Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
Public Member Functions | Static Public Member Functions | Static Public Attributes | Protected Member Functions | Private Member Functions | Friends | List of all members
Nektar::NonlinearSWE Class Reference

#include <NonlinearSWE.h>

Inheritance diagram for Nektar::NonlinearSWE:
Inheritance graph
[legend]
Collaboration diagram for Nektar::NonlinearSWE:
Collaboration graph
[legend]

Public Member Functions

virtual ~NonlinearSWE ()
 
- Public Member Functions inherited from Nektar::ShallowWaterSystem
virtual ~ShallowWaterSystem ()
 Destructor. More...
 
- Public Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
virtual SOLVER_UTILS_EXPORT ~UnsteadySystem ()
 Destructor. More...
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Calculate the larger time-step mantaining the problem stable. More...
 
- Public Member Functions inherited from Nektar::SolverUtils::EquationSystem
virtual SOLVER_UTILS_EXPORT ~EquationSystem ()
 Destructor. More...
 
SOLVER_UTILS_EXPORT void SetUpTraceNormals (void)
 
SOLVER_UTILS_EXPORT void InitObject ()
 Initialises the members of this object. More...
 
SOLVER_UTILS_EXPORT void DoInitialise ()
 Perform any initialisation necessary before solving the problem. More...
 
SOLVER_UTILS_EXPORT void DoSolve ()
 Solve the problem. More...
 
SOLVER_UTILS_EXPORT void TransCoeffToPhys ()
 Transform from coefficient to physical space. More...
 
SOLVER_UTILS_EXPORT void TransPhysToCoeff ()
 Transform from physical to coefficient space. More...
 
SOLVER_UTILS_EXPORT void Output ()
 Perform output operations after solve. More...
 
SOLVER_UTILS_EXPORT NekDouble LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Linf error computation. More...
 
SOLVER_UTILS_EXPORT std::string GetSessionName ()
 Get Session name. More...
 
template<class T >
boost::shared_ptr< T > as ()
 
SOLVER_UTILS_EXPORT void ResetSessionName (std::string newname)
 Reset Session name. More...
 
SOLVER_UTILS_EXPORT
LibUtilities::SessionReaderSharedPtr 
GetSession ()
 Get Session name. More...
 
SOLVER_UTILS_EXPORT
MultiRegions::ExpListSharedPtr 
GetPressure ()
 Get pressure field if available. More...
 
SOLVER_UTILS_EXPORT void PrintSummary (std::ostream &out)
 Print a summary of parameters and solver characteristics. More...
 
SOLVER_UTILS_EXPORT void SetLambda (NekDouble lambda)
 Set parameter m_lambda. More...
 
SOLVER_UTILS_EXPORT void EvaluateFunction (Array< OneD, Array< OneD, NekDouble > > &pArray, std::string pFunctionName, const NekDouble pTime=0.0, const int domain=0)
 Evaluates a function as specified in the session file. More...
 
SOLVER_UTILS_EXPORT void EvaluateFunction (std::vector< std::string > pFieldNames, Array< OneD, Array< OneD, NekDouble > > &pFields, const std::string &pName, const NekDouble &pTime=0.0, const int domain=0)
 Populate given fields with the function from session. More...
 
SOLVER_UTILS_EXPORT void EvaluateFunction (std::vector< std::string > pFieldNames, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const std::string &pName, const NekDouble &pTime=0.0, const int domain=0)
 Populate given fields with the function from session. More...
 
SOLVER_UTILS_EXPORT void EvaluateFunction (std::string pFieldName, Array< OneD, NekDouble > &pArray, const std::string &pFunctionName, const NekDouble &pTime=0.0, const int domain=0)
 
SOLVER_UTILS_EXPORT std::string DescribeFunction (std::string pFieldName, const std::string &pFunctionName, const int domain)
 Provide a description of a function for a given field name. More...
 
SOLVER_UTILS_EXPORT void InitialiseBaseFlow (Array< OneD, Array< OneD, NekDouble > > &base)
 Perform initialisation of the base flow. More...
 
SOLVER_UTILS_EXPORT void SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 Initialise the data in the dependent fields. More...
 
SOLVER_UTILS_EXPORT void EvaluateExactSolution (int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 Evaluates an exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln, bool Normalised=false)
 Compute the L2 error between fields and a given exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, bool Normalised=false)
 Compute the L2 error of the fields. More...
 
SOLVER_UTILS_EXPORT Array
< OneD, NekDouble
ErrorExtraPoints (unsigned int field)
 Compute error (L2 and L_inf) over an larger set of quadrature points return [L2 Linf]. More...
 
SOLVER_UTILS_EXPORT void WeakAdvectionGreensDivergenceForm (const Array< OneD, Array< OneD, NekDouble > > &F, Array< OneD, NekDouble > &outarray)
 Compute the inner product $ (\nabla \phi \cdot F) $. More...
 
SOLVER_UTILS_EXPORT void WeakAdvectionDivergenceForm (const Array< OneD, Array< OneD, NekDouble > > &F, Array< OneD, NekDouble > &outarray)
 Compute the inner product $ (\phi, \nabla \cdot F) $. More...
 
SOLVER_UTILS_EXPORT void WeakAdvectionNonConservativeForm (const Array< OneD, Array< OneD, NekDouble > > &V, const Array< OneD, const NekDouble > &u, Array< OneD, NekDouble > &outarray, bool UseContCoeffs=false)
 Compute the inner product $ (\phi, V\cdot \nabla u) $. More...
 
f SOLVER_UTILS_EXPORT void AdvectionNonConservativeForm (const Array< OneD, Array< OneD, NekDouble > > &V, const Array< OneD, const NekDouble > &u, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wk=NullNekDouble1DArray)
 Compute the non-conservative advection. More...
 
SOLVER_UTILS_EXPORT void WeakDGAdvection (const Array< OneD, Array< OneD, NekDouble > > &InField, Array< OneD, Array< OneD, NekDouble > > &OutField, bool NumericalFluxIncludesNormal=true, bool InFieldIsInPhysSpace=false, int nvariables=0)
 Calculate the weak discontinuous Galerkin advection. More...
 
SOLVER_UTILS_EXPORT void WeakDGDiffusion (const Array< OneD, Array< OneD, NekDouble > > &InField, Array< OneD, Array< OneD, NekDouble > > &OutField, bool NumericalFluxIncludesNormal=true, bool InFieldIsInPhysSpace=false)
 Calculate weak DG Diffusion in the LDG form. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n)
 Write checkpoint file of m_fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write checkpoint file of custom data fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_BaseFlow (const int n)
 Write base flow file of m_fields. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname)
 Write field data to the given filename. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write input fields to the given filename. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields)
 Input field data from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFldToMultiDomains (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const int ndomains)
 Input field data from the given file to multiple domains. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, std::vector< std::string > &fieldStr, Array< OneD, Array< OneD, NekDouble > > &coeffs)
 Output a field. Input field data into array from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, MultiRegions::ExpListSharedPtr &pField, std::string &pFieldName)
 Output a field. Input field data into ExpList from the given file. More...
 
SOLVER_UTILS_EXPORT void ScanForHistoryPoints ()
 Builds map of which element holds each history point. More...
 
SOLVER_UTILS_EXPORT void WriteHistoryData (std::ostream &out)
 Probe each history point and write to file. More...
 
SOLVER_UTILS_EXPORT void SessionSummary (SummaryList &vSummary)
 Write out a session summary. More...
 
SOLVER_UTILS_EXPORT Array
< OneD,
MultiRegions::ExpListSharedPtr > & 
UpdateFields ()
 
SOLVER_UTILS_EXPORT
LibUtilities::FieldMetaDataMap
UpdateFieldMetaDataMap ()
 Get hold of FieldInfoMap so it can be updated. More...
 
SOLVER_UTILS_EXPORT NekDouble GetFinalTime ()
 Return final time. More...
 
