 0; i < dim; ++i)
1621  {
1622  for (j = i; j < dim; ++j)
1623  {
1624  m_metrics[m[i][j]] = Array<OneD, NekDouble>(nqtot);
1625  }
1626  }
1627 
1628  const Array<OneD, const NekDouble>& z0 = m_base[0]->GetZ();
1629  const Array<OneD, const NekDouble>& z1 = m_base[1]->GetZ();
1630  const unsigned int nquad0 = m_base[0]->GetNumPoints();
1631  const unsigned int nquad1 = m_base[1]->GetNumPoints();
1632  const Array<TwoD, const NekDouble>& df =
1633  m_metricinfo->GetDerivFactors(GetPointsKeys());
1634 
1635  for(i = 0; i < nquad1; i++)
1636  {
1637  Blas::Dscal(nquad0,2.0/(1-z1[i]),&dEta_dXi[0][0]+i*nquad0,1);
1638  Blas::Dscal(nquad0,2.0/(1-z1[i]),&dEta_dXi[1][0]+i*nquad0,1);
1639  }
1640  for(i = 0; i < nquad0; i++)
1641  {
1642  Blas::Dscal(nquad1,0.5*(1+z0[i]),&dEta_dXi[1][0]+i,nquad0);
1643  }
1644 
1645  Array<OneD, NekDouble> tmp(nqtot);
1646  if((type == SpatialDomains::eRegular ||
1648  {
1649  Vmath::Smul (nqtot,df[0][0],&dEta_dXi[0][0],1,&tmp[0],1);
1650  Vmath::Svtvp(nqtot,df[1][0],&dEta_dXi[1][0],1,&tmp[0],1,&tmp[0],1);
1651 
1652  Vmath::Vmul (nqtot,&tmp[0],1, &tmp[0],1,&m_metrics[eMetricLaplacian00][0],1);
1653  Vmath::Smul (nqtot,df[1][0],&tmp[0],1,&m_metrics[eMetricLaplacian01][0],1);
1654 
1655 
1656  Vmath::Smul (nqtot,df[2][0],&dEta_dXi[0][0],1,&tmp[0],1);
1657  Vmath::Svtvp(nqtot,df[3][0],&dEta_dXi[1][0],1,&tmp[0],1,&tmp[0],1);
1658 
1659  Vmath::Vvtvp(nqtot,&tmp[0],1, &tmp[0],1,&m_metrics[eMetricLaplacian00][0],1,&m_metrics[eMetricLaplacian00][0],1);
1660  Vmath::Svtvp(nqtot,df[3][0],&tmp[0],1,&m_metrics[eMetricLaplacian01][0],1,&m_metrics[eMetricLaplacian01][0],1);
1661 
1662  if(GetCoordim() == 3)
1663  {
1664  Vmath::Smul (nqtot,df[4][0],&dEta_dXi[0][0],1,&tmp[0],1);
1665  Vmath::Svtvp(nqtot,df[5][0],&dEta_dXi[1][0],1,&tmp[0],1,&tmp[0],1);
1666 
1667  Vmath::Vvtvp(nqtot,&tmp[0],1, &tmp[0],1,&m_metrics[eMetricLaplacian00][0],1,&m_metrics[eMetricLaplacian00][0],1);
1668  Vmath::Svtvp(nqtot,df[5][0],&tmp[0],1,&m_metrics[eMetricLaplacian01][0],1,&m_metrics[eMetricLaplacian01][0],1);
1669  }
1670 
1671  NekDouble g2 = df[1][0]*df[1][0] + df[3][0]*df[3][0];
1672  if(GetCoordim() == 3)
1673  {
1674  g2 += df[5][0]*df[5][0];
1675  }
1676  Vmath::Fill(nqtot,g2,&m_metrics[eMetricLaplacian11][0],1);
1677  }
1678  else
1679  {
1680 
1681  Vmath::Vmul (nqtot,&df[0][0],1,&dEta_dXi[0][0],1,&tmp[0],1);
1682  Vmath::Vvtvp(nqtot,&df[1][0],1,&dEta_dXi[1][0],1,&tmp[0],1,&tmp[0],1);
1683 
1684  Vmath::Vmul (nqtot,&tmp[0], 1,&tmp[0], 1,&m_metrics[eMetricLaplacian00][0],1);
1685  Vmath::Vmul (nqtot,&df[1][0],1,&tmp[0], 1,&m_metrics[eMetricLaplacian01][0],1);
1686  Vmath::Vmul (nqtot,&df[1][0],1,&df[1][0],1,&m_metrics[eMetricLaplacian11][0],1);
1687 
1688 
1689  Vmath::Vmul (nqtot,&df[2][0],1,&dEta_dXi[0][0],1,&tmp[0],1);
1690  Vmath::Vvtvp(nqtot,&df[3][0],1,&dEta_dXi[1][0],1,&tmp[0],1,&tmp[0],1);
1691 
1692  Vmath::Vvtvp(nqtot,&tmp[0], 1,&tmp[0], 1,&m_metrics[eMetricLaplacian00][0],1,&m_metrics[eMetricLaplacian00][0],1);
1693  Vmath::Vvtvp(nqtot,&df[3][0],1,&tmp[0], 1,&m_metrics[eMetricLaplacian01][0],1,&m_metrics[eMetricLaplacian01][0],1);
1694  Vmath::Vvtvp(nqtot,&df[3][0],1,&df[3][0],1,&m_metrics[eMetricLaplacian11][0],1,&m_metrics[eMetricLaplacian11][0],1);
1695 
1696  if(GetCoordim() == 3)
1697  {
1698  Vmath::Vmul (nqtot,&df[4][0],1,&dEta_dXi[0][0],1,&tmp[0],1);
1699  Vmath::Vvtvp(nqtot,&df[5][0],1,&dEta_dXi[1][0],1,&tmp[0],1,&tmp[0],1);
1700 
1701  Vmath::Vvtvp(nqtot,&tmp[0], 1,&tmp[0], 1,&m_metrics[eMetricLaplacian00][0],1,&m_metrics[eMetricLaplacian00][0],1);
1702  Vmath::Vvtvp(nqtot,&df[5][0],1,&tmp[0], 1,&m_metrics[eMetricLaplacian01][0],1,&m_metrics[eMetricLaplacian01][0],1);
1703  Vmath::Vvtvp(nqtot,&df[5][0],1,&df[5][0],1,&m_metrics[eMetricLaplacian11][0],1,&m_metrics[eMetricLaplacian11][0],1);
1704  }
1705  }
1706 
1707  for (unsigned int i = 0; i < dim; ++i)
1708  {
1709  for (unsigned int j = i; j < dim; ++j)
1710  {
1712  m_metrics[m[i][j]]);
1713 
1714  }
1715  }
1716  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:942
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:46
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
Definition: Vmath.cpp:471
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:428
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:141
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
double NekDouble
Geometry is straight-sided with constant geometric factors.
GeomType
Indicates the type of element geometry.
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
DNekMatSharedPtr Nektar::LocalRegions::TriExp::v_CreateStdMatrix ( const StdRegions::StdMatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 1057 of file TriExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and Nektar::StdRegions::StdExpansion::m_base.

1058  {
1059  LibUtilities::BasisKey bkey0 = m_base[0]->GetBasisKey();
1060  LibUtilities::BasisKey bkey1 = m_base[1]->GetBasisKey();
1062  AllocateSharedPtr(bkey0,bkey1);
1063 
1064  return tmp->GetStdMatrix(mkey);
1065  }
boost::shared_ptr< StdTriExp > StdTriExpSharedPtr
Definition: StdTriExp.h:267
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Nektar::LocalRegions::TriExp::v_DropLocStaticCondMatrix ( const MatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1461 of file TriExp.cpp.

References m_staticCondMatrixManager.

1462  {
1463  m_staticCondMatrixManager.DeleteObject(mkey);
1464  }
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: TriExp.h:285
void Nektar::LocalRegions::TriExp::v_ExtractDataToCoeffs ( const NekDouble data,
const std::vector< unsigned int > &  nummodes,
const int  nmode_offset,
NekDouble coeffs 
)
protectedvirtual

Unpack data from input file assuming it comes from the same expansion type.

See also
StdExpansion::ExtractDataToCoeffs

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 974 of file TriExp.cpp.

