39 #include <boost/algorithm/string.hpp>
48 string EulerCFE::className =
50 "EulerCFE", EulerCFE::create,
51 "Euler equations in conservative variables without "
52 "artificial diffusion.");
64 if(
m_session->DefinesSolverInfo(
"PROBLEMTYPE"))
67 std::string ProblemTypeStr =
90 ASSERTL0(
false,
"Implicit CFE not set up.");
115 bool dumpInitialConditions,
150 int nvariables = inarray.num_elements();
158 for (i = 0; i < nvariables; ++i)
164 std::vector<SolverUtils::ForcingSharedPtr>::const_iterator x;
167 (*x)->Apply(
m_fields, inarray, outarray, time);
181 int nvariables = inarray.num_elements();
190 for(i = 0; i < nvariables; ++i)
200 ASSERTL0(
false,
"No Continuous Galerkin for Euler equations");
204 ASSERTL0(
false,
"Unknown projection scheme");
226 int nvariables = inarray.num_elements();
230 for (
int i = 0; i < nvariables; ++i)
233 m_fields[i]->ExtractTracePhys(inarray[i], Fwd[i]);
236 std::string userDefStr;
237 int nreg =
m_fields[0]->GetBndConditions().num_elements();
239 for (
int n = 0; n < nreg; ++n)
241 userDefStr =
m_fields[0]->GetBndConditions()[n]->GetUserDefined();
242 if(!userDefStr.empty())
244 if(boost::iequals(userDefStr,
"WallViscous"))
246 ASSERTL0(
false,
"WallViscous is a wrong bc for the "
249 else if(boost::iequals(userDefStr,
"IsentropicVortex"))
254 else if (boost::iequals(userDefStr,
"RinglebFlow"))
261 SetCommonBC(userDefStr, n, time, cnt, Fwd, inarray);
266 cnt +=
m_fields[0]->GetBndCondExpansions()[n]->GetExpSize();
307 int nq = x.num_elements();
317 NekDouble fac = 1.0/(16.0*gamma*M_PI*M_PI);
326 for (
int i = 0; i < nq; ++i)
328 xbar = x[i] - u0*time - x0;
329 ybar = y[i] - v0*time - y0;
330 r = sqrt(xbar*xbar + ybar*ybar);
331 tmp = beta*exp(1-r*r);
332 u[0][i+o] = pow(1.0 - (gamma-1.0)*tmp*tmp*fac, 1.0/(gamma-1.0));
333 u[1][i+o] = u[0][i+o]*(u0 - tmp*ybar/(2*M_PI));
334 u[2][i+o] = u[0][i+o]*(v0 + tmp*xbar/(2*M_PI));
335 u[
m_spacedim+1][i+o] = pow(u[0][i+o], gamma)/(gamma-1.0) +
336 0.5*(u[1][i+o]*u[1][i+o] + u[2][i+o]*u[2][i+o]) / u[0][i+o];
387 for(
int i = 0; i <
m_fields.num_elements(); ++i)
406 int nvariables = physarray.num_elements();
410 e_max =
m_fields[0]->GetBndCondExpansions()[bcRegion]->GetExpSize();
412 for(
int e = 0; e < e_max; ++e)
415 GetBndCondExpansions()[bcRegion]->GetExp(e)->GetTotPoints();
417 GetBndCondExpansions()[bcRegion]->GetPhys_Offset(e);
418 id2 =
m_fields[0]->GetTrace()->GetPhys_Offset(bndTraceMap[cnt++]);
424 m_fields[0]->GetBndCondExpansions()[bcRegion]->
425 GetExp(e)->GetCoords(x, y, z);
429 for (
int i = 0; i < nvariables; ++i)
432 &(
m_fields[i]->GetBndCondExpansions()[bcRegion]->
433 UpdatePhys())[id1], 1);
458 NekDouble c, k, phi, r, J, VV, pp, sint, P, ss;