SOLVER_UTILS_EXPORT int GetNcoeffs ()
 
SOLVER_UTILS_EXPORT int GetNcoeffs (const int eid)
 
SOLVER_UTILS_EXPORT int GetNumExpModes ()
 
SOLVER_UTILS_EXPORT const
Array< OneD, int > 
GetNumExpModesPerExp ()
 
SOLVER_UTILS_EXPORT int GetNvariables ()
 
SOLVER_UTILS_EXPORT const
std::string 
GetVariable (unsigned int i)
 
SOLVER_UTILS_EXPORT int GetTraceTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTraceNpoints ()
 
SOLVER_UTILS_EXPORT int GetExpSize ()
 
SOLVER_UTILS_EXPORT int GetPhys_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetCoeff_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTotPoints (int n)
 
SOLVER_UTILS_EXPORT int GetNpoints ()
 
SOLVER_UTILS_EXPORT int GetNumElmVelocity ()
 
SOLVER_UTILS_EXPORT int GetSteps ()
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep ()
 
SOLVER_UTILS_EXPORT void CopyFromPhysField (const int i, Array< OneD, NekDouble > &output)
 
SOLVER_UTILS_EXPORT void CopyToPhysField (const int i, Array< OneD, NekDouble > &output)
 
SOLVER_UTILS_EXPORT void SetSteps (const int steps)
 
SOLVER_UTILS_EXPORT void ZeroPhysFields ()
 
SOLVER_UTILS_EXPORT void FwdTransFields ()
 
SOLVER_UTILS_EXPORT void GetFluxVector (const int i, Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &flux)
 
SOLVER_UTILS_EXPORT void GetFluxVector (const int i, Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &fluxX, Array< OneD, Array< OneD, NekDouble > > &fluxY)
 
SOLVER_UTILS_EXPORT void GetFluxVector (const int i, const int j, Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &flux)
 
SOLVER_UTILS_EXPORT void NumericalFlux (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numflux)
 
SOLVER_UTILS_EXPORT void NumericalFlux (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numfluxX, Array< OneD, Array< OneD, NekDouble > > &numfluxY)
 
SOLVER_UTILS_EXPORT void NumFluxforScalar (const Array< OneD, Array< OneD, NekDouble > > &ufield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &uflux)
 
SOLVER_UTILS_EXPORT void NumFluxforVector (const Array< OneD, Array< OneD, NekDouble > > &ufield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &qfield, Array< OneD, Array< OneD, NekDouble > > &qflux)
 
SOLVER_UTILS_EXPORT void SetModifiedBasis (const bool modbasis)
 
SOLVER_UTILS_EXPORT int NoCaseStringCompare (const std::string &s1, const std::string &s2)
 Perform a case-insensitive string comparison. More...
 
SOLVER_UTILS_EXPORT int GetCheckpointNumber ()
 
SOLVER_UTILS_EXPORT void SetCheckpointNumber (int num)
 
SOLVER_UTILS_EXPORT int GetCheckpointSteps ()
 
SOLVER_UTILS_EXPORT void SetCheckpointSteps (int num)
 
SOLVER_UTILS_EXPORT void SetTime (const NekDouble time)
 
SOLVER_UTILS_EXPORT void SetInitialStep (const int step)
 
SOLVER_UTILS_EXPORT void SetBoundaryConditions (NekDouble time)
 Evaluates the boundary conditions at the given time. More...
 
virtual SOLVER_UTILS_EXPORT bool v_NegatedOp ()
 Virtual function to identify if operator is negated in DoSolve. More...
 

Static Public Member Functions

static
SolverUtils::EquationSystemSharedPtr 
create (const LibUtilities::SessionReaderSharedPtr &pSession)
 Creates an instance of this class. More...
 
- Static Public Member Functions inherited from Nektar::ShallowWaterSystem
static
SolverUtils::EquationSystemSharedPtr 
create (const LibUtilities::SessionReaderSharedPtr &pSession)
 Creates an instance of this class. More...
 

Static Public Attributes

static std::string className
 Name of class. More...
 
- Static Public Attributes inherited from Nektar::ShallowWaterSystem
static std::string className
 Name of class. More...
 

Protected Member Functions

 NonlinearSWE (const LibUtilities::SessionReaderSharedPtr &pSession)
 
virtual void v_InitObject ()
 Init object for UnsteadySystem class. More...
 
void DoOdeRhs (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 
void DoOdeProjection (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 
void GetFluxVector (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &flux)
 
virtual void v_GenerateSummary (SolverUtils::SummaryList &s)
 Print a summary of time stepping parameters. More...
 
virtual void v_PrimitiveToConservative ()
 
virtual void v_ConservativeToPrimitive ()
 
- Protected Member Functions inherited from Nektar::ShallowWaterSystem
 ShallowWaterSystem (const LibUtilities::SessionReaderSharedPtr &pSession)
 Initialises UnsteadySystem class members. More...
 
void PrimitiveToConservative ()
 
void ConservativeToPrimitive ()
 
NekDouble GetGravity ()
 
const Array< OneD, const Array
< OneD, NekDouble > > & 
GetVecLocs ()
 
const Array< OneD, const Array
< OneD, NekDouble > > & 
GetNormals ()
 
const Array< OneD, NekDouble > & GetDepth ()
 
bool IsConstantDepth ()
 
void CopyBoundaryTrace (const Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd)
 
- Protected Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
SOLVER_UTILS_EXPORT UnsteadySystem (const LibUtilities::SessionReaderSharedPtr &pSession)
 Initialises UnsteadySystem class members. More...
 
SOLVER_UTILS_EXPORT NekDouble MaxTimeStepEstimator ()
 Get the maximum timestep estimator for cfl control. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoSolve ()
 Solves an unsteady problem. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoInitialise ()
 Sets up initial conditions. More...
 
virtual SOLVER_UTILS_EXPORT void v_AppendOutput1D (Array< OneD, Array< OneD, NekDouble > > &solution1D)
 Print the solution at each solution point in a txt file. More...
 
virtual SOLVER_UTILS_EXPORT void v_NumericalFlux (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numflux)
 
virtual SOLVER_UTILS_EXPORT void v_NumericalFlux (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numfluxX, Array< OneD, Array< OneD, NekDouble > > &numfluxY)
 
virtual SOLVER_UTILS_EXPORT void v_NumFluxforScalar (const Array< OneD, Array< OneD, NekDouble > > &ufield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &uflux)
 
virtual SOLVER_UTILS_EXPORT void v_NumFluxforVector (const Array< OneD, Array< OneD, NekDouble > > &ufield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &qfield, Array< OneD, Array< OneD, NekDouble > > &qflux)
 
virtual SOLVER_UTILS_EXPORT
NekDouble 
v_GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Return the timestep to be used for the next step in the time-marching loop. More...
 
virtual SOLVER_UTILS_EXPORT bool v_PreIntegrate (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_PostIntegrate (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_SteadyStateCheck (int step)
 
SOLVER_UTILS_EXPORT void CheckForRestartTime (NekDouble &time)
 
SOLVER_UTILS_EXPORT void SVVVarDiffCoeff (const Array< OneD, Array< OneD, NekDouble > > vel, StdRegions::VarCoeffMap &varCoeffMap)
 Evaluate the SVV diffusion coefficient according to Moura's paper where it should proportional to h time velocity. More...
 
