Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
Public Member Functions | Static Public Member Functions | Static Public Attributes | Protected Member Functions | Protected Attributes | Friends | List of all members
Nektar::PulseWavePropagation Class Reference

#include <PulseWavePropagation.h>

Inheritance diagram for Nektar::PulseWavePropagation:
Inheritance graph
[legend]
Collaboration diagram for Nektar::PulseWavePropagation:
Collaboration graph
[legend]

Public Member Functions

virtual ~PulseWavePropagation ()
 
- Public Member Functions inherited from Nektar::PulseWaveSystem
virtual ~PulseWaveSystem ()
 Destructor. More...
 
int GetNdomains ()
 
Array< OneD,
MultiRegions::ExpListSharedPtr
UpdateVessels (void)
 
void CalcCharacteristicVariables (int omega)
 
- Public Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
virtual SOLVER_UTILS_EXPORT ~UnsteadySystem ()
 Destructor. More...
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Calculate the larger time-step mantaining the problem stable. More...
 
- Public Member Functions inherited from Nektar::SolverUtils::EquationSystem
virtual SOLVER_UTILS_EXPORT ~EquationSystem ()
 Destructor. More...
 
SOLVER_UTILS_EXPORT void SetUpTraceNormals (void)
 
SOLVER_UTILS_EXPORT void InitObject ()
 Initialises the members of this object. More...
 
SOLVER_UTILS_EXPORT void DoInitialise ()
 Perform any initialisation necessary before solving the problem. More...
 
SOLVER_UTILS_EXPORT void DoSolve ()
 Solve the problem. More...
 
SOLVER_UTILS_EXPORT void TransCoeffToPhys ()
 Transform from coefficient to physical space. More...
 
SOLVER_UTILS_EXPORT void TransPhysToCoeff ()
 Transform from physical to coefficient space. More...
 
SOLVER_UTILS_EXPORT void Output ()
 Perform output operations after solve. More...
 
SOLVER_UTILS_EXPORT NekDouble LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Linf error computation. More...
 
SOLVER_UTILS_EXPORT std::string GetSessionName ()
 Get Session name. More...
 
template<class T >
boost::shared_ptr< T > as ()
 
SOLVER_UTILS_EXPORT void ResetSessionName (std::string newname)
 Reset Session name. More...
 
SOLVER_UTILS_EXPORT
LibUtilities::SessionReaderSharedPtr 
GetSession ()
 Get Session name. More...
 
SOLVER_UTILS_EXPORT
MultiRegions::ExpListSharedPtr 
GetPressure ()
 Get pressure field if available. More...
 
SOLVER_UTILS_EXPORT void PrintSummary (std::ostream &out)
 Print a summary of parameters and solver characteristics. More...
 
SOLVER_UTILS_EXPORT void SetLambda (NekDouble lambda)
 Set parameter m_lambda. More...
 
SOLVER_UTILS_EXPORT void EvaluateFunction (Array< OneD, Array< OneD, NekDouble > > &pArray, std::string pFunctionName, const NekDouble pTime=0.0, const int domain=0)
 Evaluates a function as specified in the session file. More...
 
SOLVER_UTILS_EXPORT void EvaluateFunction (std::vector< std::string > pFieldNames, Array< OneD, Array< OneD, NekDouble > > &pFields, const std::string &pName, const NekDouble &pTime=0.0, const int domain=0)
 Populate given fields with the function from session. More...
 
SOLVER_UTILS_EXPORT void EvaluateFunction (std::vector< std::string > pFieldNames, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const std::string &pName, const NekDouble &pTime=0.0, const int domain=0)
 Populate given fields with the function from session. More...
 
SOLVER_UTILS_EXPORT void EvaluateFunction (std::string pFieldName, Array< OneD, NekDouble > &pArray, const std::string &pFunctionName, const NekDouble &pTime=0.0, const int domain=0)
 
SOLVER_UTILS_EXPORT std::string DescribeFunction (std::string pFieldName, const std::string &pFunctionName, const int domain)
 Provide a description of a function for a given field name. More...
 
SOLVER_UTILS_EXPORT void InitialiseBaseFlow (Array< OneD, Array< OneD, NekDouble > > &base)
 Perform initialisation of the base flow. More...
 
SOLVER_UTILS_EXPORT void SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 Initialise the data in the dependent fields. More...
 
SOLVER_UTILS_EXPORT void EvaluateExactSolution (int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 Evaluates an exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln, bool Normalised=false)
 Compute the L2 error between fields and a given exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, bool Normalised=false)
 Compute the L2 error of the fields. More...
 
SOLVER_UTILS_EXPORT Array
< OneD, NekDouble
ErrorExtraPoints (unsigned int field)
 Compute error (L2 and L_inf) over an larger set of quadrature points return [L2 Linf]. More...
 
SOLVER_UTILS_EXPORT void WeakAdvectionGreensDivergenceForm (const Array< OneD, Array< OneD, NekDouble > > &F, Array< OneD, NekDouble > &outarray)
 Compute the inner product $ (\nabla \phi \cdot F) $. More...
 
SOLVER_UTILS_EXPORT void WeakAdvectionDivergenceForm (const Array< OneD, Array< OneD, NekDouble > > &F, Array< OneD, NekDouble > &outarray)
 Compute the inner product $ (\phi, \nabla \cdot F) $. More...
 
SOLVER_UTILS_EXPORT void WeakAdvectionNonConservativeForm (const Array< OneD, Array< OneD, NekDouble > > &V, const Array< OneD, const NekDouble > &u, Array< OneD, NekDouble > &outarray, bool UseContCoeffs=false)
 Compute the inner product $ (\phi, V\cdot \nabla u) $. More...
 
f SOLVER_UTILS_EXPORT void AdvectionNonConservativeForm (const Array< OneD, Array< OneD, NekDouble > > &V, const Array< OneD, const NekDouble > &u, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wk=NullNekDouble1DArray)
 Compute the non-conservative advection. More...
 