472 NekDouble gamma_1_2 = (gamma - 1.0) / 2.0;
474 for (
int i = 0; i < nTotQuadPoints; ++i)
476 while ((abs(errV) > toll) || (abs(errTheta) > toll))
480 c = sqrt(1.0 - gamma_1_2 * VV);
484 J = 1.0 / c + 1.0 / (3.0 * c * c * c) +
485 1.0 / (5.0 * c * c * c * c * c) -
486 0.5 * log((1.0 + c) / (1.0 - c));
488 r = pow(c, 1.0 / gamma_1_2);
489 xi = 1.0 / (2.0 * r) * (1.0 / VV - 2.0 * pp) + J / 2.0;
490 yi = phi / (r * V) * sqrt(1.0 - VV * pp);
491 par1 = 25.0 - 5.0 * VV;
497 J11 = 39062.5 / pow(par1, 3.5) * (1.0 / VV - 2.0 / VV * ss) *
498 V + 1562.5 / pow(par1, 2.5) * (-2.0 / (VV * V) + 4.0 /
499 (VV * V) * ss) + 12.5 / pow(par1, 1.5) * V + 312.5 /
500 pow(par1, 2.5) * V + 7812.5 / pow(par1, 3.5) * V -
501 0.25 * (-1.0 / pow(par1, 0.5) * V/(1.0 - 0.2 *
502 pow(par1, 0.5)) - (1.0 + 0.2 * pow(par1, 0.5)) /
503 pow((1.0 - 0.2 * pow(par1, 0.5)), 2.0) /
504 pow(par1, 0.5) * V) / (1.0 + 0.2 * pow(par1, 0.5)) *
505 (1.0 - 0.2 * pow(par1, 0.5));
507 J12 = -6250.0 / pow(par1, 2.5) / VV * sint * cos(theta);
508 J21 = -6250.0 / (VV * V) * sint /
509 pow(par1, 2.5) * pow((1.0 - ss), 0.5) +
510 78125.0 / V * sint / pow(par1, 3.5) *
511 pow((1.0 - ss), 0.5);
514 if(abs(y[i])<toll && abs(cos(theta))<toll)
516 J22 = -39062.5 / pow(par1, 3.5) / V + 3125 /
517 pow(par1, 2.5) / (VV * V) + 12.5 / pow(par1, 1.5) *
518 V + 312.5 / pow(par1, 2.5) * V + 7812.5 /
519 pow(par1, 3.5) * V - 0.25 * (-1.0 / pow(par1, 0.5) *
520 V / (1.0 - 0.2 * pow(par1, 0.5)) - (1.0 + 0.2 *
521 pow(par1, 0.5)) / pow((1.0 - 0.2 *
522 pow(par1, 0.5)), 2.0) / pow(par1, 0.5) * V) /
523 (1.0 + 0.2 * pow(par1, 0.5)) * (1.0 - 0.2 *
527 dV = -1.0 / J22 * Fx;
533 J22 = 3125.0 / VV * cos(theta) / pow(par1, 2.5) *
534 pow((1.0 - ss), 0.5) - 3125.0 / VV * ss /
535 pow(par1, 2.5) / pow((1.0 - ss), 0.5) * cos(theta);
537 det = -1.0 / (J11 * J22 - J12 * J21);
540 dV = det * ( J22 * Fx - J12 * Fy);
541 dtheta = det * (-J21 * Fx + J11 * Fy);
545 theta = theta + dtheta;
548 errTheta = abs(dtheta);
552 c = sqrt(1.0 - gamma_1_2 * VV);
553 r = pow(c, 1.0 / gamma_1_2);
556 rhou[i] = rho[i] * V * cos(theta);
557 rhov[i] = rho[i] * V * sin(theta);
558 P = (c * c) * rho[i] / gamma;
559 E[i] = P / (gamma - 1.0) + 0.5 *
560 (rhou[i] * rhou[i] / rho[i] + rhov[i] * rhov[i] / rho[i]);
584 ASSERTL0(
false,
"Error in variable number!");
595 int nbnd =
m_fields[0]->GetBndConditions().num_elements();
598 for(
int bcRegion=0; bcRegion < nbnd; ++bcRegion)
602 GetBndCondExpansions()[bcRegion]->GetNpoints();
613 m_fields[0]->GetBndCondExpansions()[bcRegion]->
614 GetCoords(x0, x1, x2);
617 NekDouble c, k, phi, r, J, VV, pp, sint, P, ss;
631 NekDouble gamma_1_2 = (gamma - 1.0) / 2.0;
634 for (
int j = 0; j < npoints; j++)