References ASSERTL0, ASSERTL1, Nektar::LibUtilities::eModified_A, Nektar::LibUtilities::eModified_B, Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, Vmath::Vcopy(), and Vmath::Zero().

976  {
977  int data_order0 = nummodes[mode_offset];
978  int fillorder0 = min(m_base[0]->GetNumModes(),data_order0);
979  int data_order1 = nummodes[mode_offset+1];
980  int order1 = m_base[1]->GetNumModes();
981  int fillorder1 = min(order1,data_order1);
982 
983  switch(m_base[0]->GetBasisType())
984  {
986  {
987  int i;
988  int cnt = 0;
989  int cnt1 = 0;
990 
992  "Extraction routine not set up for this basis");
993 
994  Vmath::Zero(m_ncoeffs,coeffs,1);
995  for(i = 0; i < fillorder0; ++i)
996  {
997  Vmath::Vcopy(fillorder1-i,&data[cnt],1,&coeffs[cnt1],1);
998  cnt += data_order1-i;
999  cnt1 += order1-i;
1000  }
1001  }
1002  break;
1003  default:
1004  ASSERTL0(false,"basis is either not set up or not hierarchicial");
1005  }
1006  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
Principle Modified Functions .
Definition: BasisType.h:49
Principle Modified Functions .
Definition: BasisType.h:50
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:165
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:359
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1047
void Nektar::LocalRegions::TriExp::v_FwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Transform a given function from physical quadrature space to coefficient space.

See also
StdExpansion::FwdTrans

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 245 of file TriExp.cpp.

References Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::eCopy, Nektar::StdRegions::eInvMass, Nektar::eWrapper, Nektar::StdRegions::StdExpansion::IProductWRTBase(), m_matrixManager, and Nektar::StdRegions::StdExpansion::m_ncoeffs.

247  {
248  IProductWRTBase(inarray,outarray);
249 
250  // get Mass matrix inverse
251  MatrixKey masskey(StdRegions::eInvMass,
252  DetShapeType(),*this);
253  DNekScalMatSharedPtr matsys = m_matrixManager[masskey];
254 
255  // copy inarray in case inarray == outarray
256  NekVector<NekDouble> in (m_ncoeffs,outarray,eCopy);
257  NekVector<NekDouble> out(m_ncoeffs,outarray,eWrapper);
258 
259  out = (*matsys)*in;
260  }
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: TriExp.h:284
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
Definition: StdExpansion.h:470
void IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
this function calculates the inner product of a given function f with the different modes of the expa...
Definition: StdExpansion.h:629
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
void Nektar::LocalRegions::TriExp::v_FwdTrans_BndConstrained ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 263 of file TriExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::StdRegions::eBackwards, Nektar::StdRegions::eForwards, Nektar::LibUtilities::eGaussLobattoLegendre, Nektar::StdRegions::eMass, Nektar::StdRegions::StdExpansion::GetEdgeToElementMap(), Nektar::LocalRegions::Expansion2D::GetGeom2D(), Nektar::StdRegions::StdExpansion::GetInteriorMap(), Nektar::StdRegions::StdExpansion::GetPointsType(), Nektar::LibUtilities::Interp1D(), Nektar::StdRegions::StdExpansion::IProductWRTBase(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, m_staticCondMatrixManager, Nektar::StdRegions::StdExpansion::MassMatrixOp(), Nektar::StdRegions::StdExpansion::NumBndryCoeffs(), sign, and Vmath::Vsub().

265  {
266  int i,j;
267  int npoints[2] = {m_base[0]->GetNumPoints(),
268  m_base[1]->GetNumPoints()};
269  int nmodes[2] = {m_base[0]->GetNumModes(),
270  m_base[1]->GetNumModes()};
271 
272  fill(outarray.get(), outarray.get()+m_ncoeffs, 0.0 );
273 
274  Array<OneD, NekDouble> physEdge[3];
275  Array<OneD, NekDouble> coeffEdge[3];
276  for(i = 0; i < 3; i++)
277  {
278  // define physEdge and add 1 so can interpolate grl10 points if necessary
279  physEdge[i] = Array<OneD, NekDouble>(max(npoints[i!=0],npoints[0]));
280  coeffEdge[i] = Array<OneD, NekDouble>(nmodes[i!=0]);
281  }
282 
283  for(i = 0; i < npoints[0]; i++)
284  {
285  physEdge[0][i] = inarray[i];
286  }
287 
288  // extract data in cartesian directions
289  for(i = 0; i < npoints[1]; i++)
290  {
291  physEdge[1][i] = inarray[npoints[0]-1+i*npoints[0]];
292  physEdge[2][i] = inarray[i*npoints[0]];
293  }
294 
295  SegExpSharedPtr segexp[3];
296  segexp[0] = MemoryManager<LocalRegions::SegExp>::AllocateSharedPtr(m_base[0]->GetBasisKey(),GetGeom2D()->GetEdge(0));
297 
299  {
300  for(i = 1; i < 3; i++)
301  {
302  segexp[i] = MemoryManager<LocalRegions::SegExp>::AllocateSharedPtr(m_base[i!=0]->GetBasisKey(),GetGeom2D()->GetEdge(i));
303  }
304  }
305  else // interploate using edge 0 GLL distribution
306  {
307  for(i = 1; i < 3; i++)
308  {
309  segexp[i] = MemoryManager<LocalRegions::SegExp>::AllocateSharedPtr(m_base[0]->GetBasisKey(),GetGeom2D()->GetEdge(i));
310 
311  LibUtilities::Interp1D(m_base[1]->GetPointsKey(),physEdge[i],
312  m_base[0]->GetPointsKey(),physEdge[i]);
313  }
314  npoints[1] = npoints[0];
315  }
316 
317 
318  Array<OneD, unsigned int> mapArray;
319  Array<OneD, int> signArray;
320  NekDouble sign;
321  // define an orientation to get EdgeToElmtMapping from Cartesian data
324 
325  for(i = 0; i < 3; i++)
326  {
327  segexp[i]->FwdTrans_BndConstrained(physEdge[i],coeffEdge[i]);
328 
329  // this orient goes with the one above and so could
330  // probably set both to eForwards
331  GetEdgeToElementMap(i,orient[i],mapArray,signArray);
332  for(j=0; j < nmodes[i!=0]; j++)
333  {
334  sign = (NekDouble) signArray[j];
335  outarray[ mapArray[j] ] = sign * coeffEdge[i][j];
336  }
337  }
338 
339  int nBoundaryDofs = NumBndryCoeffs();
340  int nInteriorDofs = m_ncoeffs - nBoundaryDofs;
341 
342  if (nInteriorDofs > 0) {
343  Array<OneD, NekDouble> tmp0(m_ncoeffs);
344  Array<OneD, NekDouble> tmp1(m_ncoeffs);
345 
346  StdRegions::StdMatrixKey stdmasskey(StdRegions::eMass,DetShapeType(),*this);
347  MassMatrixOp(outarray,tmp0,stdmasskey);
348  IProductWRTBase(inarray,tmp1);
349 
350  Vmath::Vsub(m_ncoeffs, tmp1, 1, tmp0, 1, tmp1, 1);
351 
352  // get Mass matrix inverse (only of interior DOF)
353  // use block (1,1) of the static condensed system
354  // note: this block alreay contains the inverse matrix
355  MatrixKey masskey(StdRegions::eMass,DetShapeType(),*this);
356  DNekScalMatSharedPtr matsys = (m_staticCondMatrixManager[masskey])->GetBlock(1,1);
357 
358  Array<OneD, NekDouble> rhs(nInteriorDofs);
359  Array<OneD, NekDouble> result(nInteriorDofs);
360 
361  GetInteriorMap(mapArray);
362 
363  for(i = 0; i < nInteriorDofs; i++)
364  {
365  rhs[i] = tmp1[ mapArray[i] ];
366  }
367 
368  Blas::Dgemv('N', nInteriorDofs, nInteriorDofs, matsys->Scale(), &((matsys->GetOwnedMatrix())->GetPtr())[0],
369  nInteriorDofs,rhs.get(),1,0.0,result.get(),1);
370 
371  for(i = 0; i < nInteriorDofs; i++)
372  {
373  outarray[ mapArray[i] ] = result[i];
374  }
375  }
376  }
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
Definition: StdExpansion.h:470
void MassMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
Definition: StdExpansion.h:971
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: TriExp.h:285
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
#define sign(a, b)
return the sign(b)*a
Definition: Polylib.cpp:22
void IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
this function calculates the inner product of a given function f with the different modes of the expa...
Definition: StdExpansion.h:629
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
boost::shared_ptr< SegExp > SegExpSharedPtr
Definition: SegExp.h:266
SpatialDomains::Geometry2DSharedPtr GetGeom2D() const
Definition: Expansion2D.h:269
void GetInteriorMap(Array< OneD, unsigned int > &outarray)
Definition: StdExpansion.h:821
double NekDouble
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.cpp:329
void GetEdgeToElementMap(const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, int P=-1)
Definition: StdExpansion.h:846
void Interp1D(const BasisKey &fbasis0, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, Array< OneD, NekDouble > &to)
this function interpolates a 1D function evaluated at the quadrature points of the basis fbasis0 to ...
Definition: Interp.cpp:54
LibUtilities::PointsType GetPointsType(const int dir) const
This function returns the type of quadrature points used in the dir direction.
Definition: StdExpansion.h:216
Array< OneD, LibUtilities::BasisSharedPtr > m_base
1D Gauss-Lobatto-Legendre quadrature points
Definition: PointsType.h:50
void Nektar::LocalRegions::TriExp::v_GeneralMatrixOp_MatOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 1526 of file TriExp.cpp.

