Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
Public Member Functions | Static Public Member Functions | Static Public Attributes | List of all members
Nektar::Utilities::ProcessWSS Class Reference

This processing module calculates the wall shear stress and adds it as an extra-field to the output file, and writes it to a surface output file. More...

#include <ProcessWSS.h>

Inheritance diagram for Nektar::Utilities::ProcessWSS:
Inheritance graph
[legend]
Collaboration diagram for Nektar::Utilities::ProcessWSS:
Collaboration graph
[legend]

Public Member Functions

 ProcessWSS (FieldSharedPtr f)
 
virtual ~ProcessWSS ()
 
virtual void Process (po::variables_map &vm)
 Write mesh to output file. More...
 
virtual std::string GetModuleName ()
 
- Public Member Functions inherited from Nektar::Utilities::ProcessModule
 ProcessModule ()
 
 ProcessModule (FieldSharedPtr p_f)
 
 ProcessModule (MeshSharedPtr p_m)
 
- Public Member Functions inherited from Nektar::Utilities::Module
 Module (FieldSharedPtr p_f)
 
void RegisterConfig (string key, string value)
 Register a configuration option with a module. More...
 
void PrintConfig ()
 Print out all configuration options for a module. More...
 
void SetDefaults ()
 Sets default configuration options for those which have not been set. More...
 
bool GetRequireEquiSpaced (void)
 
void SetRequireEquiSpaced (bool pVal)
 
void EvaluateTriFieldAtEquiSpacedPts (LocalRegions::ExpansionSharedPtr &exp, const Array< OneD, const NekDouble > &infield, Array< OneD, NekDouble > &outfield)
 
 Module (MeshSharedPtr p_m)
 
virtual void Process ()=0
 
void RegisterConfig (std::string key, std::string value)
 
void PrintConfig ()
 
void SetDefaults ()
 
MeshSharedPtr GetMesh ()
 
virtual void ProcessVertices ()
 Extract element vertices. More...
 
virtual void ProcessEdges (bool ReprocessEdges=true)
 Extract element edges. More...
 
virtual void ProcessFaces (bool ReprocessFaces=true)
 Extract element faces. More...
 
virtual void ProcessElements ()
 Generate element IDs. More...
 
virtual void ProcessComposites ()
 Generate composites. More...
 
virtual void ClearElementLinks ()
 

Static Public Member Functions

static boost::shared_ptr< Modulecreate (FieldSharedPtr f)
 Creates an instance of this class. More...
 

Static Public Attributes

static ModuleKey className
 

Additional Inherited Members

- Protected Member Functions inherited from Nektar::Utilities::Module
 Module ()
 
void ReorderPrisms (PerMap &perFaces)
 Reorder node IDs so that prisms and tetrahedra are aligned correctly. More...
 
void PrismLines (int prism, PerMap &perFaces, std::set< int > &prismsDone, std::vector< ElementSharedPtr > &line)
 
- Protected Attributes inherited from Nektar::Utilities::Module
FieldSharedPtr m_f
 Field object. More...
 
map< string, ConfigOptionm_config
 List of configuration values. More...
 
bool m_requireEquiSpaced
 
MeshSharedPtr m_mesh
 Mesh object. More...
 
std::map< std::string,
ConfigOption
m_config
 List of configuration values. More...
 

Detailed Description

This processing module calculates the wall shear stress and adds it as an extra-field to the output file, and writes it to a surface output file.

Definition at line 50 of file ProcessWSS.h.

Constructor & Destructor Documentation

Nektar::Utilities::ProcessWSS::ProcessWSS ( FieldSharedPtr  f)

Definition at line 56 of file ProcessWSS.cpp.

References Nektar::Utilities::Module::m_config, and Nektar::Utilities::Module::m_f.