636 while ((abs(errV) > toll) || (abs(errTheta) > toll))
641 c = sqrt(1.0 - gamma_1_2 * VV);
645 J = 1.0 / c + 1.0 / (3.0 * c * c * c) +
646 1.0 / (5.0 * c * c * c * c * c) -
647 0.5 * log((1.0 + c) / (1.0 - c));
649 r = pow(c, 1.0 / gamma_1_2);
650 xi = 1.0 / (2.0 * r) * (1.0 / VV - 2.0 * pp) + J / 2.0;
651 yi = phi / (r * V) * sqrt(1.0 - VV * pp);
652 par1 = 25.0 - 5.0 * VV;
658 J11 = 39062.5 / pow(par1, 3.5) *
659 (1.0 / VV - 2.0 / VV * ss) * V +
660 1562.5 / pow(par1, 2.5) * (-2.0 /
661 (VV * V) + 4.0 / (VV * V) * ss) +
662 12.5 / pow(par1, 1.5) * V +
663 312.5 / pow(par1, 2.5) * V +
664 7812.5 / pow(par1, 3.5) * V -
665 0.25 * (-1.0 / pow(par1, 0.5) * V /
666 (1.0 - 0.2 * pow(par1, 0.5)) - (1.0 + 0.2 *
667 pow(par1, 0.5)) / pow((1.0 - 0.2 *
668 pow(par1, 0.5)), 2.0) /
669 pow(par1, 0.5) * V) /
670 (1.0 + 0.2 * pow(par1, 0.5)) *
671 (1.0 - 0.2 * pow(par1, 0.5));
673 J12 = -6250.0 / pow(par1, 2.5) / VV * sint * cos(theta);
674 J21 = -6250.0 / (VV * V) * sint / pow(par1, 2.5) *
675 pow((1.0 - ss), 0.5) + 78125.0 / V * sint /
676 pow(par1, 3.5) * pow((1.0 - ss), 0.5);
679 if (abs(x1[j]) < toll && abs(cos(theta)) < toll)
682 J22 = -39062.5 / pow(par1, 3.5) / V +
683 3125 / pow(par1, 2.5) / (VV * V) + 12.5 /
684 pow(par1, 1.5) * V + 312.5 / pow(par1, 2.5) * V +
685 7812.5 / pow(par1, 3.5) * V -
686 0.25 * (-1.0 / pow(par1, 0.5) * V /
687 (1.0 - 0.2 * pow(par1, 0.5)) -
688 (1.0 + 0.2 * pow(par1, 0.5)) /
689 pow((1.0 - 0.2* pow(par1, 0.5)), 2.0) /
691 (1.0 + 0.2 * pow(par1, 0.5)) *
692 (1.0 - 0.2 * pow(par1, 0.5));
695 dV = -1.0 / J22 * Fx;
702 J22 = 3125.0 / VV * cos(theta) / pow(par1, 2.5) *
703 pow((1.0 - ss), 0.5) - 3125.0 / VV * ss /
704 pow(par1, 2.5) / pow((1.0 - ss), 0.5) *
707 det = -1.0 / (J11 * J22 - J12 * J21);
710 dV = det * ( J22 * Fx - J12 * Fy);
711 dtheta = det * (-J21 * Fx + J11 * Fy);
715 theta = theta + dtheta;
718 errTheta = abs(dtheta);
722 c = sqrt(1.0 - gamma_1_2 * VV);
723 rho[j] = pow(c, 1.0 / gamma_1_2) * exp(-1.0);
724 rhou[j] = rho[j] * V * cos(theta) * exp(-1.0);
725 rhov[j] = rho[j] * V * sin(theta) * exp(-1.0);
726 P = (c * c) * rho[j] / gamma;
727 E[j] = P / (gamma - 1.0) + 0.5 *
729 rho[j] + rhov[j] * rhov[j] / rho[j]);
733 V = kExt * sin(theta);
738 m_fields[0]->GetBndCondExpansions()[bcRegion]->SetPhys(rho);
739 m_fields[1]->GetBndCondExpansions()[bcRegion]->SetPhys(rhou);
740 m_fields[2]->GetBndCondExpansions()[bcRegion]->SetPhys(rhov);
741 m_fields[3]->GetBndCondExpansions()[bcRegion]->SetPhys(E);
744 for(
int i = 0; i <
m_fields.num_elements(); ++i)
746 m_fields[i]->GetBndCondExpansions()[bcRegion]->
747 FwdTrans_BndConstrained(
748 m_fields[i]->GetBndCondExpansions()[bcRegion]->
750 m_fields[i]->GetBndCondExpansions()[bcRegion]->