SOLVER_UTILS_EXPORT void WeakDGAdvection (const Array< OneD, Array< OneD, NekDouble > > &InField, Array< OneD, Array< OneD, NekDouble > > &OutField, bool NumericalFluxIncludesNormal=true, bool InFieldIsInPhysSpace=false, int nvariables=0)
 Calculate the weak discontinuous Galerkin advection. More...
 
SOLVER_UTILS_EXPORT void WeakDGDiffusion (const Array< OneD, Array< OneD, NekDouble > > &InField, Array< OneD, Array< OneD, NekDouble > > &OutField, bool NumericalFluxIncludesNormal=true, bool InFieldIsInPhysSpace=false)
 Calculate weak DG Diffusion in the LDG form. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n)
 Write checkpoint file of m_fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write checkpoint file of custom data fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_BaseFlow (const int n)
 Write base flow file of m_fields. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname)
 Write field data to the given filename. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write input fields to the given filename. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields)
 Input field data from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFldToMultiDomains (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const int ndomains)
 Input field data from the given file to multiple domains. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, std::vector< std::string > &fieldStr, Array< OneD, Array< OneD, NekDouble > > &coeffs)
 Output a field. Input field data into array from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, MultiRegions::ExpListSharedPtr &pField, std::string &pFieldName)
 Output a field. Input field data into ExpList from the given file. More...
 
SOLVER_UTILS_EXPORT void ScanForHistoryPoints ()
 Builds map of which element holds each history point. More...
 
SOLVER_UTILS_EXPORT void WriteHistoryData (std::ostream &out)
 Probe each history point and write to file. More...
 
SOLVER_UTILS_EXPORT void SessionSummary (SummaryList &vSummary)
 Write out a session summary. More...
 
SOLVER_UTILS_EXPORT Array
< OneD,
MultiRegions::ExpListSharedPtr > & 
UpdateFields ()
 
SOLVER_UTILS_EXPORT
LibUtilities::FieldMetaDataMap
UpdateFieldMetaDataMap ()
 Get hold of FieldInfoMap so it can be updated. More...
 
SOLVER_UTILS_EXPORT NekDouble GetFinalTime ()
 Return final time. More...
 
SOLVER_UTILS_EXPORT int GetNcoeffs ()
 
SOLVER_UTILS_EXPORT int GetNcoeffs (const int eid)
 
SOLVER_UTILS_EXPORT int GetNumExpModes ()
 
SOLVER_UTILS_EXPORT const
Array< OneD, int > 
GetNumExpModesPerExp ()
 
SOLVER_UTILS_EXPORT int GetNvariables ()
 
SOLVER_UTILS_EXPORT const
std::string 
GetVariable (unsigned int i)
 
SOLVER_UTILS_EXPORT int GetTraceTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTraceNpoints ()
 
SOLVER_UTILS_EXPORT int GetExpSize ()
 
SOLVER_UTILS_EXPORT int GetPhys_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetCoeff_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTotPoints (int n)
 
SOLVER_UTILS_EXPORT int GetNpoints ()
 
SOLVER_UTILS_EXPORT int GetNumElmVelocity ()
 
SOLVER_UTILS_EXPORT int GetSteps ()
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep ()
 
SOLVER_UTILS_EXPORT void CopyFromPhysField (const int i, Array< OneD, NekDouble > &output)
 
SOLVER_UTILS_EXPORT void CopyToPhysField (const int i, Array< OneD, NekDouble > &output)
 
SOLVER_UTILS_EXPORT void SetSteps (const int steps)
 
SOLVER_UTILS_EXPORT void ZeroPhysFields ()
 
SOLVER_UTILS_EXPORT void FwdTransFields ()
 
SOLVER_UTILS_EXPORT void GetFluxVector (const int i, Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &flux)
 
SOLVER_UTILS_EXPORT void GetFluxVector (const int i, Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &fluxX, Array< OneD, Array< OneD, NekDouble > > &fluxY)
 
SOLVER_UTILS_EXPORT void GetFluxVector (const int i, const int j, Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &flux)
 
SOLVER_UTILS_EXPORT void NumericalFlux (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numflux)
 
SOLVER_UTILS_EXPORT void NumericalFlux (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numfluxX, Array< OneD, Array< OneD, NekDouble > > &numfluxY)
 
SOLVER_UTILS_EXPORT void NumFluxforScalar (const Array< OneD, Array< OneD, NekDouble > > &ufield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &uflux)
 
SOLVER_UTILS_EXPORT void NumFluxforVector (const Array< OneD, Array< OneD, NekDouble > > &ufield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &qfield, Array< OneD, Array< OneD, NekDouble > > &qflux)
 
SOLVER_UTILS_EXPORT void SetModifiedBasis (const bool modbasis)
 
SOLVER_UTILS_EXPORT int NoCaseStringCompare (const std::string &s1, const std::string &s2)
 Perform a case-insensitive string comparison. More...
 
SOLVER_UTILS_EXPORT int GetCheckpointNumber ()
 
SOLVER_UTILS_EXPORT void SetCheckpointNumber (int num)
 
SOLVER_UTILS_EXPORT int GetCheckpointSteps ()
 
SOLVER_UTILS_EXPORT void SetCheckpointSteps (int num)
 
SOLVER_UTILS_EXPORT void SetTime (const NekDouble time)
 
SOLVER_UTILS_EXPORT void SetInitialStep (const int step)
 
SOLVER_UTILS_EXPORT void SetBoundaryConditions (NekDouble time)
 Evaluates the boundary conditions at the given time. More...
 
virtual SOLVER_UTILS_EXPORT bool v_NegatedOp ()
 Virtual function to identify if operator is negated in DoSolve. More...
 