- Protected Member Functions inherited from Nektar::SolverUtils::EquationSystem
SOLVER_UTILS_EXPORT EquationSystem (const LibUtilities::SessionReaderSharedPtr &pSession)
 Initialises EquationSystem class members. More...
 
int nocase_cmp (const std::string &s1, const std::string &s2)
 
virtual SOLVER_UTILS_EXPORT
NekDouble 
v_LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Virtual function for the L_inf error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT
NekDouble 
v_L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray, bool Normalised=false)
 Virtual function for the L_2 error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransCoeffToPhys ()
 Virtual function for transformation to physical space. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransPhysToCoeff ()
 Virtual function for transformation to coefficient space. More...
 
virtual SOLVER_UTILS_EXPORT void v_SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 
virtual SOLVER_UTILS_EXPORT void v_EvaluateExactSolution (unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 
SOLVER_UTILS_EXPORT void SetUpBaseFields (SpatialDomains::MeshGraphSharedPtr &mesh)
 
SOLVER_UTILS_EXPORT void ImportFldBase (std::string pInfile, SpatialDomains::MeshGraphSharedPtr pGraph)
 
virtual SOLVER_UTILS_EXPORT void v_Output (void)
 
virtual SOLVER_UTILS_EXPORT
MultiRegions::ExpListSharedPtr 
v_GetPressure (void)
 
virtual SOLVER_UTILS_EXPORT void v_ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 

Private Member Functions

void NumericalFlux1D (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numfluxX)
 
void NumericalFlux2D (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numfluxX, Array< OneD, Array< OneD, NekDouble > > &numfluxY)
 
void SetBoundaryConditions (Array< OneD, Array< OneD, NekDouble > > &physarray, NekDouble time)
 
void WallBoundary2D (int bcRegion, int cnt, Array< OneD, Array< OneD, NekDouble > > &Fwd, Array< OneD, Array< OneD, NekDouble > > &physarray)
 
void WallBoundary (int bcRegion, int cnt, Array< OneD, Array< OneD, NekDouble > > &Fwd, Array< OneD, Array< OneD, NekDouble > > &physarray)
 Wall boundary condition. More...
 
void AddCoriolis (const Array< OneD, const Array< OneD, NekDouble > > &physarray, Array< OneD, Array< OneD, NekDouble > > &outarray)
 
void AddVariableDepth (const Array< OneD, const Array< OneD, NekDouble > > &physarray, Array< OneD, Array< OneD, NekDouble > > &outarray)
 
void ConservativeToPrimitive (const Array< OneD, const Array< OneD, NekDouble > > &physin, Array< OneD, Array< OneD, NekDouble > > &physout)
 
void PrimitiveToConservative (const Array< OneD, const Array< OneD, NekDouble > > &physin, Array< OneD, Array< OneD, NekDouble > > &physout)
 
void GetVelocityVector (const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &velocity)
 Compute the velocity field $ \mathbf{v} $ given the momentum $ h\mathbf{v} $. More...
 

Friends

class MemoryManager< NonlinearSWE >
 

Additional Inherited Members

- Public Attributes inherited from Nektar::SolverUtils::UnsteadySystem
NekDouble m_cflSafetyFactor
 CFL safety factor (comprise between 0 to 1). More...
 
- Protected Types inherited from Nektar::SolverUtils::EquationSystem
enum  HomogeneousType { eHomogeneous1D, eHomogeneous2D, eHomogeneous3D, eNotHomogeneous }
 Parameter for homogeneous expansions. More...
 
- Protected Attributes inherited from Nektar::ShallowWaterSystem
SolverUtils::RiemannSolverSharedPtr m_riemannSolver
 
SolverUtils::RiemannSolverSharedPtr m_riemannSolverLDG
 
SolverUtils::AdvectionSharedPtr m_advection
 
SolverUtils::DiffusionSharedPtr m_diffusion
 
bool m_primitive
 Indicates if variables are primitive or conservative. More...
 
bool m_constantDepth
 Indicates if constant depth case. More...
 
NekDouble m_g
 Acceleration of gravity. More...
 
Array< OneD, NekDoublem_depth
 Still water depth. More...
 
Array< OneD, Array< OneD,
NekDouble > > 
m_bottomSlope
 
Array< OneD, NekDoublem_coriolis
 Coriolis force. More...
 
Array< OneD, Array< OneD,
NekDouble > > 
m_vecLocs
 
- Protected Attributes inherited from Nektar::SolverUtils::UnsteadySystem
int m_infosteps
 Number of time steps between outputting status information. More...
 
LibUtilities::TimeIntegrationWrapperSharedPtr m_intScheme
 Wrapper to the time integration scheme. More...
 
LibUtilities::TimeIntegrationSchemeOperators m_ode
 The time integration scheme operators to use. More...
 
LibUtilities::TimeIntegrationSolutionSharedPtr m_intSoln
 
NekDouble m_epsilon
 
bool m_explicitDiffusion
 Indicates if explicit or implicit treatment of diffusion is used. More...
 
bool m_explicitAdvection
 Indicates if explicit or implicit treatment of advection is used. More...
 
bool m_explicitReaction
 Indicates if explicit or implicit treatment of reaction is used. More...
 
bool m_homoInitialFwd
 Flag to determine if simulation should start in homogeneous forward transformed state. More...
 
std::vector< int > m_intVariables
 
std::vector< FilterSharedPtrm_filters
 
- Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
LibUtilities::CommSharedPtr m_comm
 Communicator. More...
 
LibUtilities::SessionReaderSharedPtr m_session
 The session reader. More...
 
LibUtilities::FieldIOSharedPtr m_fld
 Field input/output. More...
 
std::map< std::string, Array
< OneD, Array< OneD, float > > > 
m_interpWeights
 Map of the interpolation weights for a specific filename. More...
 
std::map< std::string, Array
< OneD, Array< OneD, unsigned
int > > > 
m_interpInds
 Map of the interpolation indices for a specific filename. More...
 
Array< OneD,
MultiRegions::ExpListSharedPtr
m_fields
 Array holding all dependent variables. More...
 
Array< OneD,
MultiRegions::ExpListSharedPtr
m_base
 Base fields. More...
 
Array< OneD,
MultiRegions::ExpListSharedPtr
m_derivedfields
 Array holding all dependent variables. More...
 
SpatialDomains::BoundaryConditionsSharedPtr m_boundaryConditions
 Pointer to boundary conditions object. More...
 
SpatialDomains::MeshGraphSharedPtr m_graph
 Pointer to graph defining mesh. More...
 
std::string m_sessionName
 Name of the session. More...
 
NekDouble m_time
 Current time of simulation. More...
 
int m_initialStep
 Number of the step where the simulation should begin. More...
 
NekDouble m_fintime
 Finish time of the simulation. More...
 
NekDouble m_timestep
 Time step size. More...
 
NekDouble m_lambda
 Lambda constant in real system if one required. More...
 
std::set< std::string > m_loadedFields
 
NekDouble m_checktime
 Time between checkpoints. More...
 
int m_nchk
 Number of checkpoints written so far. More...
 
int m_steps
 Number of steps to take. More...
 
int m_checksteps
 Number of steps between checkpoints. More...
 
int m_spacedim
 Spatial dimension (>= expansion dim). More...
 
int m_expdim
 Expansion dimension. More...
 
bool m_singleMode
 Flag to determine if single homogeneous mode is used. More...
 
bool m_halfMode
 Flag to determine if half homogeneous mode is used. More...
 
bool m_multipleModes
 Flag to determine if use multiple homogenenous modes are used. More...
 
bool m_useFFT
 Flag to determine if FFT is used for homogeneous transform. More...
 
bool m_homogen_dealiasing
 Flag to determine if dealiasing is used for homogeneous simulations. More...
 
bool m_specHP_dealiasing
 Flag to determine if dealisising is usde for the Spectral/hp element discretisation. More...
 
enum MultiRegions::ProjectionType m_projectionType
 Type of projection; e.g continuous or discontinuous. More...
 
Array< OneD, Array< OneD,
NekDouble > > 
m_traceNormals
 Array holding trace normals for DG simulations in the forwards direction. More...
 
Array< OneD, Array< OneD,
Array< OneD, NekDouble > > > 
m_gradtan
 1 x nvariable x nq More...
 
Array< OneD, Array< OneD,
Array< OneD, NekDouble > > > 
m_tanbasis
 2 x m_spacedim x nq More...
 
Array< OneD, bool > m_checkIfSystemSingular
 Flag to indicate if the fields should be checked for singularity. More...
 
LibUtilities::FieldMetaDataMap m_fieldMetaDataMap
 Map to identify relevant solver info to dump in output fields. More...
 
int m_NumQuadPointsError
 Number of Quadrature points used to work out the error. More...
 
enum HomogeneousType m_HomogeneousType
 
NekDouble m_LhomX
 physical length in X direction (if homogeneous) More...
 
NekDouble m_LhomY
 physical length in Y direction (if homogeneous) More...
 