768 for(
int j = 0; j < nq; j++)
779 for (
int bcRegion = 0; bcRegion < nbnd; ++bcRegion)
783 GetBndCondExpansions()[bcRegion]->GetNpoints();
789 m_fields[0]->GetBndCondExpansions()[bcRegion]->
790 GetCoords(xb0, xb1, xb2);
792 for (
int k = 0; k < npoints; k++)
794 Dist = sqrt((xb0[k] - x0[j]) * (xb0[k] - x0[j]) +
795 (xb1[k] - x1[j]) * (xb1[k] - x1[j]));
799 GetBndCondExpansions()[bcRegion]->GetPhys())[k];
801 GetBndCondExpansions()[bcRegion]->GetPhys())[k];
803 GetBndCondExpansions()[bcRegion]->GetPhys())[k];
805 GetBndCondExpansions()[bcRegion]->GetPhys())[k];
810 rhou = rhou / SumDist;
811 rhov = rhov / SumDist;
814 (
m_fields[0]->UpdatePhys())[j] = rho;
815 (
m_fields[1]->UpdatePhys())[j] = rhou;
816 (
m_fields[2]->UpdatePhys())[j] = rhov;
821 for (
int i = 0 ; i <
m_fields.num_elements(); i++)
843 int nvariables = physarray.num_elements();
849 int nPointsTot =
m_fields[0]->GetTotPoints();
850 int nPointsTot_plane =
m_fields[0]->GetPlane(0)->GetTotPoints();
851 n_planes = nPointsTot/nPointsTot_plane;
854 int id2, id2_plane, e_max;
856 e_max =
m_fields[0]->GetBndCondExpansions()[bcRegion]->GetExpSize();
858 for(
int e = 0; e < e_max; ++e)
861 GetBndCondExpansions()[bcRegion]->GetExp(e)->GetTotPoints();
863 GetBndCondExpansions()[bcRegion]->GetPhys_Offset(e);
868 int cnt_plane = cnt/n_planes;
870 int e_max_plane = e_max/n_planes;
873 int planeID = floor((e + 0.5 )/ e_max_plane );
874 e_plane = e - e_max_plane*planeID;
876 id2_plane =
m_fields[0]->GetTrace()->GetPhys_Offset(
878 GetBndCondCoeffsToGlobalCoeffsMap(
879 cnt_plane + e_plane));
880 id2 = id2_plane + planeID*nTracePts_plane;
885 GetTrace()->GetPhys_Offset(
m_fields[0]->GetTraceMap()->
886 GetBndCondTraceToGlobalTraceMap(cnt++));
893 m_fields[0]->GetBndCondExpansions()[bcRegion]->
894 GetExp(e)->GetCoords(x0, x1, x2);
897 NekDouble c, k, phi, r, J, VV, pp, sint, P, ss;
911 NekDouble gamma_1_2 = (gamma - 1.0) / 2.0;
914 for (
int j = 0; j < npoints; j++)
917 while ((abs(errV) > toll) || (abs(errTheta) > toll))
921 c = sqrt(1.0 - gamma_1_2 * VV);
925 J = 1.0 / c + 1.0 / (3.0 * c * c * c) +
926 1.0 / (5.0 * c * c * c * c * c) -
927 0.5 * log((1.0 + c) / (1.0 - c));
929 r = pow(c, 1.0 / gamma_1_2);
930 xi = 1.0 / (2.0 * r) * (1.0 / VV - 2.0 * pp) + J / 2.0;
931 yi = phi / (r * V) * sqrt(1.0 - VV * pp);
932 par1 = 25.0 - 5.0 * VV;
938 J11 = 39062.5 / pow(par1, 3.5) *
939 (1.0 / VV - 2.0 / VV * ss) * V + 1562.5 /
940 pow(par1, 2.5) * (-2.0 / (VV * V) + 4.0 /
941 (VV * V) * ss) + 12.5 / pow(par1, 1.5) * V +
942 312.5 / pow(par1, 2.5) * V + 7812.5 /
943 pow(par1, 3.5) * V - 0.25 *
944 (-1.0 / pow(par1, 0.5) * V / (1.0 - 0.2 *
945 pow(par1, 0.5)) - (1.0 + 0.2 * pow(par1, 0.5)) /