References Nektar::LocalRegions::Expansion::GetLocMatrix(), Nektar::StdRegions::StdExpansion::m_ncoeffs, and Vmath::Vcopy().

1529  {
1530  DNekScalMatSharedPtr mat = GetLocMatrix(mkey);
1531 
1532  if(inarray.get() == outarray.get())
1533  {
1534  Array<OneD,NekDouble> tmp(m_ncoeffs);
1535  Vmath::Vcopy(m_ncoeffs,inarray.get(),1,tmp.get(),1);
1536 
1537  Blas::Dgemv('N',m_ncoeffs,m_ncoeffs,mat->Scale(),(mat->GetOwnedMatrix())->GetPtr().get(),
1538  m_ncoeffs, tmp.get(), 1, 0.0, outarray.get(), 1);
1539  }
1540  else
1541  {
1542  Blas::Dgemv('N',m_ncoeffs,m_ncoeffs,mat->Scale(),(mat->GetOwnedMatrix())->GetPtr().get(),
1543  m_ncoeffs, inarray.get(), 1, 0.0, outarray.get(), 1);
1544  }
1545  }
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
DNekScalMatSharedPtr GetLocMatrix(const LocalRegions::MatrixKey &mkey)
Definition: Expansion.cpp:85
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1047
DNekMatSharedPtr Nektar::LocalRegions::TriExp::v_GenMatrix ( const StdRegions::StdMatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 1034 of file TriExp.cpp.

References Nektar::StdRegions::eHybridDGHelmBndLam, Nektar::StdRegions::eHybridDGHelmholtz, Nektar::StdRegions::eHybridDGLamToQ0, Nektar::StdRegions::eHybridDGLamToQ1, Nektar::StdRegions::eHybridDGLamToQ2, Nektar::StdRegions::eHybridDGLamToU, Nektar::StdRegions::eInvLaplacianWithUnityMean, Nektar::StdRegions::StdMatrixKey::GetMatrixType(), and Nektar::LocalRegions::Expansion2D::v_GenMatrix().

1035  {
1036  DNekMatSharedPtr returnval;
1037  switch(mkey.GetMatrixType())
1038  {
1046  returnval = Expansion2D::v_GenMatrix(mkey);
1047  break;
1048  default:
1049  returnval = StdTriExp::v_GenMatrix(mkey);
1050  break;
1051  }
1052 
1053  return returnval;
1054  }
boost::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:70
virtual DNekMatSharedPtr v_GenMatrix(const StdRegions::StdMatrixKey &mkey)
const LibUtilities::BasisSharedPtr & Nektar::LocalRegions::TriExp::v_GetBasis ( int  dir) const
protectedvirtual

Definition at line 1021 of file TriExp.cpp.

References ASSERTL1, and Nektar::StdRegions::StdExpansion::m_base.

1022  {
1023  ASSERTL1(dir >= 0 &&dir <= 1,"input dir is out of range");
1024  return m_base[dir];
1025  }
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
Array< OneD, LibUtilities::BasisSharedPtr > m_base
StdRegions::Orientation Nektar::LocalRegions::TriExp::v_GetCartesianEorient ( int  edge)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1015 of file TriExp.cpp.

References Nektar::LocalRegions::Expansion2D::GetGeom2D().

1016  {
1017  return GetGeom2D()->GetCartesianEorient(edge);
1018  }
SpatialDomains::Geometry2DSharedPtr GetGeom2D() const
Definition: Expansion2D.h:269
void Nektar::LocalRegions::TriExp::v_GetCoord ( const Array< OneD, const NekDouble > &  Lcoords,
Array< OneD, NekDouble > &  coords 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 586 of file TriExp.cpp.

References ASSERTL1, and Nektar::LocalRegions::Expansion::m_geom.

588  {
589  int i;
590 
591  ASSERTL1(Lcoords[0] >= -1.0 && Lcoords[1] <= 1.0 &&
592  Lcoords[1] >= -1.0 && Lcoords[1] <=1.0,
593  "Local coordinates are not in region [-1,1]");
594 
595  m_geom->FillGeom();
596 
597  for(i = 0; i < m_geom->GetCoordim(); ++i)
598  {
599  coords[i] = m_geom->GetCoord(i,Lcoords);
600  }
601  }
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:125
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
int Nektar::LocalRegions::TriExp::v_GetCoordim ( void  )
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion2D.

Definition at line 968 of file TriExp.cpp.

References Nektar::LocalRegions::Expansion::m_geom.

969  {
970  return m_geom->GetCoordim();
971  }
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:125
void Nektar::LocalRegions::TriExp::v_GetCoords ( Array< OneD, NekDouble > &  coords_1,
Array< OneD, NekDouble > &  coords_2,
Array< OneD, NekDouble > &  coords_3 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 603 of file TriExp.cpp.

References Nektar::LocalRegions::Expansion::v_GetCoords().

607  {
608  Expansion::v_GetCoords(coords_0, coords_1, coords_2);
609  }
virtual void v_GetCoords(Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3)
Definition: Expansion.cpp:213
void Nektar::LocalRegions::TriExp::v_GetEdgeInterpVals ( const int  edge,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 746 of file TriExp.cpp.

References ASSERTL0.

749  {
750  ASSERTL0(false,
751  "Routine not implemented for triangular elements");
752  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
void Nektar::LocalRegions::TriExp::v_GetEdgePhysMap ( const int  edge,
Array< OneD, int > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 764 of file TriExp.cpp.

References ASSERTL0, and Nektar::StdRegions::StdExpansion::m_base.

767  {
768  int nquad0 = m_base[0]->GetNumPoints();
769  int nquad1 = m_base[1]->GetNumPoints();
770 
771  // Get points in Cartesian orientation
772  switch (edge)
773  {
774  case 0:
775  outarray = Array<OneD, int>(nquad0);
776  for (int i = 0; i < nquad0; ++i)
777  {
778  outarray[i] = i;
779  }
780  break;
781  case 1:
782  outarray = Array<OneD, int>(nquad1);
783  for (int i = 0; i < nquad1; ++i)
784  {
785  outarray[i] = (nquad0-1) + i * nquad0;
786  }
787  break;
788  case 2:
789  outarray = Array<OneD, int>(nquad1);
790  for (int i = 0; i < nquad1; ++i)
791  {
792  outarray[i] = i*nquad0;
793  }
794  break;
795  default:
796  ASSERTL0(false, "edge value (< 3) is out of range");
797  break;
798  }
799 
800  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Nektar::LocalRegions::TriExp::v_GetEdgePhysVals ( const int  edge,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Extract the physical values along edge edge from inarray into outarray following the local edge orientation and point distribution defined by defined in EdgeExp.

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 646 of file TriExp.cpp.