NekDouble m_LhomZ
 physical length in Z direction (if homogeneous) More...
 
int m_npointsX
 number of points in X direction (if homogeneous) More...
 
int m_npointsY
 number of points in Y direction (if homogeneous) More...
 
int m_npointsZ
 number of points in Z direction (if homogeneous) More...
 
int m_HomoDirec
 number of homogenous directions More...
 

Detailed Description

Definition at line 50 of file NonlinearSWE.h.

Constructor & Destructor Documentation

Nektar::NonlinearSWE::~NonlinearSWE ( )
virtual

Definition at line 154 of file NonlinearSWE.cpp.

155  {
156 
157  }
Nektar::NonlinearSWE::NonlinearSWE ( const LibUtilities::SessionReaderSharedPtr pSession)
protected

Definition at line 52 of file NonlinearSWE.cpp.

54  : ShallowWaterSystem(pSession)
55  {
56  }
ShallowWaterSystem(const LibUtilities::SessionReaderSharedPtr &pSession)
Initialises UnsteadySystem class members.

Member Function Documentation

void Nektar::NonlinearSWE::AddCoriolis ( const Array< OneD, const Array< OneD, NekDouble > > &  physarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray 
)
private

Definition at line 160 of file NonlinearSWE.cpp.

References ASSERTL0, Nektar::MultiRegions::eDiscontinuous, Nektar::MultiRegions::eGalerkin, Nektar::MultiRegions::eMixed_CG_Discontinuous, Nektar::SolverUtils::EquationSystem::GetNcoeffs(), Nektar::SolverUtils::EquationSystem::GetTotPoints(), Nektar::ShallowWaterSystem::m_coriolis, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_projectionType, Vmath::Neg(), Vmath::Vadd(), and Vmath::Vmul().

Referenced by DoOdeRhs().

162  {
163 
164  int ncoeffs = GetNcoeffs();
165  int nq = GetTotPoints();
166 
167  Array<OneD, NekDouble> tmp(nq);
168  Array<OneD, NekDouble> mod(ncoeffs);
169 
170  switch(m_projectionType)
171  {
173  {
174  // add to hu equation
175  Vmath::Vmul(nq,m_coriolis,1,physarray[2],1,tmp,1);
176  m_fields[0]->IProductWRTBase(tmp,mod);
177  m_fields[0]->MultiplyByElmtInvMass(mod,mod);
178  m_fields[0]->BwdTrans(mod,tmp);
179  Vmath::Vadd(nq,tmp,1,outarray[1],1,outarray[1],1);
180 
181  // add to hv equation
182  Vmath::Vmul(nq,m_coriolis,1,physarray[1],1,tmp,1);
183  Vmath::Neg(nq,tmp,1);
184  m_fields[0]->IProductWRTBase(tmp,mod);
185  m_fields[0]->MultiplyByElmtInvMass(mod,mod);
186  m_fields[0]->BwdTrans(mod,tmp);
187  Vmath::Vadd(nq,tmp,1,outarray[2],1,outarray[2],1);
188  }
189  break;
192  {
193  // add to hu equation
194  Vmath::Vmul(nq,m_coriolis,1,physarray[2],1,tmp,1);
195  Vmath::Vadd(nq,tmp,1,outarray[1],1,outarray[1],1);
196 
197  // add to hv equation
198  Vmath::Vmul(nq,m_coriolis,1,physarray[1],1,tmp,1);
199  Vmath::Neg(nq,tmp,1);
200  Vmath::Vadd(nq,tmp,1,outarray[2],1,outarray[2],1);
201  }
202  break;
203  default:
204  ASSERTL0(false,"Unknown projection scheme for the NonlinearSWE");
205  break;
206  }
207 
208 
209  }
Array< OneD, NekDouble > m_coriolis
Coriolis force.
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
enum MultiRegions::ProjectionType m_projectionType
Type of projection; e.g continuous or discontinuous.
SOLVER_UTILS_EXPORT int GetTotPoints()
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:382
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
SOLVER_UTILS_EXPORT int GetNcoeffs()
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:285
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
void Nektar::NonlinearSWE::AddVariableDepth ( const Array< OneD, const Array< OneD, NekDouble > > &  physarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray 
)
private

Definition at line 213 of file NonlinearSWE.cpp.

References ASSERTL0, Nektar::MultiRegions::eDiscontinuous, Nektar::MultiRegions::eGalerkin, Nektar::MultiRegions::eMixed_CG_Discontinuous, Nektar::SolverUtils::EquationSystem::GetNcoeffs(), Nektar::SolverUtils::EquationSystem::GetTotPoints(), Nektar::ShallowWaterSystem::m_bottomSlope, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::ShallowWaterSystem::m_g, Nektar::SolverUtils::EquationSystem::m_projectionType, Nektar::SolverUtils::EquationSystem::m_spacedim, Vmath::Smul(), Vmath::Vadd(), and Vmath::Vmul().

Referenced by DoOdeRhs().

215  {
216 
217  int ncoeffs = GetNcoeffs();
218  int nq = GetTotPoints();
219 
220  Array<OneD, NekDouble> tmp(nq);
221  Array<OneD, NekDouble> mod(ncoeffs);
222 
223  switch(m_projectionType)
224  {
226  {
227  for (int i = 0; i < m_spacedim; ++i)
228  {
229  Vmath::Vmul(nq,m_bottomSlope[i],1,physarray[0],1,tmp,1);
230  Vmath::Smul(nq,m_g,tmp,1,tmp,1);
231  m_fields[0]->IProductWRTBase(tmp,mod);
232  m_fields[0]->MultiplyByElmtInvMass(mod,mod);
233  m_fields[0]->BwdTrans(mod,tmp);
234  Vmath::Vadd(nq,tmp,1,outarray[i+1],1,outarray[i+1],1);
235  }
236  }
237  break;
240  {
241  for (int i = 0; i < m_spacedim; ++i)
242  {
243  Vmath::Vmul(nq,m_bottomSlope[i],1,physarray[0],1,tmp,1);
244  Vmath::Smul(nq,m_g,tmp,1,tmp,1);
245  Vmath::Vadd(nq,tmp,1,outarray[i+1],1,outarray[i+1],1);
246  }
247  }
248  break;
249  default:
250  ASSERTL0(false,"Unknown projection scheme for the NonlinearSWE");
251  break;
252  }
253 
254 
255  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
enum MultiRegions::ProjectionType m_projectionType
Type of projection; e.g continuous or discontinuous.
SOLVER_UTILS_EXPORT int GetTotPoints()
Array< OneD, Array< OneD, NekDouble > > m_bottomSlope
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
int m_spacedim
Spatial dimension (>= expansion dim).
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
SOLVER_UTILS_EXPORT int GetNcoeffs()
NekDouble m_g
Acceleration of gravity.
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:285
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
void Nektar::NonlinearSWE::ConservativeToPrimitive ( const Array< OneD, const Array< OneD, NekDouble > > &  physin,
Array< OneD, Array< OneD, NekDouble > > &  physout 
)
private

Definition at line 629 of file NonlinearSWE.cpp.

References Nektar::SolverUtils::EquationSystem::GetTotPoints(), Nektar::ShallowWaterSystem::m_depth, Vmath::Vcopy(), Vmath::Vdiv(), and Vmath::Vsub().

631  {
632  int nq = GetTotPoints();
633 
634  if(physin.get() == physout.get())
635  {
636  // copy indata and work with tmp array
637  Array<OneD, Array<OneD, NekDouble> >tmp(3);
638  for (int i = 0; i < 3; ++i)
639  {
640  // deep copy
641  tmp[i] = Array<OneD, NekDouble>(nq);
642  Vmath::Vcopy(nq,physin[i],1,tmp[i],1);
643  }
644 
645  // \eta = h - d
646  Vmath::Vsub(nq,tmp[0],1,m_depth,1,physout[0],1);
647 
648  // u = hu/h
649  Vmath::Vdiv(nq,tmp[1],1,tmp[0],1,physout[1],1);
650 
651  // v = hv/ v
652  Vmath::Vdiv(nq,tmp[2],1,tmp[0],1,physout[2],1);
653  }
654  else
655  {
656  // \eta = h - d
657  Vmath::Vsub(nq,physin[0],1,m_depth,1,physout[0],1);
658 
659  // u = hu/h
660  Vmath::Vdiv(nq,physin[1],1,physin[0],1,physout[1],1);
661 
662  // v = hv/ v
663  Vmath::Vdiv(nq,physin[2],1,physin[0],1,physout[2],1);
664  }
665  }
Array< OneD, NekDouble > m_depth
Still water depth.
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:227
SOLVER_UTILS_EXPORT int GetTotPoints()
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.cpp:329
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1047
static SolverUtils::EquationSystemSharedPtr Nektar::NonlinearSWE::create ( const LibUtilities::SessionReaderSharedPtr pSession)
inlinestatic

Creates an instance of this class.

