Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
ProcessQCriterion.cpp
Go to the documentation of this file.
1 ////////////////////////////////////////////////////////////////////////////////
2 //
3 // File: ProcessQCriterion.cpp
4 //
5 // For more information, please see: http://www.nektar.info/
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // License for the specific language governing rights and limitations under
14 // Permission is hereby granted, free of charge, to any person obtaining a
15 // copy of this software and associated documentation files (the "Software"),
16 // to deal in the Software without restriction, including without limitation
17 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
18 // and/or sell copies of the Software, and to permit persons to whom the
19 // Software is furnished to do so, subject to the following conditions:
20 //
21 // The above copyright notice and this permission notice shall be included
22 // in all copies or substantial portions of the Software.
23 //
24 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
25 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
26 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
27 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
28 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
29 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
30 // DEALINGS IN THE SOFTWARE.
31 //
32 // Description: Computes Q Criterion field.
33 //
34 ////////////////////////////////////////////////////////////////////////////////
35 
36 #include <string>
37 #include <iostream>
38 using namespace std;
39 
40 #include "ProcessQCriterion.h"
41 
44 
45 namespace Nektar
46 {
47 namespace Utilities
48 {
49 
50 ModuleKey ProcessQCriterion::className =
52  ModuleKey(eProcessModule, "QCriterion"),
53  ProcessQCriterion::create, "Computes Q-Criterion.");
54 
55 ProcessQCriterion::ProcessQCriterion(FieldSharedPtr f)
56  : ProcessModule(f)
57 {
58 }
59 
61 {
62 }
63 
64 void ProcessQCriterion::Process(po::variables_map &vm)
65 {
66  if (m_f->m_verbose)
67  {
68  if(m_f->m_comm->GetRank() == 0)
69  {
70  cout << "ProcessQCriterion: Calculating Q Criterion..." << endl;
71  }
72  }
73 
74  int i, j, s;
75  int expdim = m_f->m_graph->GetMeshDimension();
76  int spacedim = expdim;
77  if ((m_f->m_fielddef[0]->m_numHomogeneousDir) == 1 ||
78  (m_f->m_fielddef[0]->m_numHomogeneousDir) == 2)
79  {
80  spacedim = 3;
81  }
82  int nfields = m_f->m_fielddef[0]->m_fields.size();
83  if (spacedim == 1 || spacedim == 2)
84  {
85  cerr << "\n Error: ProcessQCriterion must be computed for a 3D"
86  " (or quasi-3D) case. \n" << endl;
87  }
88 
89  //For calculating Q-Criterion only 1 field must be added
90  int addfields = 1;
91 
92  int npoints = m_f->m_exp[0]->GetNpoints();
93 
94  Array<OneD, Array<OneD, NekDouble> > grad(nfields * nfields);
95 
96  Array<OneD, Array<OneD, NekDouble> > omega(nfields * nfields);
97  Array<OneD, Array<OneD, NekDouble> > S (nfields * nfields);
98 
99  Array<OneD, Array<OneD, NekDouble> > outfield (addfields);
100  Array<OneD, Array<OneD, NekDouble> > outfield1(addfields);
101  Array<OneD, Array<OneD, NekDouble> > outfield2(addfields);