946 pow((1.0 - 0.2 * pow(par1, 0.5)), 2.0) /
947 pow(par1, 0.5) * V) / (1.0 + 0.2 * pow(par1, 0.5)) *
948 (1.0 - 0.2 * pow(par1, 0.5));
950 J12 = -6250.0 / pow(par1, 2.5) / VV * sint * cos(theta);
951 J21 = -6250.0 / (VV * V) * sint / pow(par1, 2.5) *
952 pow((1.0 - ss), 0.5) + 78125.0 / V * sint /
953 pow(par1, 3.5) * pow((1.0 - ss), 0.5);
956 if (abs(x1[j]) < toll && abs(cos(theta)) < toll)
958 J22 = -39062.5 / pow(par1, 3.5) / V + 3125 /
959 pow(par1, 2.5) / (VV * V) + 12.5 /
960 pow(par1, 1.5) * V + 312.5 / pow(par1, 2.5) *
961 V + 7812.5 / pow(par1, 3.5) * V - 0.25 *
962 (-1.0 / pow(par1, 0.5) * V / (1.0 - 0.2 *
963 pow(par1, 0.5)) - (1.0 + 0.2 * pow(par1, 0.5)) /
964 pow((1.0 - 0.2 * pow(par1, 0.5)), 2.0) /
965 pow(par1, 0.5) * V) / (1.0 + 0.2 *
966 pow(par1, 0.5)) * (1.0 - 0.2 * pow(par1, 0.5));
969 dV = -1.0 / J22 * Fx;
975 J22 = 3125.0 / VV * cos(theta) / pow(par1, 2.5) *
976 pow((1.0 - ss), 0.5) - 3125.0 / VV * ss /
977 pow(par1, 2.5) / pow((1.0 - ss), 0.5) *
980 det = -1.0 / (J11 * J22 - J12 * J21);
983 dV = det * ( J22 * Fx - J12 * Fy);
984 dtheta = det * (-J21 * Fx + J11 * Fy);
988 theta = theta + dtheta;
991 errTheta = abs(dtheta);
994 c = sqrt(1.0 - gamma_1_2 * VV);
997 std::string restartstr =
"RESTART";
999 !(
m_session->DefinesFunction(
"InitialConditions") &&
1000 m_session->GetFunctionType(
"InitialConditions", 0) ==
1003 Fwd[0][kk] = pow(c, 1.0 / gamma_1_2) *
1004 exp(-1.0 + time /timeramp);
1006 Fwd[1][kk] = Fwd[0][kk] * V * cos(theta) *
1007 exp(-1 + time / timeramp);
1009 Fwd[2][kk] = Fwd[0][kk] * V * sin(theta) *
1010 exp(-1 + time / timeramp);
1014 Fwd[0][kk] = pow(c, 1.0 / gamma_1_2);
1015 Fwd[1][kk] = Fwd[0][kk] * V * cos(theta);
1016 Fwd[2][kk] = Fwd[0][kk] * V * sin(theta);
1019 P = (c * c) * Fwd[0][kk] / gamma;
1020 Fwd[3][kk] = P / (gamma - 1.0) + 0.5 *
1021 (Fwd[1][kk] * Fwd[1][kk] / Fwd[0][kk] +
1022 Fwd[2][kk] * Fwd[2][kk] / Fwd[0][kk]);
1027 V = kExt * sin(theta);
1030 for (
int i = 0; i < nvariables; ++i)
1033 &(
m_fields[i]->GetBndCondExpansions()[bcRegion]->
1034 UpdatePhys())[id1],1);
#define ASSERTL0(condition, msg)
virtual void v_SetInitialConditions(NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
Set the initial conditions.
virtual void v_InitObject()
Initialization object for CompressibleFlowSystem class.
virtual void v_GenerateSummary(SolverUtils::SummaryList &s)
Print a summary of time stepping parameters.
LibUtilities::TimeIntegrationSchemeOperators m_ode
The time integration scheme operators to use.
std::vector< std::pair< std::string, std::string > > SummaryList
void SetInitialIsentropicVortex(NekDouble initialtime)
Set the initial condition for the isentropic vortex problem.
int m_expdim
Expansion dimension.