Definition at line 56 of file NonlinearSWE.h.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr().

58  {
60  p->InitObject();
61  return p;
62  }
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
boost::shared_ptr< EquationSystem > EquationSystemSharedPtr
A shared pointer to an EquationSystem object.
void Nektar::NonlinearSWE::DoOdeProjection ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time 
)
protected

Definition at line 374 of file NonlinearSWE.cpp.

References ASSERTL0, Nektar::MultiRegions::eDiscontinuous, Nektar::MultiRegions::eGalerkin, Nektar::MultiRegions::eMixed_CG_Discontinuous, Nektar::SolverUtils::EquationSystem::GetNcoeffs(), Nektar::SolverUtils::EquationSystem::GetNpoints(), Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_projectionType, SetBoundaryConditions(), Nektar::SolverUtils::EquationSystem::SetBoundaryConditions(), and Vmath::Vcopy().

Referenced by v_InitObject().

377  {
378  int i;
379  int nvariables = inarray.num_elements();
380 
381 
382  switch(m_projectionType)
383  {
385  {
386 
387  // Just copy over array
388  int npoints = GetNpoints();
389 
390  for(i = 0; i < nvariables; ++i)
391  {
392  Vmath::Vcopy(npoints, inarray[i], 1, outarray[i], 1);
393  }
394  SetBoundaryConditions(outarray, time);
395  break;
396  }
399  {
400 
402  Array<OneD, NekDouble> coeffs(m_fields[0]->GetNcoeffs());
403 
404  for(i = 0; i < nvariables; ++i)
405  {
406  m_fields[i]->FwdTrans(inarray[i],coeffs);
407  m_fields[i]->BwdTrans_IterPerExp(coeffs,outarray[i]);
408  }
409  break;
410  }
411  default:
412  ASSERTL0(false,"Unknown projection scheme");
413  break;
414  }
415  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
enum MultiRegions::ProjectionType m_projectionType
Type of projection; e.g continuous or discontinuous.
SOLVER_UTILS_EXPORT void SetBoundaryConditions(NekDouble time)
Evaluates the boundary conditions at the given time.
SOLVER_UTILS_EXPORT int GetNpoints()
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
SOLVER_UTILS_EXPORT int GetNcoeffs()
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1047
void SetBoundaryConditions(Array< OneD, Array< OneD, NekDouble > > &physarray, NekDouble time)
void Nektar::NonlinearSWE::DoOdeRhs ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time 
)
protected

Definition at line 257 of file NonlinearSWE.cpp.

References AddCoriolis(), AddVariableDepth(), ASSERTL0, Nektar::MultiRegions::DirCartesianMap, Nektar::MultiRegions::eDiscontinuous, Nektar::MultiRegions::eGalerkin, Nektar::MultiRegions::eMixed_CG_Discontinuous, GetFluxVector(), Nektar::SolverUtils::EquationSystem::GetTotPoints(), Nektar::ShallowWaterSystem::m_advection, Nektar::ShallowWaterSystem::m_constantDepth, Nektar::ShallowWaterSystem::m_coriolis, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_projectionType, Nektar::SolverUtils::EquationSystem::m_spacedim, Vmath::Neg(), and Vmath::Vadd().

Referenced by v_InitObject().

260  {
261  int i, j;
262  int ndim = m_spacedim;
263  int nvariables = inarray.num_elements();
264  int nq = GetTotPoints();
265 
266 
267  switch(m_projectionType)
268  {
270  {
271 
272  //-------------------------------------------------------
273  // Compute the DG advection including the numerical flux
274  // by using SolverUtils/Advection
275  // Input and output in physical space
276  Array<OneD, Array<OneD, NekDouble> > advVel;
277 
278  m_advection->Advect(nvariables, m_fields, advVel, inarray,
279  outarray, time);
280  //-------------------------------------------------------
281 
282 
283  //-------------------------------------------------------
284  // negate the outarray since moving terms to the rhs
285  for(i = 0; i < nvariables; ++i)
286  {
287  Vmath::Neg(nq,outarray[i],1);
288  }
289  //-------------------------------------------------------
290 
291 
292  //-------------------------------------------------
293  // Add "source terms"
294  // Input and output in physical space
295 
296  // Coriolis forcing
297  if (m_coriolis.num_elements() != 0)
298  {
299  AddCoriolis(inarray,outarray);
300  }
301 
302  // Variable Depth
303  if (m_constantDepth != true)
304  {
305  AddVariableDepth(inarray,outarray);
306  }
307  //-------------------------------------------------
308 
309  }
310  break;
313  {
314 
315  //-------------------------------------------------------
316  // Compute the fluxvector in physical space
317  Array<OneD, Array<OneD, Array<OneD, NekDouble> > >
318  fluxvector(nvariables);
319 
320  for (i = 0; i < nvariables; ++i)
321  {
322  fluxvector[i] = Array<OneD, Array<OneD, NekDouble> >(ndim);
323  for(j = 0; j < ndim; ++j)
324  {
325  fluxvector[i][j] = Array<OneD, NekDouble>(nq);
326  }
327  }
328 
329  NonlinearSWE::GetFluxVector(inarray, fluxvector);
330  //-------------------------------------------------------
331 
332 
333 
334  //-------------------------------------------------------
335  // Take the derivative of the flux terms
336  // and negate the outarray since moving terms to the rhs
337  Array<OneD,NekDouble> tmp(nq);
338  Array<OneD, NekDouble>tmp1(nq);
339 
340  for(i = 0; i < nvariables; ++i)
341  {
342  m_fields[i]->PhysDeriv(MultiRegions::DirCartesianMap[0],fluxvector[i][0],tmp);
343  m_fields[i]->PhysDeriv(MultiRegions::DirCartesianMap[1],fluxvector[i][1],tmp1);
344  Vmath::Vadd(nq,tmp,1,tmp1,1,outarray[i],1);
345  Vmath::Neg(nq,outarray[i],1);
346  }
347 
348 
349  //-------------------------------------------------
350  // Add "source terms"
351  // Input and output in physical space
352 
353  // Coriolis forcing
354  if (m_coriolis.num_elements() != 0)
355  {
356  AddCoriolis(inarray,outarray);
357  }
358 
359  // Variable Depth
360  if (m_constantDepth != true)
361  {
362  AddVariableDepth(inarray,outarray);
363  }
364  //-------------------------------------------------
365  }
366  break;
367  default:
368  ASSERTL0(false,"Unknown projection scheme for the NonlinearSWE");
369  break;
370  }
371  }
Array< OneD, NekDouble > m_coriolis
Coriolis force.
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
void GetFluxVector(const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &flux)
enum MultiRegions::ProjectionType m_projectionType
Type of projection; e.g continuous or discontinuous.
SolverUtils::AdvectionSharedPtr m_advection
void AddVariableDepth(const Array< OneD, const Array< OneD, NekDouble > > &physarray, Array< OneD, Array< OneD, NekDouble > > &outarray)
SOLVER_UTILS_EXPORT int GetTotPoints()
void AddCoriolis(const Array< OneD, const Array< OneD, NekDouble > > &physarray, Array< OneD, Array< OneD, NekDouble > > &outarray)
int m_spacedim
Spatial dimension (>= expansion dim).
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:382
MultiRegions::Direction const DirCartesianMap[]
Definition: ExpList.h:86
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
bool m_constantDepth
Indicates if constant depth case.
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:285
void Nektar::NonlinearSWE::GetFluxVector ( const Array< OneD, const Array< OneD, NekDouble > > &  physfield,
Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &  flux 
)
protected

Definition at line 590 of file NonlinearSWE.cpp.