Static Public Member Functions

static EquationSystemSharedPtr create (const LibUtilities::SessionReaderSharedPtr &pSession)
 Creates an instance of this class. More...
 

Static Public Attributes

static std::string className = GetEquationSystemFactory().RegisterCreatorFunction("PulseWavePropagation", PulseWavePropagation::create, "Pulse Wave Propagation equation.")
 Name of class. More...
 

Protected Member Functions

 PulseWavePropagation (const LibUtilities::SessionReaderSharedPtr &pSession)
 
void DoOdeRhs (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 
void DoOdeProjection (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 
void SetPulseWaveBoundaryConditions (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 
virtual void v_InitObject ()
 
virtual void v_GetFluxVector (const int i, Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &flux)
 
virtual void v_NumericalFlux (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numflux)
 DG Pulse Wave Propagation routines: Numerical Flux at interelemental boundaries. More...
 
void RiemannSolverUpwind (NekDouble AL, NekDouble uL, NekDouble AR, NekDouble uR, NekDouble &Aflux, NekDouble &uflux, NekDouble A_0, NekDouble beta, NekDouble n)
 Upwinding Riemann solver for interelemental boundaries. More...
 
virtual void v_GenerateSummary (SolverUtils::SummaryList &s)
 
- Protected Member Functions inherited from Nektar::PulseWaveSystem
 PulseWaveSystem (const LibUtilities::SessionReaderSharedPtr &m_session)
 Initialises PulseWaveSystem class members. More...
 
virtual void v_DoInitialise ()
 Sets up initial conditions. More...
 
virtual void v_DoSolve ()
 Solves an unsteady problem. More...
 
void LinkSubdomains (Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &fields)
 Links the subdomains. More...
 
void BifurcationRiemann (Array< OneD, NekDouble > &Au, Array< OneD, NekDouble > &uu, Array< OneD, NekDouble > &beta, Array< OneD, NekDouble > &A_0)
 Riemann Problem for Bifurcation. More...
 
void MergingRiemann (Array< OneD, NekDouble > &Au, Array< OneD, NekDouble > &uu, Array< OneD, NekDouble > &beta, Array< OneD, NekDouble > &A_0)
 Riemann Problem for Merging Flow. More...
 
void JunctionRiemann (Array< OneD, NekDouble > &Au, Array< OneD, NekDouble > &uu, Array< OneD, NekDouble > &beta, Array< OneD, NekDouble > &A_0)
 Riemann Problem for Junction. More...
 
virtual void v_Output (void)
 
void CheckPoint_Output (const int n)
 
NekDouble v_L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray, bool Normalised=false)
 Compute the L2 error between fields and a given exact solution. More...
 
NekDouble v_LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Compute the L_inf error between fields and a given exact solution. More...
 
void WriteVessels (const std::string &outname)
 Write input fields to the given filename. More...
 
void EnforceInterfaceConditions (const Array< OneD, const Array< OneD, NekDouble > > &fields)
 
- Protected Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
SOLVER_UTILS_EXPORT UnsteadySystem (const LibUtilities::SessionReaderSharedPtr &pSession)
 Initialises UnsteadySystem class members. More...
 
SOLVER_UTILS_EXPORT NekDouble MaxTimeStepEstimator ()
 Get the maximum timestep estimator for cfl control. More...
 
virtual SOLVER_UTILS_EXPORT void v_AppendOutput1D (Array< OneD, Array< OneD, NekDouble > > &solution1D)
 Print the solution at each solution point in a txt file. More...
 
virtual SOLVER_UTILS_EXPORT void v_NumericalFlux (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numfluxX, Array< OneD, Array< OneD, NekDouble > > &numfluxY)
 
virtual SOLVER_UTILS_EXPORT void v_NumFluxforScalar (const Array< OneD, Array< OneD, NekDouble > > &ufield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &uflux)
 
virtual SOLVER_UTILS_EXPORT void v_NumFluxforVector (const Array< OneD, Array< OneD, NekDouble > > &ufield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &qfield, Array< OneD, Array< OneD, NekDouble > > &qflux)
 
virtual SOLVER_UTILS_EXPORT
NekDouble 
v_GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Return the timestep to be used for the next step in the time-marching loop. More...
 
virtual SOLVER_UTILS_EXPORT bool v_PreIntegrate (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_PostIntegrate (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_SteadyStateCheck (int step)
 
SOLVER_UTILS_EXPORT void CheckForRestartTime (NekDouble &time)
 
SOLVER_UTILS_EXPORT void SVVVarDiffCoeff (const Array< OneD, Array< OneD, NekDouble > > vel, StdRegions::VarCoeffMap &varCoeffMap)
 Evaluate the SVV diffusion coefficient according to Moura's paper where it should proportional to h time velocity. More...
 
- Protected Member Functions inherited from Nektar::SolverUtils::EquationSystem
SOLVER_UTILS_EXPORT EquationSystem (const LibUtilities::SessionReaderSharedPtr &pSession)
 Initialises EquationSystem class members. More...
 
int nocase_cmp (const std::string &s1, const std::string &s2)
 
virtual SOLVER_UTILS_EXPORT void v_TransCoeffToPhys ()
 Virtual function for transformation to physical space. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransPhysToCoeff ()
 Virtual function for transformation to coefficient space. More...
 
virtual SOLVER_UTILS_EXPORT void v_SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 
virtual SOLVER_UTILS_EXPORT void v_EvaluateExactSolution (unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 
SOLVER_UTILS_EXPORT void SetUpBaseFields (SpatialDomains::MeshGraphSharedPtr &mesh)
 
SOLVER_UTILS_EXPORT void ImportFldBase (std::string pInfile, SpatialDomains::MeshGraphSharedPtr pGraph)
 
virtual SOLVER_UTILS_EXPORT
MultiRegions::ExpListSharedPtr 
v_GetPressure (void)
 
virtual SOLVER_UTILS_EXPORT void v_ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 