56  : ProcessModule(f)
57 {
58  m_config["bnd"] = ConfigOption(false,"All","Boundary to be extracted");
59  m_config["addnormals"] = ConfigOption(true,"NotSet","Add normals to output");
60  f->m_writeBndFld = true;
61  f->m_declareExpansionAsContField = true;
62  m_f->m_fldToBnd = false;
63 }
map< string, ConfigOption > m_config
List of configuration values.
FieldSharedPtr m_f
Field object.
Nektar::Utilities::ProcessWSS::~ProcessWSS ( )
virtual

Definition at line 65 of file ProcessWSS.cpp.

66 {
67 }

Member Function Documentation

static boost::shared_ptr<Module> Nektar::Utilities::ProcessWSS::create ( FieldSharedPtr  f)
inlinestatic

Creates an instance of this class.

Definition at line 54 of file ProcessWSS.h.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr().

54  {
56  }
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
virtual std::string Nektar::Utilities::ProcessWSS::GetModuleName ( )
inlinevirtual

Implements Nektar::Utilities::Module.

Definition at line 65 of file ProcessWSS.h.

66  {
67  return "ProcessWSS";
68  }
void Nektar::Utilities::ProcessWSS::Process ( po::variables_map &  vm)
virtual

Write mesh to output file.

Implements Nektar::Utilities::Module.

Definition at line 69 of file ProcessWSS.cpp.

References ASSERTL0, Nektar::ParseUtils::GenerateOrderedVector(), Nektar::SpatialDomains::BoundaryConditions::GetBoundaryRegions(), Nektar::Utilities::Module::m_config, Nektar::Utilities::Module::m_f, Vmath::Neg(), Vmath::Smul(), Vmath::Vadd(), Vmath::Vsqrt(), Vmath::Vvtvp(), and Vmath::Zero().