References ASSERTL0, Nektar::StdRegions::eForwards, Nektar::StdRegions::StdExpansion::GetEorient(), Nektar::StdRegions::StdExpansion::m_base, and Vmath::Vcopy().

Referenced by v_GetTracePhysVals().

650  {
651  int nquad0 = m_base[0]->GetNumPoints();
652  int nquad1 = m_base[1]->GetNumPoints();
653 
654  StdRegions::Orientation edgedir = GetEorient(edge);
655  switch(edge)
656  {
657  case 0:
658  if (edgedir == StdRegions::eForwards)
659  {
660  Vmath::Vcopy(nquad0,&(inarray[0]),1,&(outarray[0]),1);
661  }
662  else
663  {
664  Vmath::Vcopy(nquad0,&(inarray[0])+(nquad0-1),-1,
665  &(outarray[0]),1);
666  }
667  break;
668  case 1:
669  if (edgedir == StdRegions::eForwards)
670  {
671  Vmath::Vcopy(nquad1,&(inarray[0])+(nquad0-1),nquad0,
672  &(outarray[0]),1);
673  }
674  else
675  {
676  Vmath::Vcopy(nquad1,&(inarray[0])+(nquad0*nquad1-1),
677  -nquad0, &(outarray[0]),1);
678  }
679  break;
680  case 2:
681  if (edgedir == StdRegions::eForwards)
682  {
683  Vmath::Vcopy(nquad1,&(inarray[0]) + nquad0*(nquad1-1),
684  -nquad0,&(outarray[0]),1);
685  }
686  else
687  {
688  Vmath::Vcopy(nquad1,&(inarray[0]),nquad0,
689  &(outarray[0]),1);
690  }
691  break;
692  default:
693  ASSERTL0(false,"edge value (< 3) is out of range");
694  break;
695  }
696  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
StdRegions::Orientation GetEorient(int edge)
Definition: StdExpansion.h:762
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1047
void Nektar::LocalRegions::TriExp::v_GetEdgePhysVals ( const int  edge,
const StdRegions::StdExpansionSharedPtr EdgeExp,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Definition at line 698 of file TriExp.cpp.

References ASSERTL0, Nektar::StdRegions::eBackwards, Nektar::StdRegions::StdExpansion::GetCartesianEorient(), Nektar::LibUtilities::Interp1D(), Nektar::StdRegions::StdExpansion::m_base, Vmath::Reverse(), and Vmath::Vcopy().

701  {
702  int nquad0 = m_base[0]->GetNumPoints();
703  int nquad1 = m_base[1]->GetNumPoints();
704 
705  // get points in Cartesian orientation
706  switch(edge)
707  {
708  case 0:
709  Vmath::Vcopy(nquad0, &(inarray[0]), 1, &(outarray[0]), 1);
710  break;
711  case 1:
712  Vmath::Vcopy(nquad1, &(inarray[0])+(nquad0-1),
713  nquad0, &(outarray[0]), 1);
714  break;
715  case 2:
716  Vmath::Vcopy(nquad1, &(inarray[0]), nquad0, &(outarray[0]), 1);
717  break;
718  default:
719  ASSERTL0(false,"edge value (< 3) is out of range");
720  break;
721  }
722 
723  // Interpolate if required
724  if(m_base[edge?1:0]->GetPointsKey() != EdgeExp->GetBasis(0)->GetPointsKey())
725  {
726  Array<OneD,NekDouble> outtmp(max(nquad0,nquad1));
727 
728  outtmp = outarray;
729 
730  LibUtilities::Interp1D(m_base[edge?1:0]->GetPointsKey(),
731  outtmp,
732  EdgeExp->GetBasis(0)->GetPointsKey(),
733  outarray);
734  }
735 
736  //Reverse data if necessary
738  {
739  Vmath::Reverse(EdgeExp->GetNumPoints(0),&outarray[0],1,
740  &outarray[0],1);
741  }
742 
743  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
StdRegions::Orientation GetCartesianEorient(int edge)
Definition: StdExpansion.h:772
void Reverse(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1071
void Interp1D(const BasisKey &fbasis0, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, Array< OneD, NekDouble > &to)
this function interpolates a 1D function evaluated at the quadrature points of the basis fbasis0 to ...
Definition: Interp.cpp:54
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1047
void Nektar::LocalRegions::TriExp::v_GetEdgeQFactors ( const int  edge,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 754 of file TriExp.cpp.

References ASSERTL0.

757  {
758  ASSERTL0(false,
759  "Routine not implemented for triangular elements");
760  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
StdRegions::Orientation Nektar::LocalRegions::TriExp::v_GetEorient ( int  edge)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1009 of file TriExp.cpp.

References Nektar::LocalRegions::Expansion2D::GetGeom2D().

1010  {
1011  return GetGeom2D()->GetEorient(edge);
1012  }
SpatialDomains::Geometry2DSharedPtr GetGeom2D() const
Definition: Expansion2D.h:269
DNekScalMatSharedPtr Nektar::LocalRegions::TriExp::v_GetLocMatrix ( const MatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 1450 of file TriExp.cpp.

References m_matrixManager.

1451  {
1452  return m_matrixManager[mkey];
1453  }
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: TriExp.h:284
DNekScalBlkMatSharedPtr Nektar::LocalRegions::TriExp::v_GetLocStaticCondMatrix ( const MatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1456 of file TriExp.cpp.

References m_staticCondMatrixManager.

1457  {
1458  return m_staticCondMatrixManager[mkey];
1459  }
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: TriExp.h:285
int Nektar::LocalRegions::TriExp::v_GetNumPoints ( const int  dir) const
protectedvirtual

Definition at line 1028 of file TriExp.cpp.

References Nektar::StdRegions::StdExpansion::GetNumPoints().

1029  {
1030  return GetNumPoints(dir);
1031  }
int GetNumPoints(const int dir) const
This function returns the number of quadrature points in the dir direction.
Definition: StdExpansion.h:229
StdRegions::StdExpansionSharedPtr Nektar::LocalRegions::TriExp::v_GetStdExp ( void  ) const
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 578 of file TriExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and Nektar::StdRegions::StdExpansion::m_base.

579  {
580 
582  ::AllocateSharedPtr(m_base[0]->GetBasisKey(),
583  m_base[1]->GetBasisKey());
584  }
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Nektar::LocalRegions::TriExp::v_GetTracePhysVals ( const int  edge,
const StdRegions::StdExpansionSharedPtr EdgeExp,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
StdRegions::Orientation  orient 
)
protectedvirtual

Definition at line 636 of file TriExp.cpp.

References v_GetEdgePhysVals().

642  {
643  v_GetEdgePhysVals(edge,EdgeExp,inarray,outarray);
644  }
virtual void v_GetEdgePhysVals(const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Extract the physical values along edge edge from inarray into outarray following the local edge orien...
Definition: TriExp.cpp:646
void Nektar::LocalRegions::TriExp::v_HelmholtzMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 1518 of file TriExp.cpp.

References Nektar::StdRegions::StdExpansion::HelmholtzMatrixOp_MatFree().

1521  {
1522  TriExp::HelmholtzMatrixOp_MatFree(inarray,outarray,mkey);
1523  }
void HelmholtzMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
NekDouble Nektar::LocalRegions::TriExp::v_Integral ( const Array< OneD, const NekDouble > &  inarray)
protectedvirtual

Integrates the specified function over the domain.

See also
StdRegions::StdExpansion::Integral.

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 83 of file TriExp.cpp.

References Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Smul(), and Vmath::Vmul().

84  {
85  int nquad0 = m_base[0]->GetNumPoints();
86  int nquad1 = m_base[1]->GetNumPoints();
87  Array<OneD, const NekDouble> jac = m_metricinfo->GetJac(GetPointsKeys());
88  NekDouble ival;
89  Array<OneD,NekDouble> tmp(nquad0*nquad1);
90 
91  // multiply inarray with Jacobian
92  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
93  {
94  Vmath::Vmul(nquad0*nquad1, jac, 1, inarray, 1,tmp, 1);
95  }
96  else
97  {
98  Vmath::Smul(nquad0*nquad1, jac[0], inarray, 1, tmp, 1);
99  }
100 
101  // call StdQuadExp version;
102  ival = StdTriExp::v_Integral(tmp);
103  return ival;
104  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
double NekDouble
Array< OneD, LibUtilities::BasisSharedPtr > m_base
Geometry is curved or has non-constant factors.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
void Nektar::LocalRegions::TriExp::v_IProductWRTBase ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Calculate the inner product of inarray with respect to the basis B=base0[p]*base1[pq] and put into outarray.