Protected Attributes

Array< OneD,
PulseWaveBoundarySharedPtr
m_Boundary
 
PulseWavePressureAreaSharedPtr m_pressureArea
 
- Protected Attributes inherited from Nektar::PulseWaveSystem
Array< OneD,
MultiRegions::ExpListSharedPtr
m_vessels
 
int m_nDomains
 
int m_currentDomain
 
int m_nVariables
 
UpwindTypePulse m_upwindTypePulse
 
Array< OneD, int > m_fieldPhysOffset
 
NekDouble m_rho
 
NekDouble m_pext
 
NekDouble m_C
 
NekDouble m_RT
 
NekDouble m_pout
 
Array< OneD, Array< OneD,
NekDouble > > 
m_A_0
 
Array< OneD, Array< OneD,
NekDouble > > 
m_A_0_trace
 
Array< OneD, Array< OneD,
NekDouble > > 
m_beta
 
Array< OneD, Array< OneD,
NekDouble > > 
m_beta_trace
 
Array< OneD, Array< OneD,
NekDouble > > 
m_trace_fwd_normal
 
std::vector< std::vector
< InterfacePointShPtr > > 
m_vesselJcts
 
std::vector< std::vector
< InterfacePointShPtr > > 
m_bifurcations
 
std::vector< std::vector
< InterfacePointShPtr > > 
m_mergingJcts
 
- Protected Attributes inherited from Nektar::SolverUtils::UnsteadySystem
int m_infosteps
 Number of time steps between outputting status information. More...
 
LibUtilities::TimeIntegrationWrapperSharedPtr m_intScheme
 Wrapper to the time integration scheme. More...
 
LibUtilities::TimeIntegrationSchemeOperators m_ode
 The time integration scheme operators to use. More...
 
LibUtilities::TimeIntegrationSolutionSharedPtr m_intSoln
 
NekDouble m_epsilon
 
bool m_explicitDiffusion
 Indicates if explicit or implicit treatment of diffusion is used. More...
 
bool m_explicitAdvection
 Indicates if explicit or implicit treatment of advection is used. More...
 
bool m_explicitReaction
 Indicates if explicit or implicit treatment of reaction is used. More...
 
bool m_homoInitialFwd
 Flag to determine if simulation should start in homogeneous forward transformed state. More...
 
std::vector< int > m_intVariables
 
std::vector< FilterSharedPtrm_filters
 
- Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
LibUtilities::CommSharedPtr m_comm
 Communicator. More...
 
LibUtilities::SessionReaderSharedPtr m_session
 The session reader. More...
 
LibUtilities::FieldIOSharedPtr m_fld
 Field input/output. More...
 
std::map< std::string, Array
< OneD, Array< OneD, float > > > 
m_interpWeights
 Map of the interpolation weights for a specific filename. More...
 
std::map< std::string, Array
< OneD, Array< OneD, unsigned
int > > > 
m_interpInds
 Map of the interpolation indices for a specific filename. More...
 
Array< OneD,
MultiRegions::ExpListSharedPtr
m_fields
 Array holding all dependent variables. More...
 
Array< OneD,
MultiRegions::ExpListSharedPtr
m_base
 Base fields. More...
 
Array< OneD,
MultiRegions::ExpListSharedPtr
m_derivedfields
 Array holding all dependent variables. More...
 
SpatialDomains::BoundaryConditionsSharedPtr m_boundaryConditions
 Pointer to boundary conditions object. More...
 
SpatialDomains::MeshGraphSharedPtr m_graph
 Pointer to graph defining mesh. More...
 
std::string m_sessionName
 Name of the session. More...
 
NekDouble m_time
 Current time of simulation. More...
 
int m_initialStep
 Number of the step where the simulation should begin. More...
 
NekDouble m_fintime
 Finish time of the simulation. More...
 
NekDouble m_timestep
 Time step size. More...
 
NekDouble m_lambda
 Lambda constant in real system if one required. More...
 
std::set< std::string > m_loadedFields
 
NekDouble m_checktime
 Time between checkpoints. More...
 
int m_nchk
 Number of checkpoints written so far. More...
 
int m_steps
 Number of steps to take. More...
 
int m_checksteps
 Number of steps between checkpoints. More...
 
int m_spacedim
 Spatial dimension (>= expansion dim). More...
 
int m_expdim
 Expansion dimension. More...
 
bool m_singleMode
 Flag to determine if single homogeneous mode is used. More...
 
bool m_halfMode
 Flag to determine if half homogeneous mode is used. More...
 
bool m_multipleModes
 Flag to determine if use multiple homogenenous modes are used. More...
 
bool m_useFFT
 Flag to determine if FFT is used for homogeneous transform. More...
 
bool m_homogen_dealiasing
 Flag to determine if dealiasing is used for homogeneous simulations. More...
 
bool m_specHP_dealiasing
 Flag to determine if dealisising is usde for the Spectral/hp element discretisation. More...
 
enum MultiRegions::ProjectionType m_projectionType
 Type of projection; e.g continuous or discontinuous. More...
 
Array< OneD, Array< OneD,
NekDouble > > 
m_traceNormals
 Array holding trace normals for DG simulations in the forwards direction. More...
 
Array< OneD, Array< OneD,
Array< OneD, NekDouble > > > 
m_gradtan
 1 x nvariable x nq More...
 
Array< OneD, Array< OneD,
Array< OneD, NekDouble > > > 
m_tanbasis
 2 x m_spacedim x nq More...
 
Array< OneD, bool > m_checkIfSystemSingular
 Flag to indicate if the fields should be checked for singularity. More...
 
LibUtilities::FieldMetaDataMap m_fieldMetaDataMap
 Map to identify relevant solver info to dump in output fields. More...
 
int m_NumQuadPointsError
 Number of Quadrature points used to work out the error. More...
 
enum HomogeneousType m_HomogeneousType
 
NekDouble m_LhomX
 physical length in X direction (if homogeneous) More...
 