70 {
71  if (m_f->m_verbose)
72  {
73  if(m_f->m_comm->GetRank() == 0)
74  {
75  cout << "ProcessWSS: Calculating wall shear stress..." << endl;
76  }
77  }
78 
79  m_f->m_addNormals = m_config["addnormals"].m_beenSet;
80 
81  // Set up Field options to output boundary fld
82  string bvalues = m_config["bnd"].as<string>();
83 
84  if(bvalues.compare("All") == 0)
85  {
86  Array<OneD, const MultiRegions::ExpListSharedPtr>
87  BndExp = m_f->m_exp[0]->GetBndCondExpansions();
88 
89  for(int i = 0; i < BndExp.num_elements(); ++i)
90  {
91  m_f->m_bndRegionsToWrite.push_back(i);
92  }
93  }
94  else
95  {
97  m_f->m_bndRegionsToWrite),"Failed to interpret range string");
98  }
99 
100  NekDouble kinvis = m_f->m_session->GetParameter("Kinvis");
101 
102  int i, j;
103  int spacedim = m_f->m_graph->GetSpaceDimension();
104  if ((m_f->m_fielddef[0]->m_numHomogeneousDir) == 1 ||
105  (m_f->m_fielddef[0]->m_numHomogeneousDir) == 2)
106  {
107  spacedim += m_f->m_fielddef[0]->m_numHomogeneousDir;
108  }
109 
110  int nfields = m_f->m_fielddef[0]->m_fields.size();
111  ASSERTL0(m_f->m_fielddef[0]->m_fields[0] == "u","Implicit assumption that input is in incompressible format of (u,v,p) or (u,v,w,p)");
112 
113  if (spacedim == 1)
114  {
115  ASSERTL0(false, "Error: wss for a 1D problem cannot "
116  "be computed");
117  }
118 
119  int newfields = spacedim + 1;
120  int nshear = spacedim + 1;
121  int nstress = spacedim*spacedim;
122  int ngrad = spacedim*spacedim;
123 
124  Array<OneD, Array<OneD, NekDouble> > velocity(nfields), grad(ngrad), fgrad(ngrad);
125  Array<OneD, Array<OneD, NekDouble> > stress(nstress), fstress(nstress);
126  Array<OneD, Array<OneD, NekDouble> > fshear(nshear);
127 
128  Array<OneD, MultiRegions::ExpListSharedPtr> BndExp(newfields);
129  Array<OneD, MultiRegions::ExpListSharedPtr> BndElmtExp(spacedim);
130 
131  // Extract original fields to boundary (for output)
132  for (int i = 0; i < m_f->m_exp.size(); ++i)
133  {
134  m_f->m_exp[i]->FillBndCondFromField();
135  }
136 
137  m_f->m_exp.resize(nfields + newfields);
138  string var = "u";
139  for(i = 0; i < newfields; ++i)
140  {
141  m_f->m_exp[nfields + i] = m_f->AppendExpList(m_f->m_fielddef[0]->m_numHomogeneousDir, var);
142  }
143 
144  if(spacedim == 2)
145  {
146  m_f->m_fielddef[0]->m_fields.push_back("Shear_x");
147  m_f->m_fielddef[0]->m_fields.push_back("Shear_y");
148  m_f->m_fielddef[0]->m_fields.push_back("Shear_mag");
149  }
150  else
151  {
152  m_f->m_fielddef[0]->m_fields.push_back("Shear_x");
153  m_f->m_fielddef[0]->m_fields.push_back("Shear_y");
154  m_f->m_fielddef[0]->m_fields.push_back("Shear_z");
155  m_f->m_fielddef[0]->m_fields.push_back("Shear_mag");
156  }
157 
158  // Create map of boundary ids for partitioned domains
159  SpatialDomains::BoundaryConditions bcs(m_f->m_session,
160  m_f->m_exp[0]->GetGraph());
162  bcs.GetBoundaryRegions();
163  SpatialDomains::BoundaryRegionCollection::const_iterator breg_it;
164  map<int,int> BndRegionMap;
165  int cnt =0;
166  for(breg_it = bregions.begin(); breg_it != bregions.end();
167  ++breg_it, ++cnt)
168  {
169  BndRegionMap[breg_it->first] = cnt;
170  }
171  // Loop over boundaries to Write
172  for(int b = 0; b < m_f->m_bndRegionsToWrite.size(); ++b)
173  {
174  if(BndRegionMap.count(m_f->m_bndRegionsToWrite[b]) == 1)
175  {
176  int bnd = BndRegionMap[m_f->m_bndRegionsToWrite[b]];
177  // Get expansion list for boundary and for elements containing this bnd
178  for(i = 0; i < newfields; i++)
179  {
180  BndExp[i] = m_f->m_exp[nfields + i]->UpdateBndCondExpansion(bnd);
181  }
182  for(i = 0; i < spacedim; i++)
183  {
184  m_f->m_exp[i]->GetBndElmtExpansion(bnd, BndElmtExp[i]);
185  }
186 
187  // Get number of points in expansions
188  int nqb = BndExp[0]->GetTotPoints();
189  int nqe = BndElmtExp[0]->GetTotPoints();
190 
191  // Initialise local arrays for the velocity gradients, and stress components
192  // size of total number of quadrature points for elements in this bnd