$ \begin{array}{rcl} I_{pq} = (\phi^A_q \phi^B_{pq}, u) &=& \sum_{i=0}^{nq_0}\sum_{j=0}^{nq_1} \phi^A_p(\eta_{0,i})\phi^B_{pq}(\eta_{1,j}) w^0_i w^1_j u(\xi_{0,i} \xi_{1,j}) \\ & = & \sum_{i=0}^{nq_0} \phi^A_p(\eta_{0,i}) \sum_{j=0}^{nq_1} \phi^B_{pq}(\eta_{1,j}) \tilde{u}_{i,j} \end{array} $

where

$ \tilde{u}_{i,j} = w^0_i w^1_j u(\xi_{0,i},\xi_{1,j}) $

which can be implemented as

$ f_{pj} = \sum_{i=0}^{nq_0} \phi^A_p(\eta_{0,i}) \tilde{u}_{i,j} \rightarrow {\bf B_1 U} $ $ I_{pq} = \sum_{j=0}^{nq_1} \phi^B_{pq}(\eta_{1,j}) f_{pj} \rightarrow {\bf B_2[p*skip] f[skip]} $

Recall: $ \eta_{1} = \frac{2(1+\xi_1)}{(1-\xi_2)}-1, \, \eta_2 = \xi_2$

Note: For the orthgonality of this expansion to be realised the 'q' ordering must run fastest in contrast to the Quad and Hex ordering where 'p' index runs fastest to be consistent with the quadrature ordering.

In the triangular space the i (i.e. $\eta_1$ direction) ordering still runs fastest by convention.

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 379 of file TriExp.cpp.

References Nektar::StdRegions::StdExpansion::IProductWRTBase_SumFac().

381  {
382  IProductWRTBase_SumFac(inarray,outarray);
383  }
void IProductWRTBase_SumFac(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
void Nektar::LocalRegions::TriExp::v_IProductWRTBase_MatOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 420 of file TriExp.cpp.

References Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::StdRegions::eIProductWRTBase, Nektar::StdRegions::StdExpansion::GetTotPoints(), m_matrixManager, and Nektar::StdRegions::StdExpansion::m_ncoeffs.

422  {
423  int nq = GetTotPoints();
424  MatrixKey iprodmatkey(StdRegions::eIProductWRTBase,DetShapeType(),*this);
425  DNekScalMatSharedPtr iprodmat = m_matrixManager[iprodmatkey];
426 
427  Blas::Dgemv('N',m_ncoeffs,nq,iprodmat->Scale(),(iprodmat->GetOwnedMatrix())->GetPtr().get(),
428  m_ncoeffs, inarray.get(), 1, 0.0, outarray.get(), 1);
429 
430  }
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: TriExp.h:284
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
Definition: StdExpansion.h:470
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:141
void Nektar::LocalRegions::TriExp::v_IProductWRTBase_SumFac ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
bool  multiplybyweights = true 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 394 of file TriExp.cpp.

References Nektar::StdRegions::StdExpansion2D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, and Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric().

397  {
398  int nquad0 = m_base[0]->GetNumPoints();
399  int nquad1 = m_base[1]->GetNumPoints();
400  int order0 = m_base[0]->GetNumModes();
401 
402  if(multiplybyweights)
403  {
404  Array<OneD,NekDouble> tmp(nquad0*nquad1+nquad1*order0);
405  Array<OneD,NekDouble> wsp(tmp+nquad0*nquad1);
406 
407  MultiplyByQuadratureMetric(inarray,tmp);
408  IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(),m_base[1]->GetBdata(),tmp,outarray,wsp);
409  }
410  else
411  {
412  Array<OneD,NekDouble> wsp(+nquad1*order0);
413 
414  IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(),m_base[1]->GetBdata(),
415  inarray,outarray,wsp);
416  }
417  }
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:942
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0=true, bool doCheckCollDir1=true)
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Nektar::LocalRegions::TriExp::v_IProductWRTDerivBase ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 386 of file TriExp.cpp.

References Nektar::StdRegions::StdExpansion::IProductWRTDerivBase_SumFac().

389  {
390  IProductWRTDerivBase_SumFac(dir,inarray,outarray);
391  }
void IProductWRTDerivBase_SumFac(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void Nektar::LocalRegions::TriExp::v_IProductWRTDerivBase_MatOp ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 503 of file TriExp.cpp.

References ASSERTL1, Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::StdRegions::eIProductWRTDerivBase0, Nektar::StdRegions::eIProductWRTDerivBase1, Nektar::StdRegions::eIProductWRTDerivBase2, Nektar::StdRegions::StdExpansion::GetTotPoints(), m_matrixManager, and Nektar::StdRegions::StdExpansion::m_ncoeffs.

506  {
507  int nq = GetTotPoints();
509 
510  switch(dir)
511  {
512  case 0:
513  {
515  }
516  break;
517  case 1:
518  {
520  }
521  break;
522  case 2:
523  {
525  }
526  break;
527  default:
528  {
529  ASSERTL1(false,"input dir is out of range");
530  }
531  break;
532  }
533 
534  MatrixKey iprodmatkey(mtype,DetShapeType(),*this);
535  DNekScalMatSharedPtr iprodmat = m_matrixManager[iprodmatkey];
536 
537  Blas::Dgemv('N',m_ncoeffs,nq,iprodmat->Scale(),(iprodmat->GetOwnedMatrix())->GetPtr().get(),
538  m_ncoeffs, inarray.get(), 1, 0.0, outarray.get(), 1);
539 
540  }
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: TriExp.h:284
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
Definition: StdExpansion.h:470
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:141
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
void Nektar::LocalRegions::TriExp::v_IProductWRTDerivBase_SumFac ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 433 of file TriExp.cpp.

References ASSERTL1, Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion2D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_geom, Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::StdRegions::StdExpansion::m_ncoeffs, Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric(), Vmath::Smul(), Vmath::Vadd(), and Vmath::Vmul().

436  {
437  ASSERTL1((dir==0)||(dir==1)||(dir==2),"Invalid direction.");
438  ASSERTL1((dir==2)?(m_geom->GetCoordim()==3):true,"Invalid direction.");
439 
440  int i;
441  int nquad0 = m_base[0]->GetNumPoints();
442  int nquad1 = m_base[1]->GetNumPoints();
443  int nqtot = nquad0*nquad1;
444  int nmodes0 = m_base[0]->GetNumModes();
445  int wspsize = max(max(nqtot,m_ncoeffs),nquad1*nmodes0);
446 
447  const Array<TwoD, const NekDouble>& df =
448  m_metricinfo->GetDerivFactors(GetPointsKeys());
449 
450  Array<OneD, NekDouble> tmp0 (6*wspsize);
451  Array<OneD, NekDouble> tmp1 (tmp0 + wspsize);
452  Array<OneD, NekDouble> tmp2 (tmp0 + 2*wspsize);
453  Array<OneD, NekDouble> tmp3 (tmp0 + 3*wspsize);
454  Array<OneD, NekDouble> gfac0(tmp0 + 4*wspsize);
455  Array<OneD, NekDouble> gfac1(tmp0 + 5*wspsize);
456 
457  const Array<OneD, const NekDouble>& z0 = m_base[0]->GetZ();
458  const Array<OneD, const NekDouble>& z1 = m_base[1]->GetZ();
459 
460  // set up geometric factor: 2/(1-z1)
461  for(i = 0; i < nquad1; ++i)
462  {
463  gfac0[i] = 2.0/(1-z1[i]);
464  }
465  for(i = 0; i < nquad0; ++i)
466  {
467  gfac1[i] = 0.5*(1+z0[i]);
468  }
469 
470  for(i = 0; i < nquad1; ++i)
471  {
472  Vmath::Smul(nquad0,gfac0[i],&inarray[0]+i*nquad0,1,&tmp0[0]+i*nquad0,1);
473  }
474 
475  for(i = 0; i < nquad1; ++i)
476  {
477  Vmath::Vmul(nquad0,&gfac1[0],1,&tmp0[0]+i*nquad0,1,&tmp1[0]+i*nquad0,1);
478  }
479 
480  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
481  {
482  Vmath::Vmul(nqtot,&df[2*dir][0], 1,&tmp0[0], 1,&tmp0[0],1);
483  Vmath::Vmul(nqtot,&df[2*dir+1][0],1,&tmp1[0], 1,&tmp1[0],1);
484  Vmath::Vmul(nqtot,&df[2*dir+1][0],1,&inarray[0],1,&tmp2[0],1);
485  }
486  else
487  {
488  Vmath::Smul(nqtot, df[2*dir][0], tmp0, 1, tmp0, 1);
489  Vmath::Smul(nqtot, df[2*dir+1][0], tmp1, 1, tmp1, 1);
490  Vmath::Smul(nqtot, df[2*dir+1][0], inarray, 1, tmp2, 1);
491  }
492  Vmath::Vadd(nqtot, tmp0, 1, tmp1, 1, tmp1, 1);
493 
494  MultiplyByQuadratureMetric(tmp1,tmp1);
495  MultiplyByQuadratureMetric(tmp2,tmp2);
496 
497  IProductWRTBase_SumFacKernel(m_base[0]->GetDbdata(),m_base[1]->GetBdata() ,tmp1,tmp3 ,tmp0);
498  IProductWRTBase_SumFacKernel(m_base[0]->GetBdata() ,m_base[1]->GetDbdata(),tmp2,outarray,tmp0);
499  Vmath::Vadd(m_ncoeffs, tmp3, 1, outarray, 1, outarray, 1);
500  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:942
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:125
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0=true, bool doCheckCollDir1=true)
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
Array< OneD, LibUtilities::BasisSharedPtr > m_base
Geometry is curved or has non-constant factors.
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:285
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
void Nektar::LocalRegions::TriExp::v_LaplacianMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 1476 of file TriExp.cpp.