NekDouble m_LhomY
 physical length in Y direction (if homogeneous) More...
 
NekDouble m_LhomZ
 physical length in Z direction (if homogeneous) More...
 
int m_npointsX
 number of points in X direction (if homogeneous) More...
 
int m_npointsY
 number of points in Y direction (if homogeneous) More...
 
int m_npointsZ
 number of points in Z direction (if homogeneous) More...
 
int m_HomoDirec
 number of homogenous directions More...
 

Friends

class MemoryManager< PulseWavePropagation >
 

Additional Inherited Members

- Public Attributes inherited from Nektar::SolverUtils::UnsteadySystem
NekDouble m_cflSafetyFactor
 CFL safety factor (comprise between 0 to 1). More...
 
- Protected Types inherited from Nektar::SolverUtils::EquationSystem
enum  HomogeneousType { eHomogeneous1D, eHomogeneous2D, eHomogeneous3D, eNotHomogeneous }
 Parameter for homogeneous expansions. More...
 

Detailed Description

Set up the routines based on the weak formulation from "Computational Modelling of 1D blood flow with variable mechanical properties" by S. J. Sherwin et al. The weak formulation (1) reads: $ \sum_{e=1}^{N_{el}} \left[ \left( \frac{\partial \mathbf{U}^{\delta} }{\partial t} , \mathbf{\psi}^{\delta} \right)_{\Omega_e} - \left( \frac{\partial \mathbf{F(\mathbf{U})}^{\delta} } {\partial x}, \mathbf{\psi}^{\delta} \right)_{\Omega_e} + \left[ \mathbf{\psi}^{\delta} \cdot \{ \mathbf{F}^u - \mathbf{F}(\mathbf{U}^{\delta}) \} \right]_{x_e^l}^{x_eû} \right] = 0 $

Definition at line 47 of file PulseWavePropagation.h.

Constructor & Destructor Documentation

Nektar::PulseWavePropagation::~PulseWavePropagation ( )
virtual

Definition at line 80 of file PulseWavePropagation.cpp.

81  {
82  }
Nektar::PulseWavePropagation::PulseWavePropagation ( const LibUtilities::SessionReaderSharedPtr pSession)
protected

Definition at line 57 of file PulseWavePropagation.cpp.

58  : PulseWaveSystem(pSession)
59  {
60  }
PulseWaveSystem(const LibUtilities::SessionReaderSharedPtr &m_session)
Initialises PulseWaveSystem class members.

Member Function Documentation

static EquationSystemSharedPtr Nektar::PulseWavePropagation::create ( const LibUtilities::SessionReaderSharedPtr pSession)
inlinestatic

Creates an instance of this class.

Definition at line 53 of file PulseWavePropagation.h.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr().

54  {
56  p->InitObject();
57  return p;
58  }
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
boost::shared_ptr< EquationSystem > EquationSystemSharedPtr
A shared pointer to an EquationSystem object.
void Nektar::PulseWavePropagation::DoOdeProjection ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time 
)
protected

Definition at line 147 of file PulseWavePropagation.cpp.

References Nektar::PulseWaveSystem::m_nVariables, and Vmath::Vcopy().

Referenced by v_InitObject().

150  {
151  // Just copy over array
152  for(int i = 0; i < m_nVariables; ++i)
153  {
154  Vmath::Vcopy(inarray[i].num_elements(),inarray[i],1,outarray[i],1);
155  }
156  }
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1047
void Nektar::PulseWavePropagation::DoOdeRhs ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time 
)
protected

Computes the right hand side of (1). The RHS is everything except the term that contains the time derivative $\frac{\partial \mathbf{U}}{\partial t}$. In case of a Discontinuous Galerkin projection, the routine WeakDGAdvection will be called which then calls v_GetFluxVector and v_NumericalFlux implemented in the PulseWavePropagation class.

Definition at line 94 of file PulseWavePropagation.cpp.

References Nektar::PulseWaveSystem::EnforceInterfaceConditions(), Nektar::PulseWaveSystem::m_currentDomain, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::PulseWaveSystem::m_nDomains, Nektar::PulseWaveSystem::m_nVariables, Nektar::PulseWaveSystem::m_vessels, Vmath::Neg(), SetPulseWaveBoundaryConditions(), and Nektar::SolverUtils::EquationSystem::WeakDGAdvection().

Referenced by v_InitObject().