102  Array<OneD, Array<OneD, NekDouble> > outfield3(addfields);
103 
104  int nstrips;
105 
106  m_f->m_session->LoadParameter("Strip_Z",nstrips,1);
107 
108  m_f->m_exp.resize(nfields*nstrips);
109 
110  for (i = 0; i < nfields*nfields; ++i)
111  {
112  grad[i] = Array<OneD, NekDouble>(npoints);
113  }
114 
115  for (i = 0; i < addfields; ++i)
116  {
117  //Will store the Q-Criterion
118  outfield[i] = Array<OneD, NekDouble>(npoints);
119  outfield1[i] = Array<OneD, NekDouble>(npoints);
120  outfield2[i] = Array<OneD, NekDouble>(npoints);
121  outfield3[i] = Array<OneD, NekDouble>(npoints);
122 
123  omega[i] = Array<OneD, NekDouble>(npoints);
124  S[i] = Array<OneD, NekDouble>(npoints);
125  }
126 
127  vector<MultiRegions::ExpListSharedPtr> Exp(nstrips*addfields);
128 
129  for(s = 0; s < nstrips; ++s) //homogeneous strip varient
130  {
131  for (i = 0; i < nfields; ++i)
132  {
133  m_f->m_exp[s*nfields+i]->PhysDeriv(m_f->m_exp[s*nfields+i]->GetPhys(),
134  grad[i*nfields],
135  grad[i*nfields+1],
136  grad[i*nfields+2]);
137  }
138 
139  // W_x = Wy - Vz
140  Vmath::Vsub(npoints, grad[2 * nfields + 1], 1,
141  grad[1 * nfields + 2], 1,
142  outfield1[0], 1);
143  // W_x^2
144  Vmath::Vmul(npoints, outfield1[0], 1,
145  outfield1[0], 1,
146  outfield1[0], 1);
147 
148  // W_y = Uz - Wx
149  Vmath::Vsub(npoints, grad[0 * nfields + 2], 1,
150  grad[2 * nfields + 0], 1,
151  outfield2[0], 1);
152  // W_y^2
153  Vmath::Vmul(npoints, outfield2[0], 1,
154  outfield2[0], 1,
155  outfield2[0], 1);
156 
157  // W_z = Vx - Uy
158  Vmath::Vsub(npoints, grad[1 * nfields + 0], 1,
159  grad[0 * nfields + 1], 1,
160  outfield3[0], 1);
161  // W_z^2
162  Vmath::Vmul(npoints, outfield3[0], 1,
163  outfield3[0], 1,
164  outfield3[0], 1);
165 
166  // add fields omega = 0.5*(W_x^2 + W_y^2 + W_z^2)
167 
168  NekDouble fac = 0.5;
169  Vmath::Vadd(npoints, &outfield1[0][0], 1,
170  &outfield2[0][0], 1,
171  &omega[0][0], 1);
172  Vmath::Vadd(npoints, &omega[0][0], 1,
173  &outfield3[0][0], 1,
174  &omega[0][0], 1);
175 
176  for (int k = 0; k < addfields; ++k)
177  {
178  Vmath::Smul(npoints, fac, &omega[k][0], 1, &omega[k][0], 1);
179  }
180 
181  Vmath::Zero(npoints, &outfield1[0][0], 1);
182  Vmath::Zero(npoints, &outfield2[0][0], 1);
183  Vmath::Zero(npoints, &outfield3[0][0], 1);
184 
185  Vmath::Vmul(npoints, grad[0 * nfields + 0], 1,
186  grad[0 * nfields + 0], 1,
187  outfield1[0], 1);
188  Vmath::Vmul(npoints, grad[1 * nfields + 1], 1,
189  grad[1 * nfields + 1], 1,
190  outfield2[0], 1);
191  Vmath::Vmul(npoints, grad[2 * nfields + 2], 1,
192  grad[2 * nfields + 2], 1,
193  outfield3[0], 1);
194 
195  Vmath::Vadd(npoints, &outfield1[0][0], 1,
196  &outfield2[0][0], 1,
197  &S[0][0], 1);
198  Vmath::Vadd(npoints, &S[0][0], 1,
199  &outfield3[0][0], 1,
200  &S[0][0], 1);
201 
202  // W_y + V_z
203  Vmath::Vadd(npoints, grad[2 * nfields + 1], 1,
204  grad[1 * nfields + 2], 1,
205  outfield1[0], 1);
206  Vmath::Vmul(npoints, &outfield1[0][0], 1,
207  &outfield1[0][0], 1,
208  &outfield1[0][0], 1);
209 
210  // U_z + W_x
211  Vmath::Vadd(npoints, grad[0 * nfields + 2], 1,
212  grad[2 * nfields + 0], 1,
213  outfield2[0], 1);