References Nektar::StdRegions::StdExpansion::LaplacianMatrixOp_MatFree().

1479  {
1480  TriExp::LaplacianMatrixOp_MatFree(inarray,outarray,mkey);
1481  }
void LaplacianMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void Nektar::LocalRegions::TriExp::v_LaplacianMatrixOp ( const int  k1,
const int  k2,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 1484 of file TriExp.cpp.

1488  {
1489  StdExpansion::LaplacianMatrixOp_MatFree(k1,k2,inarray,outarray,mkey);
1490  }
void Nektar::LocalRegions::TriExp::v_LaplacianMatrixOp_MatFree_Kernel ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1548 of file TriExp.cpp.

References ASSERTL1, Nektar::LocalRegions::Expansion::ComputeLaplacianMetric(), Nektar::LocalRegions::eMetricLaplacian00, Nektar::LocalRegions::eMetricLaplacian01, Nektar::LocalRegions::eMetricLaplacian11, Nektar::StdRegions::StdExpansion2D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metrics, Nektar::StdRegions::StdExpansion::m_ncoeffs, Vmath::Vadd(), and Vmath::Vvtvvtp().

1552  {
1553  if (m_metrics.count(eMetricLaplacian00) == 0)
1554  {
1556  }
1557 
1558  int nquad0 = m_base[0]->GetNumPoints();
1559  int nquad1 = m_base[1]->GetNumPoints();
1560  int nqtot = nquad0*nquad1;
1561  int nmodes0 = m_base[0]->GetNumModes();
1562  int nmodes1 = m_base[1]->GetNumModes();
1563  int wspsize = max(max(max(nqtot,m_ncoeffs),nquad1*nmodes0),nquad0*nmodes1);
1564 
1565  ASSERTL1(wsp.num_elements() >= 3*wspsize,
1566  "Workspace is of insufficient size.");
1567 
1568  const Array<OneD, const NekDouble>& base0 = m_base[0]->GetBdata();
1569  const Array<OneD, const NekDouble>& base1 = m_base[1]->GetBdata();
1570  const Array<OneD, const NekDouble>& dbase0 = m_base[0]->GetDbdata();
1571  const Array<OneD, const NekDouble>& dbase1 = m_base[1]->GetDbdata();
1572  const Array<OneD, const NekDouble>& metric00 = m_metrics[eMetricLaplacian00];
1573  const Array<OneD, const NekDouble>& metric01 = m_metrics[eMetricLaplacian01];
1574  const Array<OneD, const NekDouble>& metric11 = m_metrics[eMetricLaplacian11];
1575 
1576  // Allocate temporary storage
1577  Array<OneD,NekDouble> wsp0(wsp);
1578  Array<OneD,NekDouble> wsp1(wsp+wspsize);
1579  Array<OneD,NekDouble> wsp2(wsp+2*wspsize);
1580 
1581  StdExpansion2D::PhysTensorDeriv(inarray,wsp1,wsp2);
1582 
1583  // wsp0 = k = g0 * wsp1 + g1 * wsp2 = g0 * du_dxi1 + g1 * du_dxi2
1584  // wsp2 = l = g1 * wsp1 + g2 * wsp2 = g0 * du_dxi1 + g1 * du_dxi2
1585  // where g0, g1 and g2 are the metric terms set up in the GeomFactors class
1586  // especially for this purpose
1587  Vmath::Vvtvvtp(nqtot,&metric00[0],1,&wsp1[0],1,&metric01[0],1,&wsp2[0],1,&wsp0[0],1);
1588  Vmath::Vvtvvtp(nqtot,&metric01[0],1,&wsp1[0],1,&metric11[0],1,&wsp2[0],1,&wsp2[0],1);
1589 
1590  // outarray = m = (D_xi1 * B)^T * k
1591  // wsp1 = n = (D_xi2 * B)^T * l
1592  IProductWRTBase_SumFacKernel(dbase0,base1,wsp0,outarray,wsp1);
1593  IProductWRTBase_SumFacKernel(base0,dbase1,wsp2,wsp1, wsp0);
1594 
1595  // outarray = outarray + wsp1
1596  // = L * u_hat
1597  Vmath::Vadd(m_ncoeffs,wsp1.get(),1,outarray.get(),1,outarray.get(),1);
1598  }
void Vvtvvtp(int n, const T *v, int incv, const T *w, int incw, const T *x, int incx, const T *y, int incy, T *z, int incz)
vvtvvtp (vector times vector plus vector times vector):
Definition: Vmath.cpp:523
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0=true, bool doCheckCollDir1=true)
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:285
void Nektar::LocalRegions::TriExp::v_MassLevelCurvatureMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1510 of file TriExp.cpp.

1513  {
1514  StdExpansion::MassLevelCurvatureMatrixOp_MatFree(inarray,outarray,mkey);
1515  }
void Nektar::LocalRegions::TriExp::v_MassMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 1468 of file TriExp.cpp.

1471  {
1472  StdExpansion::MassMatrixOp_MatFree(inarray,outarray,mkey);
1473  }
void Nektar::LocalRegions::TriExp::v_NormVectorIProductWRTBase ( const Array< OneD, const NekDouble > &  Fx,
const Array< OneD, const NekDouble > &  Fy,
const Array< OneD, const NekDouble > &  Fz,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 542 of file TriExp.cpp.

References Nektar::SpatialDomains::eDeformed, Nektar::LocalRegions::Expansion2D::GetLeftAdjacentElementExp(), Nektar::LocalRegions::Expansion2D::GetLeftAdjacentElementFace(), Nektar::StdRegions::StdExpansion::IProductWRTBase(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Svtsvtp(), Vmath::Svtvp(), Vmath::Vvtvp(), and Vmath::Vvtvvtp().