References GetVelocityVector(), Nektar::SolverUtils::EquationSystem::m_fields, Nektar::ShallowWaterSystem::m_g, Nektar::SolverUtils::EquationSystem::m_spacedim, Vmath::Smul(), Vmath::Vadd(), Vmath::Vcopy(), and Vmath::Vmul().

Referenced by DoOdeRhs(), and v_InitObject().

593  {
594  int i, j;
595  int nq = m_fields[0]->GetTotPoints();
596 
597  NekDouble g = m_g;
598  Array<OneD, Array<OneD, NekDouble> > velocity(m_spacedim);
599 
600  // Flux vector for the mass equation
601  for (i = 0; i < m_spacedim; ++i)
602  {
603  velocity[i] = Array<OneD, NekDouble>(nq);
604  Vmath::Vcopy(nq, physfield[i+1], 1, flux[0][i], 1);
605  }
606 
607  GetVelocityVector(physfield, velocity);
608 
609  // Put (0.5 g h h) in tmp
610  Array<OneD, NekDouble> tmp(nq);
611  Vmath::Vmul(nq, physfield[0], 1, physfield[0], 1, tmp, 1);
612  Vmath::Smul(nq, 0.5*g, tmp, 1, tmp, 1);
613 
614  // Flux vector for the momentum equations
615  for (i = 0; i < m_spacedim; ++i)
616  {
617  for (j = 0; j < m_spacedim; ++j)
618  {
619  Vmath::Vmul(nq, velocity[j], 1, physfield[i+1], 1,
620  flux[i+1][j], 1);
621  }
622 
623  // Add (0.5 g h h) to appropriate field
624  Vmath::Vadd(nq, flux[i+1][i], 1, tmp, 1, flux[i+1][i], 1);
625  }
626 
627  }
void GetVelocityVector(const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &velocity)
Compute the velocity field given the momentum .
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
int m_spacedim
Spatial dimension (>= expansion dim).
double NekDouble
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
NekDouble m_g
Acceleration of gravity.
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1047
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:285
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
void Nektar::NonlinearSWE::GetVelocityVector ( const Array< OneD, Array< OneD, NekDouble > > &  physfield,
Array< OneD, Array< OneD, NekDouble > > &  velocity 
)
private

Compute the velocity field $ \mathbf{v} $ given the momentum $ h\mathbf{v} $.

Parameters
physfieldMomentum field.
velocityVelocity field.

Definition at line 746 of file NonlinearSWE.cpp.

References Nektar::SolverUtils::EquationSystem::m_spacedim, npts, and Vmath::Vdiv().

Referenced by GetFluxVector().

749  {
750  const int npts = physfield[0].num_elements();
751 
752  for (int i = 0; i < m_spacedim; ++i)
753  {
754  Vmath::Vdiv(npts, physfield[1+i], 1, physfield[0], 1,
755  velocity[i], 1);
756  }
757  }
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:227
static std::string npts
Definition: InputFld.cpp:43
int m_spacedim
Spatial dimension (>= expansion dim).
void Nektar::NonlinearSWE::NumericalFlux1D ( Array< OneD, Array< OneD, NekDouble > > &  physfield,
Array< OneD, Array< OneD, NekDouble > > &  numfluxX 
)
private
void Nektar::NonlinearSWE::NumericalFlux2D ( Array< OneD, Array< OneD, NekDouble > > &  physfield,
Array< OneD, Array< OneD, NekDouble > > &  numfluxX,
Array< OneD, Array< OneD, NekDouble > > &  numfluxY 
)
private
void Nektar::NonlinearSWE::PrimitiveToConservative ( const Array< OneD, const Array< OneD, NekDouble > > &  physin,
Array< OneD, Array< OneD, NekDouble > > &  physout 
)
private

Definition at line 682 of file NonlinearSWE.cpp.

References Nektar::SolverUtils::EquationSystem::GetTotPoints(), Nektar::ShallowWaterSystem::m_depth, Vmath::Vadd(), Vmath::Vcopy(), and Vmath::Vmul().

684  {
685 
686  int nq = GetTotPoints();
687 
688  if(physin.get() == physout.get())
689  {
690  // copy indata and work with tmp array
691  Array<OneD, Array<OneD, NekDouble> >tmp(3);
692  for (int i = 0; i < 3; ++i)
693  {
694  // deep copy
695  tmp[i] = Array<OneD, NekDouble>(nq);
696  Vmath::Vcopy(nq,physin[i],1,tmp[i],1);
697  }
698 
699  // h = \eta + d
700  Vmath::Vadd(nq,tmp[0],1,m_depth,1,physout[0],1);
701 
702  // hu = h * u
703  Vmath::Vmul(nq,physout[0],1,tmp[1],1,physout[1],1);
704 
705  // hv = h * v
706  Vmath::Vmul(nq,physout[0],1,tmp[2],1,physout[2],1);
707 
708  }
709  else
710  {
711  // h = \eta + d
712  Vmath::Vadd(nq,physin[0],1,m_depth,1,physout[0],1);
713 
714  // hu = h * u
715  Vmath::Vmul(nq,physout[0],1,physin[1],1,physout[1],1);
716 
717  // hv = h * v
718  Vmath::Vmul(nq,physout[0],1,physin[2],1,physout[2],1);
719 
720  }
721 
722  }
Array< OneD, NekDouble > m_depth
Still water depth.
SOLVER_UTILS_EXPORT int GetTotPoints()
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1047
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:285
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
void Nektar::NonlinearSWE::SetBoundaryConditions ( Array< OneD, Array< OneD, NekDouble > > &  physarray,
NekDouble  time 
)
private

Definition at line 419 of file NonlinearSWE.cpp.

References Nektar::SolverUtils::EquationSystem::GetTraceTotPoints(), Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_session, and WallBoundary2D().

Referenced by DoOdeProjection().

422  {
423  std::string varName;
424  int nvariables = m_fields.num_elements();
425  int cnt = 0;
426  int nTracePts = GetTraceTotPoints();
427 
428  // Extract trace for boundaries. Needs to be done on all processors to avoid
429  // deadlock.
430  Array<OneD, Array<OneD, NekDouble> > Fwd(nvariables);
431  for (int i = 0; i < nvariables; ++i)
432  {
433  Fwd[i] = Array<OneD, NekDouble>(nTracePts);
434  m_fields[i]->ExtractTracePhys(inarray[i], Fwd[i]);
435  }
436 
437  // Loop over Boundary Regions
438  for (int n = 0; n < m_fields[0]->GetBndConditions().num_elements(); ++n)
439  {
440 
441  // Wall Boundary Condition
442  if (boost::iequals(m_fields[0]->GetBndConditions()[n]->GetUserDefined(),"Wall"))
443  {
444  WallBoundary2D(n, cnt, Fwd, inarray);
445  }
446 
447  // Time Dependent Boundary Condition (specified in meshfile)
448  if (m_fields[0]->GetBndConditions()[n]->IsTimeDependent())
449  {
450  for (int i = 0; i < nvariables; ++i)
451  {
452  varName = m_session->GetVariable(i);
453  m_fields[i]->EvaluateBoundaryConditions(time, varName);
454  }
455  }
456  cnt += m_fields[0]->GetBndCondExpansions()[n]->GetExpSize();
457  }
458  }
void WallBoundary2D(int bcRegion, int cnt, Array< OneD, Array< OneD, NekDouble > > &Fwd, Array< OneD, Array< OneD, NekDouble > > &physarray)
SOLVER_UTILS_EXPORT int GetTraceTotPoints()
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
void Nektar::NonlinearSWE::v_ConservativeToPrimitive ( )
protectedvirtual

Reimplemented from Nektar::ShallowWaterSystem.

Definition at line 668 of file NonlinearSWE.cpp.

References Nektar::SolverUtils::EquationSystem::GetTotPoints(), Nektar::ShallowWaterSystem::m_depth, Nektar::SolverUtils::EquationSystem::m_fields, Vmath::Vdiv(), and Vmath::Vsub().

