Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
MappingXYofZ.cpp
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // File: MappingXYofZ.cpp
4 //
5 // For more information, please see: http://www.nektar.info
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // License for the specific language governing rights and limitations under
14 // Permission is hereby granted, free of charge, to any person obtaining a
15 // copy of this software and associated documentation files (the "Software"),
16 // to deal in the Software without restriction, including without limitation
17 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
18 // and/or sell copies of the Software, and to permit persons to whom the
19 // Software is furnished to do so, subject to the following conditions:
20 //
21 // The above copyright notice and this permission notice shall be included
22 // in all copies or substantial portions of the Software.
23 //
24 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
25 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
26 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
27 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
28 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
29 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
30 // DEALINGS IN THE SOFTWARE.
31 //
32 // Description: Mapping of the type X = x + f(z), Y = y + g(z)
33 //
34 ///////////////////////////////////////////////////////////////////////////////
35 
37 #include <MultiRegions/ExpList.h>
38 
39 namespace Nektar
40 {
41 namespace GlobalMapping
42 {
43 
44 std::string MappingXYofZ::className =
46  MappingXYofZ::create, "X = x + f(z), Y = y +g(z)");
47 
48 /**
49  * @class MappingXYofZ
50  * This class implements a constant-Jacobian mapping defined by
51  * \f[ \bar{x} = \bar{x}(x,z) = x + f(z) \f]
52  * \f[ \bar{y} = \bar{y}(y,z) = y + g(z) \f]
53  * \f[ \bar{z} = z \f]
54  * where \f$(\bar{x},\bar{y},\bar{z})\f$ are the Cartesian (physical)
55  * coordinates and \f$(x,y,z)\f$ are the transformed (computational)
56  * coordinates.
57  */
61  : Mapping(pSession, pFields)
62 {
63 }
64 
65 /**
66  *
67  */
70  const TiXmlElement *pMapping)
71 {
72  Mapping::v_InitObject(pFields, pMapping);
73 
74  m_constantJacobian = true;
75 
77  "Mapping X = x + f(z), Y = y+g(z) needs 3 velocity components.");
78 }
79 
81  const Array<OneD, Array<OneD, NekDouble> > &inarray,
82  Array<OneD, Array<OneD, NekDouble> > &outarray)
83 {
84  int physTot = m_fields[0]->GetTotPoints();
85 
86  // U1 = u1 + fz*u3
87  Vmath::Vvtvp(physTot, m_GeometricInfo[0], 1, inarray[2], 1,
88  inarray[0], 1, outarray[0],1);
89 
90  // U2 = u2 + gz*u3
91  Vmath::Vvtvp(physTot, m_GeometricInfo[3], 1, inarray[2], 1,
92  inarray[1], 1, outarray[1],1);
93 
94  // U3 = u3
95  Vmath::Vcopy(physTot, inarray[2], 1, outarray[2], 1);
96 }
97 
99  const Array<OneD, Array<OneD, NekDouble> > &inarray,
100  Array<OneD, Array<OneD, NekDouble> > &outarray)
101 {
102  int physTot = m_fields[0]->GetTotPoints();
103  Array<OneD, NekDouble> wk(physTot, 0.0);
104 
105  // U1 = u1
106  Vmath::Vcopy(physTot, inarray[0], 1, outarray[0], 1);
107 
108  // U2 = u2
109  Vmath::Vcopy(physTot, inarray[1], 1, outarray[1], 1);
110 
111  // U3 = u3 - fz*u1 - gz*u2