547  {
548  int nq = m_base[0]->GetNumPoints()*m_base[1]->GetNumPoints();
549  Array<OneD, NekDouble > Fn(nq);
550 
551  const Array<OneD, const Array<OneD, NekDouble> > &normals =
552  GetLeftAdjacentElementExp()->GetFaceNormal(
554 
555  if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
556  {
557  Vmath::Vvtvvtp(nq,&normals[0][0],1,&Fx[0],1,
558  &normals[1][0],1,&Fy[0],1,&Fn[0],1);
559  Vmath::Vvtvp (nq,&normals[2][0],1,&Fz[0],1,&Fn[0],1,&Fn[0],1);
560  }
561  else
562  {
563  Vmath::Svtsvtp(nq,normals[0][0],&Fx[0],1,
564  normals[1][0],&Fy[0],1,&Fn[0],1);
565  Vmath::Svtvp (nq,normals[2][0],&Fz[0],1,&Fn[0],1,&Fn[0],1);
566  }
567 
568  IProductWRTBase(Fn,outarray);
569  }
void IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
this function calculates the inner product of a given function f with the different modes of the expa...
Definition: StdExpansion.h:629
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
Definition: Vmath.cpp:471
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:428
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
Expansion3DSharedPtr GetLeftAdjacentElementExp() const
Definition: Expansion2D.h:223
void Vvtvvtp(int n, const T *v, int incv, const T *w, int incw, const T *x, int incx, const T *y, int incy, T *z, int incz)
vvtvvtp (vector times vector plus vector times vector):
Definition: Vmath.cpp:523
void Svtsvtp(int n, const T alpha, const T *x, int incx, const T beta, const T *y, int incy, T *z, int incz)
vvtvvtp (scalar times vector plus scalar times vector):
Definition: Vmath.cpp:577
Array< OneD, LibUtilities::BasisSharedPtr > m_base
Geometry is curved or has non-constant factors.
void Nektar::LocalRegions::TriExp::v_NormVectorIProductWRTBase ( const Array< OneD, const Array< OneD, NekDouble > > &  Fvec,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 571 of file TriExp.cpp.

References Nektar::StdRegions::StdExpansion::NormVectorIProductWRTBase().

574  {
575  NormVectorIProductWRTBase(Fvec[0], Fvec[1], Fvec[2], outarray);
576  }
void NormVectorIProductWRTBase(const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:727
void Nektar::LocalRegions::TriExp::v_PhysDeriv ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out_d0,
Array< OneD, NekDouble > &  out_d1,
Array< OneD, NekDouble > &  out_d2 = NullNekDouble1DArray 
)
protectedvirtual

Calculate the derivative of the physical points.

$ \frac{\partial u}{\partial x_1} = \left . \frac{2.0}{1-\eta_2} \frac{\partial u}{\partial d\eta_1} \right |_{\eta_2}$

$ \frac{\partial u}{\partial x_2} = \left . \frac{1+\eta_1}{1-\eta_2} \frac{\partial u}{\partial d\eta_1} \right |_{\eta_2} + \left . \frac{\partial u}{\partial d\eta_2} \right |_{\eta_1} $

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 107 of file TriExp.cpp.

References Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Smul(), Vmath::Vmul(), and Vmath::Vvtvp().

111  {
112  int nquad0 = m_base[0]->GetNumPoints();
113  int nquad1 = m_base[1]->GetNumPoints();
114  int nqtot = nquad0*nquad1;
115  const Array<TwoD, const NekDouble>& df
116  = m_metricinfo->GetDerivFactors(GetPointsKeys());
117 
118  Array<OneD,NekDouble> diff0(2*nqtot);
119  Array<OneD,NekDouble> diff1(diff0+nqtot);
120 
121  StdTriExp::v_PhysDeriv(inarray, diff0, diff1);
122 
123  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
124  {
125  if(out_d0.num_elements())
126  {
127  Vmath::Vmul (nqtot,df[0],1,diff0,1, out_d0, 1);
128  Vmath::Vvtvp (nqtot,df[1],1,diff1,1, out_d0, 1, out_d0,1);
129  }
130 
131  if(out_d1.num_elements())
132  {
133  Vmath::Vmul (nqtot,df[2],1,diff0,1, out_d1, 1);
134  Vmath::Vvtvp (nqtot,df[3],1,diff1,1, out_d1, 1, out_d1,1);
135  }
136 
137  if(out_d2.num_elements())
138  {
139  Vmath::Vmul (nqtot,df[4],1,diff0,1, out_d2, 1);
140  Vmath::Vvtvp (nqtot,df[5],1,diff1,1, out_d2, 1, out_d2,1);
141  }
142  }
143  else // regular geometry
144  {
145  if(out_d0.num_elements())
146  {
147  Vmath::Smul (nqtot, df[0][0], diff0, 1, out_d0, 1);
148  Blas::Daxpy (nqtot, df[1][0], diff1, 1, out_d0, 1);
149  }
150 
151  if(out_d1.num_elements())
152  {
153  Vmath::Smul (nqtot, df[2][0], diff0, 1, out_d1, 1);
154  Blas::Daxpy (nqtot, df[3][0], diff1, 1, out_d1, 1);
155  }
156 
157  if(out_d2.num_elements())
158  {
159  Vmath::Smul (nqtot, df[4][0], diff0, 1, out_d2, 1);
160  Blas::Daxpy (nqtot, df[5][0], diff1, 1, out_d2, 1);
161  }
162  }
163  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:428
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
Array< OneD, LibUtilities::BasisSharedPtr > m_base
Geometry is curved or has non-constant factors.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
void Nektar::LocalRegions::TriExp::v_PhysDeriv ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out_d0 
)
protectedvirtual

Calculate the derivative of the physical points in a given direction.

See also
StdRegions::StdExpansion::PhysDeriv

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 166 of file TriExp.cpp.

References ASSERTL1, Nektar::NullNekDouble1DArray, and Nektar::StdRegions::StdExpansion::PhysDeriv().

169  {
170  switch(dir)
171  {
172  case 0:
173  {
175  }
176  break;
177  case 1:
178  {
180  }
181  break;
182  case 2:
183  {
185  }
186  break;
187  default:
188  {
189  ASSERTL1(false,"input dir is out of range");
190  }
191  break;
192  }
193  }
static Array< OneD, NekDouble > NullNekDouble1DArray
void PhysDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
void Nektar::LocalRegions::TriExp::v_PhysDirectionalDeriv ( const Array< OneD, const NekDouble > &  inarray,
const Array< OneD, const NekDouble > &  direction,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Physical derivative along a direction vector.

See also
StdRegions::StdExpansion::PhysDirectionalDeriv

D_v = D^v_xi * du/d_xi + D^v_eta * du/d_eta

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 195 of file TriExp.cpp.

References ASSERTL1, Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_geom, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Vmul(), and Vmath::Vvtvp().

199  {
200  if(! out.num_elements())
201  {
202  return;
203  }
204 
205  int nquad0 = m_base[0]->GetNumPoints();
206  int nquad1 = m_base[1]->GetNumPoints();
207  int nqtot = nquad0*nquad1;
208 
209  const Array<TwoD, const NekDouble>& df =
210  m_metricinfo->GetDerivFactors(GetPointsKeys());
211 
212  Array<OneD,NekDouble> diff0(2*nqtot);
213  Array<OneD,NekDouble> diff1(diff0+nqtot);
214 
215  // diff0 = du/d_xi, diff1 = du/d_eta
216  StdTriExp::v_PhysDeriv(inarray, diff0, diff1);
217 
218  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
219  {
220  Array<OneD, Array<OneD, NekDouble> > tangmat(2);
221 
222 
223  // D^v_xi = v_x*d_xi/dx + v_y*d_xi/dy + v_z*d_xi/dz
224  // D^v_eta = v_x*d_eta/dx + v_y*d_eta/dy + v_z*d_eta/dz
225  for (int i=0; i< 2; ++i)
226  {
227  tangmat[i] = Array<OneD, NekDouble>(nqtot,0.0);
228  for (int k=0; k<(m_geom->GetCoordim()); ++k)
229  {
230  Vmath::Vvtvp(nqtot,&df[2*k+i][0],1,&direction[k*nqtot],1,&tangmat[i][0],1,&tangmat[i][0],1);
231  }
232  }
233 
234  /// D_v = D^v_xi * du/d_xi + D^v_eta * du/d_eta
235  Vmath::Vmul (nqtot,&tangmat[0][0],1,&diff0[0],1, &out[0], 1);
236  Vmath::Vvtvp (nqtot,&tangmat[1][0],1,&diff1[0],1, &out[0], 1, &out[0],1);
237  }
238  else
239  {
240  ASSERTL1(m_metricinfo->GetGtype() == SpatialDomains::eDeformed,"Wrong route");
241  }
242  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:428
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:125
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
Array< OneD, LibUtilities::BasisSharedPtr > m_base
Geometry is curved or has non-constant factors.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
NekDouble Nektar::LocalRegions::TriExp::v_PhysEvaluate ( const Array< OneD, const NekDouble > &  coords,
const Array< OneD, const NekDouble > &  physvals 
)
protectedvirtual

This function evaluates the expansion at a single (arbitrary) point of the domain.