669  {
670  int nq = GetTotPoints();
671 
672  // u = hu/h
673  Vmath::Vdiv(nq,m_fields[1]->GetPhys(),1,m_fields[0]->GetPhys(),1,m_fields[1]->UpdatePhys(),1);
674 
675  // v = hv/ v
676  Vmath::Vdiv(nq,m_fields[2]->GetPhys(),1,m_fields[0]->GetPhys(),1,m_fields[2]->UpdatePhys(),1);
677 
678  // \eta = h - d
679  Vmath::Vsub(nq,m_fields[0]->GetPhys(),1,m_depth,1,m_fields[0]->UpdatePhys(),1);
680  }
Array< OneD, NekDouble > m_depth
Still water depth.
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:227
SOLVER_UTILS_EXPORT int GetTotPoints()
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.cpp:329
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
void Nektar::NonlinearSWE::v_GenerateSummary ( SolverUtils::SummaryList s)
protectedvirtual

Print a summary of time stepping parameters.

Reimplemented from Nektar::ShallowWaterSystem.

Definition at line 760 of file NonlinearSWE.cpp.

References Nektar::SolverUtils::AddSummaryItem(), and Nektar::ShallowWaterSystem::v_GenerateSummary().

761  {
763  SolverUtils::AddSummaryItem(s, "Variables", "h should be in field[0]");
764  SolverUtils::AddSummaryItem(s, "", "hu should be in field[1]");
765  SolverUtils::AddSummaryItem(s, "", "hv should be in field[2]");
766  }
void AddSummaryItem(SummaryList &l, const std::string &name, const std::string &value)
Adds a summary item to the summary info list.
Definition: Misc.cpp:50
virtual void v_GenerateSummary(SolverUtils::SummaryList &s)
Print a summary of time stepping parameters.
void Nektar::NonlinearSWE::v_InitObject ( )
protectedvirtual

Init object for UnsteadySystem class.

Initialization object for UnsteadySystem class.

Reimplemented from Nektar::ShallowWaterSystem.

Definition at line 58 of file NonlinearSWE.cpp.

References ASSERTL0, Nektar::LibUtilities::NekFactory< tKey, tBase, >::CreateInstance(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineOdeRhs(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineProjection(), DoOdeProjection(), DoOdeRhs(), Nektar::MultiRegions::eDiscontinuous, Nektar::MultiRegions::eGalerkin, Nektar::SolverUtils::GetAdvectionFactory(), Nektar::ShallowWaterSystem::GetDepth(), GetFluxVector(), Nektar::ShallowWaterSystem::GetGravity(), Nektar::ShallowWaterSystem::GetNormals(), Nektar::SolverUtils::GetRiemannSolverFactory(), Nektar::ShallowWaterSystem::GetVecLocs(), Nektar::ShallowWaterSystem::m_advection, Nektar::SolverUtils::UnsteadySystem::m_explicitAdvection, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::UnsteadySystem::m_ode, Nektar::SolverUtils::EquationSystem::m_projectionType, Nektar::ShallowWaterSystem::m_riemannSolver, Nektar::SolverUtils::EquationSystem::m_session, and Nektar::ShallowWaterSystem::v_InitObject().

59  {
61 
63  {
66  }
67  else
68  {
69  ASSERTL0(false, "Implicit SWE not set up.");
70  }
71 
72  // Type of advection class to be used
73  switch(m_projectionType)
74  {
75  // Continuous field
77  {
78  // Do nothing
79  break;
80  }
81  // Discontinuous field
83  {
84  string advName;
85  string diffName;
86  string riemName;
87 
88  //---------------------------------------------------------------
89  // Setting up advection and diffusion operators
90  // NB: diffusion not set up for SWE at the moment
91  // but kept here for future use ...
92  m_session->LoadSolverInfo("AdvectionType", advName, "WeakDG");
93  // m_session->LoadSolverInfo("DiffusionType", diffName, "LDGEddy");
95  .CreateInstance(advName, advName);
96  // m_diffusion = SolverUtils::GetDiffusionFactory()
97  // .CreateInstance(diffName, diffName);
98 
99  m_advection->SetFluxVector(&NonlinearSWE::GetFluxVector, this);
100  // m_diffusion->SetFluxVectorNS(&ShallowWaterSystem::
101  // GetEddyViscosityFluxVector, this);
102 
103  // Setting up Riemann solver for advection operator
104  m_session->LoadSolverInfo("UpwindType", riemName, "Average");
106  .CreateInstance(riemName);
107 
108  // Setting up upwind solver for diffusion operator
109  // m_riemannSolverLDG = SolverUtils::GetRiemannSolverFactory()
110  // .CreateInstance("UpwindLDG");
111 
112  // Setting up parameters for advection operator Riemann solver
113  m_riemannSolver->SetParam (
114  "gravity",
115  &NonlinearSWE::GetGravity, this);
116  m_riemannSolver->SetAuxVec(
117  "vecLocs",
118  &NonlinearSWE::GetVecLocs, this);
119  m_riemannSolver->SetVector(
120  "N",
121  &NonlinearSWE::GetNormals, this);
122  m_riemannSolver->SetScalar(
123  "depth",
124  &NonlinearSWE::GetDepth, this);
125 
126  // Setting up parameters for diffusion operator Riemann solver
127  // m_riemannSolverLDG->AddParam (
128  // "gravity",
129  // &NonlinearSWE::GetGravity, this);
130  // m_riemannSolverLDG->SetAuxVec(
131  // "vecLocs",
132  // &NonlinearSWE::GetVecLocs, this);
133  // m_riemannSolverLDG->AddVector(
134  // "N",
135  // &NonlinearSWE::GetNormals, this);
136 
137  // Concluding initialisation of advection / diffusion operators
138  m_advection->SetRiemannSolver (m_riemannSolver);
139  //m_diffusion->SetRiemannSolver (m_riemannSolverLDG);
140  m_advection->InitObject (m_session, m_fields);
141  //m_diffusion->InitObject (m_session, m_fields);
142  break;
143  }
144  default:
145  {
146  ASSERTL0(false, "Unsupported projection type.");
147  break;
148  }
149  }
150 
151 
152  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
void GetFluxVector(const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &flux)
tBaseSharedPtr CreateInstance(tKey idKey BOOST_PP_COMMA_IF(MAX_PARAM) BOOST_PP_ENUM_BINARY_PARAMS(MAX_PARAM, tParam, x))
Create an instance of the class referred to by idKey.
Definition: NekFactory.hpp:162
void DoOdeProjection(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
LibUtilities::TimeIntegrationSchemeOperators m_ode
The time integration scheme operators to use.
enum MultiRegions::ProjectionType m_projectionType
Type of projection; e.g continuous or discontinuous.
const Array< OneD, const Array< OneD, NekDouble > > & GetVecLocs()
SolverUtils::AdvectionSharedPtr m_advection
const Array< OneD, const Array< OneD, NekDouble > > & GetNormals()
const Array< OneD, NekDouble > & GetDepth()
void DefineProjection(FuncPointerT func, ObjectPointerT obj)
bool m_explicitAdvection
Indicates if explicit or implicit treatment of advection is used.
void DefineOdeRhs(FuncPointerT func, ObjectPointerT obj)
virtual void v_InitObject()
Init object for UnsteadySystem class.
RiemannSolverFactory & GetRiemannSolverFactory()
SolverUtils::RiemannSolverSharedPtr m_riemannSolver
AdvectionFactory & GetAdvectionFactory()
Gets the factory for initialising advection objects.
Definition: Advection.cpp:46
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
void DoOdeRhs(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
void Nektar::NonlinearSWE::v_PrimitiveToConservative ( )
protectedvirtual

Reimplemented from Nektar::ShallowWaterSystem.

Definition at line 724 of file NonlinearSWE.cpp.

References Nektar::SolverUtils::EquationSystem::GetTotPoints(), Nektar::ShallowWaterSystem::m_depth, Nektar::SolverUtils::EquationSystem::m_fields, Vmath::Vadd(), and Vmath::Vmul().