97  {
98  int i;
99 
100  Array<OneD, Array<OneD, NekDouble> > physarray(m_nVariables);
101  Array<OneD, Array<OneD, NekDouble> > modarray (m_nVariables);
102 
103  Array<OneD, NekDouble> tmpArray;
104 
105  int cnt = 0;
106 
107  // Set up Inflow and Outflow boundary conditions.
108  SetPulseWaveBoundaryConditions(inarray, outarray, time);
109 
110  // Set up any interface conditions and write into boundary condition
112 
113  // do advection evauation in all domains
114  for(int omega=0; omega < m_nDomains; ++omega)
115  {
116  m_currentDomain = omega;
117  int nq = m_vessels[omega*m_nVariables]->GetTotPoints();
118  int ncoeffs = m_vessels[omega*m_nVariables]->GetNcoeffs();
119 
120  for (i = 0; i < m_nVariables; ++i)
121  {
122  physarray[i] = inarray[i]+cnt;
123  modarray[i] = Array<OneD, NekDouble>(ncoeffs);
124  }
125 
126  for(i = 0; i < m_nVariables; ++i)
127  {
128  m_fields[i] = m_vessels[omega*m_nVariables+ i];
129  }
130 
131  WeakDGAdvection(physarray, modarray, true, true);
132 
133  for(i = 0; i < m_nVariables; ++i)
134  {
135  Vmath::Neg(ncoeffs,modarray[i],1);
136  }
137 
138  for(i = 0; i < m_nVariables; ++i)
139  {
140  m_vessels[omega*m_nVariables+i]->MultiplyByElmtInvMass(modarray[i],modarray[i]);
141  m_vessels[omega*m_nVariables+i]->BwdTrans(modarray[i],tmpArray = outarray[i]+cnt);
142  }
143  cnt += nq;
144  }
145  }
void SetPulseWaveBoundaryConditions(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
void EnforceInterfaceConditions(const Array< OneD, const Array< OneD, NekDouble > > &fields)
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:382
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
SOLVER_UTILS_EXPORT void WeakDGAdvection(const Array< OneD, Array< OneD, NekDouble > > &InField, Array< OneD, Array< OneD, NekDouble > > &OutField, bool NumericalFluxIncludesNormal=true, bool InFieldIsInPhysSpace=false, int nvariables=0)
Calculate the weak discontinuous Galerkin advection.
Array< OneD, MultiRegions::ExpListSharedPtr > m_vessels
void Nektar::PulseWavePropagation::RiemannSolverUpwind ( NekDouble  AL,
NekDouble  uL,
NekDouble  AR,
NekDouble  uR,
NekDouble Aflux,
NekDouble uflux,
NekDouble  A_0,
NekDouble  beta,
NekDouble  n 
)
protected

Upwinding Riemann solver for interelemental boundaries.

Riemann solver for upwinding at an interface between two elements. Uses the characteristic variables for calculating the upwinded state $(A_u,u_u)$ from the left $(A_L,u_L)$ and right state $(A_R,u_R)$. Returns the upwinded flux ${F}^u$ needed for the weak formulation (1). Details can be found in "Pulse wave propagation in the human vascular system", section 3.3

Definition at line 338 of file PulseWavePropagation.cpp.

References ASSERTL1, Nektar::PulseWaveSystem::m_pext, and Nektar::PulseWaveSystem::m_rho.

Referenced by v_NumericalFlux().

345  {
346  Array<OneD, NekDouble> W(2);
347  Array<OneD, NekDouble> upwindedphysfield(2);
348  NekDouble cL = 0.0;
349  NekDouble cR = 0.0;
350  NekDouble rho = m_rho;
351  NekDouble pext = m_pext;
352  NekDouble p = 0.0;
353  NekDouble p_t = 0.0;
354 
355  // Compute the wave speeds. The use of the normal here allows
356  // for the definition of the characteristics to be inverted
357  // (and hence the left and right state) if n is in the -ve
358  // x-direction. This means we end up with the positive
359  // defintion of the flux which has to therefore be multiplied
360  // by the normal at the end of the methods This is a bit of a
361  // mind twister but is efficient from a coding perspective.
362  cL = sqrt(beta*sqrt(AL)/(2*rho))*n;
363  cR = sqrt(beta*sqrt(AR)/(2*rho))*n;
364 
365  ASSERTL1(fabs(cL+cR) > fabs(uL+uR),"Conditions are not sub-sonic");
366 
367  // If upwinding from left and right for subsonic domain
368  // then know characteristics immediately
369  W[0] = uL + 4*cL;
370  W[1] = uR - 4*cR;
371 
372  // Calculate conservative variables from characteristics
373  NekDouble w0mw1 = 0.25*(W[0]-W[1]);
374  NekDouble fac = rho/(2*beta);
375  w0mw1 *= w0mw1; // squared
376  w0mw1 *= w0mw1; // fourth power
377  fac *= fac; // squared
378  upwindedphysfield[0]= w0mw1*fac;
379  upwindedphysfield[1]= 0.5*(W[0] + W[1]);
380 
381  // Compute the fluxes multipled by the normal.
382  Aflux = upwindedphysfield[0] * upwindedphysfield[1]*n;
383  p = pext + beta*(sqrt(upwindedphysfield[0]) - sqrt(A_0));
384  p_t = 0.5*(upwindedphysfield[1]*upwindedphysfield[1]) + p/rho;
385  uflux = p_t*n;
386  }
double NekDouble
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:218
void Nektar::PulseWavePropagation::SetPulseWaveBoundaryConditions ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time 
)
protected

Does the projection between ... space and the ... space. Also checks for Q-inflow boundary conditions at the inflow of the current arterial segment and applies the Q-inflow if specified

Definition at line 164 of file PulseWavePropagation.cpp.

References Nektar::LibUtilities::NekFactory< tKey, tBase, >::CreateInstance(), Nektar::GetBoundaryFactory(), Nektar::PulseWaveSystem::m_A_0, Nektar::PulseWaveSystem::m_beta, m_Boundary, Nektar::PulseWaveSystem::m_nDomains, m_pressureArea, Nektar::SolverUtils::EquationSystem::m_session, Nektar::PulseWaveSystem::m_vessels, and Nektar::SolverUtils::EquationSystem::SetBoundaryConditions().

Referenced by DoOdeRhs().