193  for(i = 0; i < ngrad; ++i)
194  {
195  grad[i] = Array<OneD, NekDouble>(nqe);
196  }
197 
198  for(i = 0; i < nstress; ++i)
199  {
200  stress[i] = Array<OneD, NekDouble>(nqe);
201  }
202 
203  // initialise arrays in the boundary
204  for(i = 0; i < nstress; ++i)
205  {
206  fstress[i] = Array<OneD, NekDouble>(nqb);
207  }
208 
209  for(i = 0; i < ngrad; ++i)
210  {
211  fgrad[i] = Array<OneD, NekDouble>(nqb);
212  }
213 
214  for(i = 0; i < nshear; ++i)
215  {
216  fshear[i] = Array<OneD, NekDouble>(nqb, 0.0);
217  }
218 
219  //Extract Velocities
220  for(i = 0; i < spacedim; ++i)
221  {
222  velocity[i] = BndElmtExp[i]->GetPhys();
223  }
224 
225  //Compute gradients (velocity correction scheme method)
226  for(i = 0; i < spacedim; ++i)
227  {
228  if (spacedim == 2)
229  {
230  BndElmtExp[i]->PhysDeriv(velocity[i],grad[i*spacedim+0],
231  grad[i*spacedim+1]);
232  }
233  else
234  {
235  BndElmtExp[i]->PhysDeriv(velocity[i],grad[i*spacedim+0],
236  grad[i*spacedim+1],
237  grad[i*spacedim+2]);
238  }
239  }
240 
241  //Compute stress component terms tau_ij = mu*(u_i,j + u_j,i)
242  for(i = 0; i < spacedim; ++i)
243  {
244  for(j = 0; j < spacedim; ++j)
245  {
246  Vmath::Vadd(nqe, grad[i*spacedim+j], 1,
247  grad[j*spacedim+i], 1,
248  stress[i*spacedim+j], 1);
249 
250  Vmath::Smul(nqe, kinvis, stress[i*spacedim+j], 1,
251  stress[i*spacedim+j], 1);
252  }
253  }
254 
255  // Get boundary stress values.
256  for(j = 0; j < nstress; ++j)
257  {
258  m_f->m_exp[0]->ExtractElmtToBndPhys(bnd, stress[j],fstress[j]);
259  }
260 
261  //Get normals
262  Array<OneD, Array<OneD, NekDouble> > normals;
263  m_f->m_exp[0]->GetBoundaryNormals(bnd, normals);
264  // Reverse normals, to get correct orientation for the body
265  for(i = 0; i < spacedim; ++i)
266  {
267  Vmath::Neg(nqb, normals[i], 1);
268  }
269 
270  //calculate wss, and update coeffs in the boundary expansion
271  // S = tau_ij * n_j
272  for(i = 0; i < spacedim; ++i)
273  {
274  for(j = 0; j < spacedim; ++j)
275  {
276  Vmath::Vvtvp(nqb,normals[j],1,fstress[i*spacedim+j],1,
277  fshear[i],1,
278  fshear[i],1);
279  }
280  }
281 
282  // T = S - (S.n)n
283  for(i = 0; i < spacedim; ++i)
284  {
285  Vmath::Vvtvp(nqb,normals[i],1,fshear[i],1,
286  fshear[nshear-1],1,
287  fshear[nshear-1],1);
288  }
289  Vmath::Smul(nqb, -1.0, fshear[nshear-1], 1, fshear[nshear-1], 1);
290 
291  for (i = 0; i < spacedim; i++)
292  {
293  Vmath::Vvtvp(nqb,normals[i], 1, fshear[nshear-1], 1,
294  fshear[i], 1,
295  fshear[i], 1);
296  BndExp[i]->FwdTrans(fshear[i],
297  BndExp[i]->UpdateCoeffs());
298  }
299 
300  // Tw
301  Vmath::Zero(nqb, fshear[nshear-1], 1);
302  for(i = 0; i < spacedim; ++i)
303  {
304  Vmath::Vvtvp(nqb,fshear[i],1,fshear[i],1,
305  fshear[nshear-1],1,
306  fshear[nshear-1],1);
307  }
308  Vmath::Vsqrt(nqb, fshear[nshear-1], 1, fshear[nshear-1], 1);
309  BndExp[nshear-1]->FwdTrans(fshear[nshear-1],
310  BndExp[nshear-1]->UpdateCoeffs());
311  }
312  }
313 }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:188
static bool GenerateOrderedVector(const char *const str, std::vector< unsigned int > &vec)
Definition: ParseUtils.hpp:97
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
Definition: Vmath.cpp:394
map< string, ConfigOption > m_config
List of configuration values.
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:428
FieldSharedPtr m_f
Field object.
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
std::map< int, BoundaryRegionShPtr > BoundaryRegionCollection
Definition: Conditions.h:206
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:382
double NekDouble
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:359
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:285

Member Data Documentation

ModuleKey Nektar::Utilities::ProcessWSS::className
static
Initial value:
=
ProcessWSS::create, "Computes wall shear stress field.")

Definition at line 57 of file ProcessWSS.h.