725  {
726  int nq = GetTotPoints();
727 
728  // h = \eta + d
729  Vmath::Vadd(nq,m_fields[0]->GetPhys(),1,m_depth,1,m_fields[0]->UpdatePhys(),1);
730 
731  // hu = h * u
732  Vmath::Vmul(nq,m_fields[0]->GetPhys(),1,m_fields[1]->GetPhys(),1,m_fields[1]->UpdatePhys(),1);
733 
734  // hv = h * v
735  Vmath::Vmul(nq,m_fields[0]->GetPhys(),1,m_fields[2]->GetPhys(),1,m_fields[2]->UpdatePhys(),1);
736  }
Array< OneD, NekDouble > m_depth
Still water depth.
SOLVER_UTILS_EXPORT int GetTotPoints()
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:285
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
void Nektar::NonlinearSWE::WallBoundary ( int  bcRegion,
int  cnt,
Array< OneD, Array< OneD, NekDouble > > &  Fwd,
Array< OneD, Array< OneD, NekDouble > > &  physarray 
)
private

Wall boundary condition.

Definition at line 464 of file NonlinearSWE.cpp.

References Nektar::SolverUtils::EquationSystem::GetPhys_Offset(), Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_spacedim, Nektar::SolverUtils::EquationSystem::m_traceNormals, npts, Vmath::Smul(), Vmath::Vcopy(), and Vmath::Vvtvp().

469  {
470  int i;
471  int nvariables = physarray.num_elements();
472 
473  // Adjust the physical values of the trace to take
474  // user defined boundaries into account
475  int e, id1, id2, npts;
476 
477  for (e = 0; e < m_fields[0]->GetBndCondExpansions()[bcRegion]
478  ->GetExpSize(); ++e)
479  {
480  npts = m_fields[0]->GetBndCondExpansions()[bcRegion]->
481  GetExp(e)->GetTotPoints();
482  id1 = m_fields[0]->GetBndCondExpansions()[bcRegion]->
483  GetPhys_Offset(e);
484  id2 = m_fields[0]->GetTrace()->GetPhys_Offset(
485  m_fields[0]->GetTraceMap()->
486  GetBndCondCoeffsToGlobalCoeffsMap(cnt+e));
487 
488  // For 2D/3D, define: v* = v - 2(v.n)n
489  Array<OneD, NekDouble> tmp(npts, 0.0);
490 
491  // Calculate (v.n)
492  for (i = 0; i < m_spacedim; ++i)
493  {
494  Vmath::Vvtvp(npts,
495  &Fwd[1+i][id2], 1,
496  &m_traceNormals[i][id2], 1,
497  &tmp[0], 1,
498  &tmp[0], 1);
499  }
500 
501  // Calculate 2.0(v.n)
502  Vmath::Smul(npts, -2.0, &tmp[0], 1, &tmp[0], 1);
503 
504  // Calculate v* = v - 2.0(v.n)n
505  for (i = 0; i < m_spacedim; ++i)
506  {
507  Vmath::Vvtvp(npts,
508  &tmp[0], 1,
509  &m_traceNormals[i][id2], 1,
510  &Fwd[1+i][id2], 1,
511  &Fwd[1+i][id2], 1);
512  }
513 
514  // copy boundary adjusted values into the boundary expansion
515  for (i = 0; i < nvariables; ++i)
516  {
517  Vmath::Vcopy(npts, &Fwd[i][id2], 1,
518  &(m_fields[i]->GetBndCondExpansions()[bcRegion]->
519  UpdatePhys())[id1], 1);
520  }
521  }
522  }
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:428
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
Array holding trace normals for DG simulations in the forwards direction.
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
static std::string npts
Definition: InputFld.cpp:43
int m_spacedim
Spatial dimension (>= expansion dim).
SOLVER_UTILS_EXPORT int GetPhys_Offset(int n)
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1047
void Nektar::NonlinearSWE::WallBoundary2D ( int  bcRegion,
int  cnt,
Array< OneD, Array< OneD, NekDouble > > &  Fwd,
Array< OneD, Array< OneD, NekDouble > > &  physarray 
)
private

Definition at line 525 of file NonlinearSWE.cpp.

References ASSERTL0, Nektar::SolverUtils::EquationSystem::m_expdim, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_traceNormals, Vmath::Neg(), npts, Vmath::Vcopy(), Vmath::Vmul(), Vmath::Vvtvm(), and Vmath::Vvtvp().

Referenced by SetBoundaryConditions().

526  {
527 
528  int i;
529  int nvariables = physarray.num_elements();
530 
531  // Adjust the physical values of the trace to take
532  // user defined boundaries into account
533  int e, id1, id2, npts;
534 
535  for(e = 0; e < m_fields[0]->GetBndCondExpansions()[bcRegion]->GetExpSize(); ++e)
536  {
537  npts = m_fields[0]->GetBndCondExpansions()[bcRegion]->GetExp(e)->GetNumPoints(0);
538  id1 = m_fields[0]->GetBndCondExpansions()[bcRegion]->GetPhys_Offset(e) ;
539  id2 = m_fields[0]->GetTrace()->GetPhys_Offset(m_fields[0]->GetTraceMap()->GetBndCondCoeffsToGlobalCoeffsMap(cnt+e));
540 
541  switch(m_expdim)
542  {
543  case 1:
544  {
545  // negate the forward flux
546  Vmath::Neg(npts,&Fwd[1][id2],1);
547  }
548  break;
549  case 2:
550  {
551  Array<OneD, NekDouble> tmp_n(npts);
552  Array<OneD, NekDouble> tmp_t(npts);
553 
554  Vmath::Vmul(npts,&Fwd[1][id2],1,&m_traceNormals[0][id2],1,&tmp_n[0],1);
555  Vmath::Vvtvp(npts,&Fwd[2][id2],1,&m_traceNormals[1][id2],1,&tmp_n[0],1,&tmp_n[0],1);
556 
557  Vmath::Vmul(npts,&Fwd[1][id2],1,&m_traceNormals[1][id2],1,&tmp_t[0],1);
558  Vmath::Vvtvm(npts,&Fwd[2][id2],1,&m_traceNormals[0][id2],1,&tmp_t[0],1,&tmp_t[0],1);
559 
560  // negate the normal flux
561  Vmath::Neg(npts,tmp_n,1);
562 
563  // rotate back to Cartesian
564  Vmath::Vmul(npts,&tmp_t[0],1,&m_traceNormals[1][id2],1,&Fwd[1][id2],1);
565  Vmath::Vvtvm(npts,&tmp_n[0],1,&m_traceNormals[0][id2],1,&Fwd[1][id2],1,&Fwd[1][id2],1);
566 
567  Vmath::Vmul(npts,&tmp_t[0],1,&m_traceNormals[0][id2],1,&Fwd[2][id2],1);
568  Vmath::Vvtvp(npts,&tmp_n[0],1,&m_traceNormals[1][id2],1,&Fwd[2][id2],1,&Fwd[2][id2],1);
569  }
570  break;
571  case 3:
572  ASSERTL0(false,"3D not implemented for Shallow Water Equations");
573  break;
574  default:
575  ASSERTL0(false,"Illegal expansion dimension");
576  }
577 
578 
579 
580  // copy boundary adjusted values into the boundary expansion
581  for (i = 0; i < nvariables; ++i)
582  {
583  Vmath::Vcopy(npts,&Fwd[i][id2], 1,&(m_fields[i]->GetBndCondExpansions()[bcRegion]->UpdatePhys())[id1],1);
584  }
585  }
586  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
int m_expdim
Expansion dimension.
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:428
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
Array holding trace normals for DG simulations in the forwards direction.
static std::string npts
Definition: InputFld.cpp:43
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:382
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
void Vvtvm(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvm (vector times vector plus vector): z = w*x - y
Definition: Vmath.cpp:451
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1047
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169

Friends And Related Function Documentation

friend class MemoryManager< NonlinearSWE >
friend

Definition at line 53 of file NonlinearSWE.h.

Member Data Documentation

string Nektar::NonlinearSWE::className
static
Initial value:
=
"NonlinearSWE", NonlinearSWE::create,
"Nonlinear shallow water equation in conservative variables.")

Name of class.

Definition at line 64 of file NonlinearSWE.h.