169  {
170  int omega;
171 
172  Array<OneD, MultiRegions::ExpListSharedPtr> vessel(2);
173 
174  int offset=0;
175 
176  //This will be moved to the RCR boundary condition once factory is setup
177  if (time == 0)
178  {
179  m_Boundary = Array<OneD,PulseWaveBoundarySharedPtr>(2*m_nDomains);
180 
181  for(omega = 0; omega < m_nDomains; ++omega)
182  {
183  vessel[0] = m_vessels[2*omega];
184 
185  for(int j = 0; j < 2; ++j)
186  {
187  std::string BCType =vessel[0]->GetBndConditions()[j]->GetUserDefined();
188  if(BCType.empty()) // if not condition given define it to be NoUserDefined
189  {
190  BCType = "NoUserDefined";
191  }
192 
194 
195  // turn on time depedent BCs
196  if(BCType == "Q-inflow")
197  {
198  vessel[0]->GetBndConditions()[j]->SetIsTimeDependent(true);
199  }
200  else if(BCType == "RCR-terminal")
201  {
202  vessel[0]->GetBndConditions()[j]->SetIsTimeDependent(true);
203  }
204  }
205  }
206 
207  }
208 
209  SetBoundaryConditions(time);
210 
211  // Loop over all vessesls and set boundary conditions
212  for(omega = 0; omega < m_nDomains; ++omega)
213  {
214  for(int n = 0; n < 2; ++n)
215  {
216  m_Boundary[2*omega+n]->DoBoundary(inarray,m_A_0,m_beta,time,omega,offset,n);
217  }
218  offset += m_vessels[2*omega]->GetTotPoints();
219  }
220 
221  }
tBaseSharedPtr CreateInstance(tKey idKey BOOST_PP_COMMA_IF(MAX_PARAM) BOOST_PP_ENUM_BINARY_PARAMS(MAX_PARAM, tParam, x))
Create an instance of the class referred to by idKey.
Definition: NekFactory.hpp:162
BoundaryFactory & GetBoundaryFactory()
Array< OneD, Array< OneD, NekDouble > > m_A_0
SOLVER_UTILS_EXPORT void SetBoundaryConditions(NekDouble time)
Evaluates the boundary conditions at the given time.
Array< OneD, Array< OneD, NekDouble > > m_beta
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
Array< OneD, PulseWaveBoundarySharedPtr > m_Boundary
Array< OneD, MultiRegions::ExpListSharedPtr > m_vessels
PulseWavePressureAreaSharedPtr m_pressureArea
void Nektar::PulseWavePropagation::v_GenerateSummary ( SolverUtils::SummaryList s)
protectedvirtual

Print summary routine, calls virtual routine reimplemented in UnsteadySystem

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Definition at line 392 of file PulseWavePropagation.cpp.

References Nektar::SolverUtils::UnsteadySystem::v_GenerateSummary().

393  {
395  }
virtual SOLVER_UTILS_EXPORT void v_GenerateSummary(SummaryList &s)
Print a summary of time stepping parameters.
void Nektar::PulseWavePropagation::v_GetFluxVector ( const int  i,
Array< OneD, Array< OneD, NekDouble > > &  physfield,
Array< OneD, Array< OneD, NekDouble > > &  flux 
)
protectedvirtual

Calculates the second term of the weak form (1): $ \left( \frac{\partial \mathbf{F(\mathbf{U})}^{\delta} }{\partial x}, \mathbf{\psi}^{\delta} \right)_{\Omega_e} $ The variables of the system are ${U} = [A,u]^T$ physfield[0] = A physfield[1] = u flux[0] = F[0] = A*u flux[1] = F[1] = u^2/2 + p/rho p-A-relationship: p = p_ext + beta*(sqrt(A)-sqrt(A_0))

Reimplemented from Nektar::SolverUtils::EquationSystem.

Definition at line 234 of file PulseWavePropagation.cpp.

References ASSERTL0, Nektar::PulseWaveSystem::m_A_0, Nektar::PulseWaveSystem::m_beta, Nektar::PulseWaveSystem::m_currentDomain, Nektar::PulseWaveSystem::m_nVariables, Nektar::PulseWaveSystem::m_pext, Nektar::PulseWaveSystem::m_rho, and Nektar::PulseWaveSystem::m_vessels.

236  {
237  int nq = m_vessels[m_currentDomain*m_nVariables]->GetTotPoints();
238  NekDouble p = 0.0;
239  NekDouble p_t = 0.0;
240 
241  switch (i)
242  {
243  case 0: // Flux for A equation
244  {
245  for (int j = 0; j < nq; j++)
246  {
247  flux[0][j] = physfield[0][j]*physfield[1][j];
248  }
249  }
250  break;
251  case 1: // Flux for u equation
252  {
253  for (int j = 0; j < nq; j++)
254  {
255  ASSERTL0(physfield[0][j]>=0,"Negative A not allowed.");
256 
257  p = m_pext + m_beta[m_currentDomain][j]*
258  (sqrt(physfield[0][j]) - sqrt(m_A_0[m_currentDomain][j]));
259 
260  p_t = (physfield[1][j]*physfield[1][j])/2 + p/m_rho;
261  flux[0][j] = p_t;
262  }
263  }
264  break;
265  default:
266  ASSERTL0(false,"GetFluxVector: illegal vector index");
267  break;
268  }
269  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:188
Array< OneD, Array< OneD, NekDouble > > m_A_0
double NekDouble
Array< OneD, Array< OneD, NekDouble > > m_beta
Array< OneD, MultiRegions::ExpListSharedPtr > m_vessels
void Nektar::PulseWavePropagation::v_InitObject ( )
protectedvirtual

Initialisation routine for multidomain solver. Sets up the expansions for every arterial segment (m_vessels) and for one complete field m_outfield which is needed to write the postprocessing output. Also determines which upwind strategy is used (currently only upwinding scheme available) and reads blodd flow specific parameters from the inputfile

Gets the Material Properties of each arterial segment
specified in the inputfile from section MaterialProperties

Also gets the Area at static equilibrium A_0 specified in the inputfile.

Having found these points also extract the values at the trace points and the normal direction consistent with the left adjacent definition of Fwd and Bwd

Reimplemented from Nektar::PulseWaveSystem.

Definition at line 62 of file PulseWavePropagation.cpp.

References ASSERTL0, Nektar::LibUtilities::NekFactory< tKey, tBase, >::CreateInstance(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineOdeRhs(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineProjection(), DoOdeProjection(), DoOdeRhs(), Nektar::GetPressureAreaFactory(), Nektar::SolverUtils::UnsteadySystem::m_explicitAdvection, Nektar::SolverUtils::UnsteadySystem::m_ode, m_pressureArea, Nektar::SolverUtils::EquationSystem::m_session, Nektar::PulseWaveSystem::m_vessels, and Nektar::PulseWaveSystem::v_InitObject().