214  Vmath::Vmul(npoints, &outfield2[0][0], 1,
215  &outfield2[0][0], 1,
216  &outfield2[0][0], 1);
217 
218  // V_x + U_y
219  Vmath::Vadd(npoints, grad[1 * nfields + 0], 1,
220  grad[0 * nfields + 1], 1,
221  outfield3[0], 1);
222  Vmath::Vmul(npoints, &outfield3[0][0], 1,
223  &outfield3[0][0], 1,
224  &outfield3[0][0], 1);
225 
226  Vmath::Vadd(npoints, &outfield1[0][0], 1,
227  &outfield2[0][0], 1,
228  &outfield2[0][0], 1);
229  Vmath::Vadd(npoints, &outfield2[0][0], 1,
230  &outfield3[0][0], 1,
231  &outfield3[0][0], 1);
232 
233  for (int k = 0; k < addfields; ++k)
234  {
235  Vmath::Smul(npoints, fac, &outfield3[k][0], 1,
236  &outfield3[k][0], 1);
237  }
238 
239  Vmath::Vadd(npoints, &outfield3[0][0], 1, &S[0][0], 1, &S[0][0], 1);
240  Vmath::Vsub(npoints, omega[0], 1, S[0], 1, outfield[0], 1);
241 
242  for (int k = 0; k < addfields; ++k)
243  {
244  Vmath::Smul(npoints, fac, &outfield[k][0], 1,
245  &outfield[k][0], 1);
246  }
247 
248 
249  for (i = 0; i < addfields; ++i)
250  {
251  int n = s*addfields + i;
252  Exp[n] = m_f->AppendExpList(m_f->m_fielddef[0]->m_numHomogeneousDir);
253  Exp[n]->UpdatePhys() = outfield[i];
254  Exp[n]->FwdTrans(outfield[i],
255  Exp[n]->UpdateCoeffs());
256  }
257  }
258 
260 
261  for(s = 0; s < nstrips; ++s)
262  {
263  for(i = 0; i < addfields; ++i)
264  {
265  it = m_f->m_exp.begin()+s*(nfields+addfields)+nfields+i;
266  m_f->m_exp.insert(it, Exp[s*addfields+i]);
267  }
268  }
269 
270  vector<string> outname;
271  outname.push_back("Q");
272 
273  std::vector<LibUtilities::FieldDefinitionsSharedPtr> FieldDef
274  = m_f->m_exp[0]->GetFieldDefinitions();
275  std::vector<std::vector<NekDouble> > FieldData(FieldDef.size());
276 
277  for(s = 0; s < nstrips; ++s) //homogeneous strip varient
278  {
279  for (j = 0; j < nfields + addfields; ++j)
280  {
281  for (i = 0; i < FieldDef.size()/nstrips; ++i)
282  {
283  int n = s * FieldDef.size()/nstrips + i;
284 
285  if (j >= nfields)
286  {
287  FieldDef[n]->m_fields.push_back(outname[j-nfields]);
288  }
289  else
290  {
291  FieldDef[n]->m_fields.push_back(
292  m_f->m_fielddef[0]->m_fields[j]);
293  }
294  m_f->m_exp[s*(nfields + addfields)+j]->AppendFieldData(FieldDef[n], FieldData[n]);
295  }
296  }
297  }
298 
299  m_f->m_fielddef = FieldDef;
300  m_f->m_data = FieldData;
301 }
302 
303 }
304 }
pair< ModuleType, string > ModuleKey
virtual void Process()=0
STL namespace.
FieldSharedPtr m_f
Field object.
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
double NekDouble
boost::shared_ptr< Field > FieldSharedPtr
Definition: Field.hpp:695
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.cpp:329
StandardMatrixTag boost::call_traits< LhsDataType >::const_reference rhs typedef NekMatrix< LhsDataType, StandardMatrixTag >::iterator iterator
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:359
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:285
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
ModuleFactory & GetModuleFactory()
Abstract base class for processing modules.
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, tDescription pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:215