This function is a wrapper around the virtual function v_PhysEvaluate()

Based on the value of the expansion at the quadrature points, this function calculates the value of the expansion at an arbitrary single points (with coordinates $ \mathbf{x_c}$ given by the pointer coords). This operation, equivalent to

\[ u(\mathbf{x_c}) = \sum_p \phi_p(\mathbf{x_c}) \hat{u}_p \]

is evaluated using Lagrangian interpolants through the quadrature points:

\[ u(\mathbf{x_c}) = \sum_p h_p(\mathbf{x_c}) u_p\]

This function requires that the physical value array $\mathbf{u}$ (implemented as the attribute #m_phys) is set.

Parameters
coordsthe coordinates of the single point
Returns
returns the value of the expansion at the single point

Reimplemented from Nektar::StdRegions::StdExpansion2D.

Definition at line 625 of file TriExp.cpp.

References ASSERTL0, and Nektar::LocalRegions::Expansion::m_geom.

626  {
627  Array<OneD,NekDouble> Lcoord = Array<OneD,NekDouble>(2);
628 
629  ASSERTL0(m_geom,"m_geom not defined");
630  m_geom->GetLocCoords(coord,Lcoord);
631 
632  return StdTriExp::v_PhysEvaluate(Lcoord, physvals);
633  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:125
void Nektar::LocalRegions::TriExp::v_ReduceOrderCoeffs ( int  numMin,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Function is used to compute exactly the advective numerical flux on theinterface of two elements with different expansions, hence an appropriate number of Gauss points has to be used. The number of Gauss points has to be equal to the number used by the highest polynomial degree of the two adjacent elements. Furthermore, this function is used to compute the sensor value in each element.

Parameters
numMinIs the reduced polynomial order
inarrayInput array of coefficients
dumpVarOutput array of reduced coefficients.

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 1730 of file TriExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), Nektar::LibUtilities::eOrtho_A, Nektar::LibUtilities::eOrtho_B, Nektar::StdRegions::StdExpansion::GetBasisType(), and Nektar::StdRegions::StdExpansion::m_base.

1734  {
1735  int n_coeffs = inarray.num_elements();
1736  int nquad0 = m_base[0]->GetNumPoints();
1737  int nquad1 = m_base[1]->GetNumPoints();
1738  int nqtot = nquad0*nquad1;
1739  int nmodes0 = m_base[0]->GetNumModes();
1740  int nmodes1 = m_base[1]->GetNumModes();
1741  int numMin2 = nmodes0, i;
1742 
1743  Array<OneD, NekDouble> coeff(n_coeffs,0.0);
1744  Array<OneD, NekDouble> phys_tmp(nqtot,0.0);
1745  Array<OneD, NekDouble> tmp, tmp2;
1746 
1747  const LibUtilities::PointsKey Pkey0 = m_base[0]->GetPointsKey();
1748  const LibUtilities::PointsKey Pkey1 = m_base[1]->GetPointsKey();
1749 
1750  LibUtilities::BasisKey b0(
1751  m_base[0]->GetBasisType(), nmodes0, Pkey0);
1752  LibUtilities::BasisKey b1(
1753  m_base[1]->GetBasisType(), nmodes1, Pkey1);
1754  LibUtilities::BasisKey bortho0(
1755  LibUtilities::eOrtho_A, nmodes0, Pkey0);
1756  LibUtilities::BasisKey bortho1(
1757  LibUtilities::eOrtho_B, nmodes1, Pkey1);
1758 
1759  // Check if it is also possible to use the same InterCoeff routine
1760  // which is also used for Quadrilateral and Hexagonal shaped
1761  // elements
1762 
1763  // For now, set up the used basis on the standard element to
1764  // calculate the phys values, set up the orthogonal basis to do a
1765  // forward transform, to obtain the coefficients in orthogonal
1766  // coefficient space
1767  StdRegions::StdTriExpSharedPtr m_OrthoTriExp;
1769 
1771  ::AllocateSharedPtr(b0, b1);
1772  m_OrthoTriExp = MemoryManager<StdRegions::StdTriExp>
1773  ::AllocateSharedPtr(bortho0, bortho1);
1774 
1775  m_TriExp ->BwdTrans(inarray,phys_tmp);
1776  m_OrthoTriExp->FwdTrans(phys_tmp, coeff);
1777 
1778  for (i = 0; i < n_coeffs; i++)
1779  {
1780  if (i == numMin)
1781  {
1782  coeff[i] = 0.0;
1783  numMin += numMin2 - 1;
1784  numMin2 -= 1.0;
1785  }
1786  }
1787 
1788  m_OrthoTriExp->BwdTrans(coeff,phys_tmp);
1789  m_TriExp ->FwdTrans(phys_tmp, outarray);
1790  }
boost::shared_ptr< StdTriExp > StdTriExpSharedPtr
Definition: StdTriExp.h:267
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
Principle Orthogonal Functions .
Definition: BasisType.h:47
Principle Orthogonal Functions .
Definition: BasisType.h:46
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:165
Array< OneD, LibUtilities::BasisSharedPtr > m_base
NekDouble Nektar::LocalRegions::TriExp::v_StdPhysEvaluate ( const Array< OneD, const NekDouble > &  Lcoord,
const Array< OneD, const NekDouble > &  physvals 
)
protectedvirtual

Given the local cartesian coordinate Lcoord evaluate the value of physvals at this point by calling through to the StdExpansion method

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 617 of file TriExp.cpp.

620  {
621  // Evaluate point in local (eta) coordinates.
622  return StdTriExp::v_PhysEvaluate(Lcoord,physvals);
623  }
void Nektar::LocalRegions::TriExp::v_SVVLaplacianFilter ( Array< OneD, NekDouble > &  array,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 1792 of file TriExp.cpp.

References Nektar::SpatialDomains::eDeformed, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::GetTotPoints(), Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Vdiv(), Vmath::Vmul(), and Vmath::Vsqrt().

1795  {
1796  int nq = GetTotPoints();
1797 
1798  // Calculate sqrt of the Jacobian
1799  Array<OneD, const NekDouble> jac =
1800  m_metricinfo->GetJac(GetPointsKeys());
1801  Array<OneD, NekDouble> sqrt_jac(nq);
1802  if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1803  {
1804  Vmath::Vsqrt(nq,jac,1,sqrt_jac,1);
1805  }
1806  else
1807  {
1808  Vmath::Fill(nq,sqrt(jac[0]),sqrt_jac,1);
1809  }
1810 
1811  // Multiply array by sqrt(Jac)
1812  Vmath::Vmul(nq,sqrt_jac,1,array,1,array,1);
1813 
1814  // Apply std region filter
1815  StdTriExp::v_SVVLaplacianFilter( array, mkey);
1816 
1817  // Divide by sqrt(Jac)
1818  Vmath::Vdiv(nq,array,1,sqrt_jac,1,array,1);
1819  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
Definition: Vmath.cpp:394
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:46
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:227
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:141
Geometry is curved or has non-constant factors.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
void Nektar::LocalRegions::TriExp::v_WeakDerivMatrixOp ( const int  i,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 1493 of file TriExp.cpp.

1497  {
1498  StdExpansion::WeakDerivMatrixOp_MatFree(i,inarray,outarray,mkey);
1499  }
void Nektar::LocalRegions::TriExp::v_WeakDirectionalDerivMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1502 of file TriExp.cpp.

1505  {
1506  StdExpansion::WeakDirectionalDerivMatrixOp_MatFree(inarray,outarray,mkey);
1507  }

Member Data Documentation

LibUtilities::NekManager<MatrixKey, DNekScalMat, MatrixKey::opLess> Nektar::LocalRegions::TriExp::m_matrixManager
private
LibUtilities::NekManager<MatrixKey, DNekScalBlkMat, MatrixKey::opLess> Nektar::LocalRegions::TriExp::m_staticCondMatrixManager
private