63  {
65 
67  m_pressureArea->DoPressure();
68 
70  {
73  }
74  else
75  {
76  ASSERTL0(false, "Implicit Pulse Wave Propagation not set up.");
77  }
78  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:188
tBaseSharedPtr CreateInstance(tKey idKey BOOST_PP_COMMA_IF(MAX_PARAM) BOOST_PP_ENUM_BINARY_PARAMS(MAX_PARAM, tParam, x))
Create an instance of the class referred to by idKey.
Definition: NekFactory.hpp:162
LibUtilities::TimeIntegrationSchemeOperators m_ode
The time integration scheme operators to use.
void DoOdeRhs(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
void DefineProjection(FuncPointerT func, ObjectPointerT obj)
void DoOdeProjection(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
bool m_explicitAdvection
Indicates if explicit or implicit treatment of advection is used.
void DefineOdeRhs(FuncPointerT func, ObjectPointerT obj)
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
PressureAreaFactory & GetPressureAreaFactory()
Array< OneD, MultiRegions::ExpListSharedPtr > m_vessels
PulseWavePressureAreaSharedPtr m_pressureArea
void Nektar::PulseWavePropagation::v_NumericalFlux ( Array< OneD, Array< OneD, NekDouble > > &  physfield,
Array< OneD, Array< OneD, NekDouble > > &  numflux 
)
protectedvirtual

DG Pulse Wave Propagation routines: Numerical Flux at interelemental boundaries.

Calculates the third term of the weak form (1): numerical flux at boundary $ \left[ \mathbf{\psi}^{\delta} \cdot \{ \mathbf{F}^u - \mathbf{F}(\mathbf{U}^{\delta}) \} \right]_{x_e^l}^{x_eû} $

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Definition at line 278 of file PulseWavePropagation.cpp.

References ASSERTL0, Nektar::eUpwindPulse, Nektar::SolverUtils::EquationSystem::GetTraceTotPoints(), Nektar::PulseWaveSystem::m_A_0_trace, Nektar::PulseWaveSystem::m_beta_trace, Nektar::PulseWaveSystem::m_currentDomain, Nektar::PulseWaveSystem::m_nVariables, Nektar::PulseWaveSystem::m_trace_fwd_normal, Nektar::PulseWaveSystem::m_upwindTypePulse, Nektar::PulseWaveSystem::m_vessels, and RiemannSolverUpwind().

280  {
281  int i;
282  int nTracePts = GetTraceTotPoints();
283 
284  Array<OneD, Array<OneD, NekDouble> > Fwd(m_nVariables);
285  Array<OneD, Array<OneD, NekDouble> > Bwd(m_nVariables);
286 
287  for (i = 0; i < m_nVariables; ++i)
288  {
289  Fwd[i] = Array<OneD, NekDouble>(nTracePts);
290  Bwd[i] = Array<OneD, NekDouble>(nTracePts);
291  }
292 
293  // Get the physical values at the trace
294  for (i = 0; i < m_nVariables; ++i)
295  {
296  m_vessels[m_currentDomain*m_nVariables+ i]->
297  GetFwdBwdTracePhys(physfield[i],Fwd[i],Bwd[i]);
298  }
299 
300  // Solve the upwinding Riemann problem within one arterial
301  // segment by calling the upwinding Riemann solver implemented
302  // in this file
303  NekDouble Aflux, uflux;
304  for (i = 0; i < nTracePts; ++i)
305  {
306  switch(m_upwindTypePulse)
307  {
308  case eUpwindPulse:
309  {
310  RiemannSolverUpwind(Fwd[0][i],Fwd[1][i],Bwd[0][i],Bwd[1][i],
311  Aflux, uflux, m_A_0_trace[m_currentDomain][i],
314  }
315  break;
316  default:
317  {
318  ASSERTL0(false,"populate switch statement for upwind flux");
319  }
320  break;
321  }
322  numflux[0][i] = Aflux;
323  numflux[1][i] = uflux;
324  }
325  }
Array< OneD, Array< OneD, NekDouble > > m_beta_trace
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:188
UpwindTypePulse m_upwindTypePulse
Array< OneD, Array< OneD, NekDouble > > m_trace_fwd_normal
Array< OneD, Array< OneD, NekDouble > > m_A_0_trace
double NekDouble
SOLVER_UTILS_EXPORT int GetTraceTotPoints()
Array< OneD, MultiRegions::ExpListSharedPtr > m_vessels
void RiemannSolverUpwind(NekDouble AL, NekDouble uL, NekDouble AR, NekDouble uR, NekDouble &Aflux, NekDouble &uflux, NekDouble A_0, NekDouble beta, NekDouble n)
Upwinding Riemann solver for interelemental boundaries.
simple upwinding scheme

Friends And Related Function Documentation

friend class MemoryManager< PulseWavePropagation >
friend

Definition at line 50 of file PulseWavePropagation.h.

Member Data Documentation

string Nektar::PulseWavePropagation::className = GetEquationSystemFactory().RegisterCreatorFunction("PulseWavePropagation", PulseWavePropagation::create, "Pulse Wave Propagation equation.")
static

Name of class.

Definition at line 61 of file PulseWavePropagation.h.

Array<OneD, PulseWaveBoundarySharedPtr> Nektar::PulseWavePropagation::m_Boundary
protected

Definition at line 95 of file PulseWavePropagation.h.

Referenced by SetPulseWaveBoundaryConditions().

PulseWavePressureAreaSharedPtr Nektar::PulseWavePropagation::m_pressureArea
protected

Definition at line 97 of file PulseWavePropagation.h.

Referenced by SetPulseWaveBoundaryConditions(), and v_InitObject().