SOLVER_UTILS_EXPORT void Checkpoint_Output(const int n)
Write checkpoint file of m_fields.
void EvaluateIsentropicVortex(const Array< OneD, NekDouble > &x, const Array< OneD, NekDouble > &y, const Array< OneD, NekDouble > &z, Array< OneD, Array< OneD, NekDouble > > &u, NekDouble time, const int o=0)
Isentropic Vortex Test Case.
enum MultiRegions::ProjectionType m_projectionType
Type of projection; e.g continuous or discontinuous.
void SetBoundaryIsentropicVortex(int bcRegion, NekDouble time, int cnt, Array< OneD, Array< OneD, NekDouble > > &Fwd, Array< OneD, Array< OneD, NekDouble > > &physarray)
Set the boundary conditions for the isentropic vortex problem.
std::string m_sessionName
Name of the session.
void SetInitialRinglebFlow(void)
Set the initial condition for the Ringleb flow problem.
boost::shared_ptr< SessionReader > SessionReaderSharedPtr
int m_checksteps
Number of steps between checkpoints.
void SetBoundaryRinglebFlow(int bcRegion, NekDouble time, int cnt, Array< OneD, Array< OneD, NekDouble > > &Fwd, Array< OneD, Array< OneD, NekDouble > > &physarray)
Set the boundary conditions for the Ringleb flow problem.
virtual ~EulerCFE()
problem type selector
SOLVER_UTILS_EXPORT int GetTotPoints()
virtual void v_GenerateSummary(SolverUtils::SummaryList &s)
Print a summary of time stepping parameters.
void DefineProjection(FuncPointerT func, ObjectPointerT obj)
void DoOdeProjection(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
Compute the projection and call the method for imposing the boundary conditions in case of discontinu...
bool m_explicitAdvection
Indicates if explicit or implicit treatment of advection is used.
void DefineOdeRhs(FuncPointerT func, ObjectPointerT obj)
void AddSummaryItem(SummaryList &l, const std::string &name, const std::string &value)
Adds a summary item to the summary info list.
int m_spacedim
Spatial dimension (>= expansion dim).
void Neg(int n, T *x, const int incx)
Negate x = -x.
virtual SOLVER_UTILS_EXPORT void v_SetInitialConditions(NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
void DoOdeRhs(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
Compute the right-hand side.
void GetExactIsentropicVortex(int field, Array< OneD, NekDouble > &outarray, NekDouble time)
Compute the exact solution for the isentropic vortex problem.
void GetExactRinglebFlow(int field, Array< OneD, NekDouble > &outarray)
Ringleb Flow Test Case.
EquationSystemFactory & GetEquationSystemFactory()
SolverUtils::AdvectionSharedPtr m_advection
SOLVER_UTILS_EXPORT int GetTraceTotPoints()
SOLVER_UTILS_EXPORT void WriteFld(const std::string &outname)
Write field data to the given filename.
virtual void v_EvaluateExactSolution(unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time=0.0)
Get the exact solutions for isentropic vortex and Ringleb flow problems.
SOLVER_UTILS_EXPORT int GetNpoints()
ProblemType m_problemType
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
virtual void v_SetInitialConditions(NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
virtual void v_InitObject()
Initialization object for CompressibleFlowSystem class.
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
void SetCommonBC(const std::string &userDefStr, const int n, const NekDouble time, int &cnt, Array< OneD, Array< OneD, NekDouble > > &Fwd, Array< OneD, Array< OneD, NekDouble > > &inarray)
Set boundary conditions which can be: a) Wall and Symmerty BCs implemented at CompressibleFlowSystem ...
void Zero(int n, T *x, const int incx)
Zero vector.
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
std::vector< SolverUtils::ForcingSharedPtr > m_forcing
virtual SOLVER_UTILS_EXPORT void v_EvaluateExactSolution(unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
void SetBoundaryConditions(Array< OneD, Array< OneD, NekDouble > > &physarray, NekDouble time)
Set boundary conditions which can be: a) Wall and Symmerty BCs implemented at CompressibleFlowSystem ...
enum HomogeneousType m_HomogeneousType
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, tDescription pDesc="")
Register a class with the factory.
const char *const ProblemTypeMap[]