112  Vmath::Vmul(physTot, m_GeometricInfo[0], 1, inarray[0], 1, wk, 1);
113  Vmath::Vsub(physTot, inarray[2], 1, wk, 1, outarray[2], 1);
114  Vmath::Vmul(physTot, m_GeometricInfo[3], 1, inarray[1], 1, wk, 1);
115  Vmath::Vsub(physTot, inarray[2], 1, wk, 1, outarray[2], 1);
116 }
117 
119  const Array<OneD, Array<OneD, NekDouble> > &inarray,
120  Array<OneD, Array<OneD, NekDouble> > &outarray)
121 {
122  int physTot = m_fields[0]->GetTotPoints();
123  Array<OneD, NekDouble> wk(physTot, 0.0);
124 
125  // U1 = u1 - fz * u3
126  Vmath::Vmul(physTot, m_GeometricInfo[0], 1, inarray[2], 1, wk, 1);
127  Vmath::Vsub(physTot, inarray[0], 1, wk, 1, outarray[0], 1);
128 
129  // U2 = u2 - gz*u3
130  Vmath::Vmul(physTot, m_GeometricInfo[3], 1, inarray[2], 1, wk, 1);
131  Vmath::Vsub(physTot, inarray[1], 1, wk, 1, outarray[1], 1);
132 
133  // U3 = u3
134  Vmath::Vcopy(physTot, inarray[2], 1, outarray[2], 1);
135 }
136 
138  const Array<OneD, Array<OneD, NekDouble> > &inarray,
139  Array<OneD, Array<OneD, NekDouble> > &outarray)
140 {
141  int physTot = m_fields[0]->GetTotPoints();
142 
143  // U1 = u1
144  Vmath::Vcopy(physTot, inarray[0], 1, outarray[0], 1);
145 
146  // U2 = u2
147  Vmath::Vcopy(physTot, inarray[1], 1, outarray[1], 1);
148 
149  // U3 = u3 + fz*u1 + gz*u2
150  Vmath::Vmul(physTot, m_GeometricInfo[0], 1,
151  inarray[0], 1, outarray[2], 1);
152  Vmath::Vvtvp(physTot, m_GeometricInfo[3], 1, inarray[1], 1,
153  outarray[2], 1, outarray[2], 1);
154  Vmath::Vadd(physTot, inarray[2], 1, outarray[2], 1, outarray[2], 1);
155 }
156 
158  Array<OneD, NekDouble> &outarray)
159 {
160  int physTot = m_fields[0]->GetTotPoints();
161  Vmath::Fill(physTot, 1.0, outarray, 1);
162 }
163 
165  const Array<OneD, Array<OneD, NekDouble> > &inarray,
166  Array<OneD, NekDouble> &outarray)
167 {
168  int physTot = m_fields[0]->GetTotPoints();
169  Vmath::Zero(physTot, outarray, 1);
170 }
171 
173  Array<OneD, Array<OneD, NekDouble> > &outarray)
174 {
175  int physTot = m_fields[0]->GetTotPoints();
176  int nvel = m_nConvectiveFields;
177 
178  for (int i=0; i<nvel*nvel; i++)
179  {
180  outarray[i] = Array<OneD, NekDouble> (physTot, 0.0);
181  }
182  // Fill diagonal with 1.0
183  for (int i=0; i<nvel; i++)
184  {
185  Vmath::Sadd(physTot, 1.0, outarray[i*nvel+i], 1,
186  outarray[i*nvel+i], 1);
187  }
188 
189  // G_{13} and G_{31} = fz
190  Vmath::Vcopy(physTot, m_GeometricInfo[0], 1, outarray[0*nvel+2], 1);
191  Vmath::Vcopy(physTot, m_GeometricInfo[0], 1, outarray[2*nvel+0], 1);
192 
193  // G_{23} and G_{32} = gz
194  Vmath::Vcopy(physTot, m_GeometricInfo[3], 1, outarray[1*nvel+2], 1);
195  Vmath::Vcopy(physTot, m_GeometricInfo[3], 1, outarray[2*nvel+1], 1);
196 
197  // G^{33} = (1+fz^2 + gz^2)
198  Vmath::Vadd(physTot, m_GeometricInfo[2], 1, outarray[2*nvel+2], 1,
199  outarray[2*nvel+2], 1);
200  Vmath::Vadd(physTot, m_GeometricInfo[5], 1, outarray[2*nvel+2], 1,
201  outarray[2*nvel+2], 1);
202 }
203 
205  Array<OneD, Array<OneD, NekDouble> > &outarray)
206 {
207  int physTot = m_fields[0]->GetTotPoints();
208  int nvel = m_nConvectiveFields;
209  Array<OneD, NekDouble> wk(physTot, 0.0);
210 
211  for (int i=0; i<nvel*nvel; i++)
212  {
213  outarray[i] = Array<OneD, NekDouble> (physTot, 0.0);
214  }
215  // Fill diagonal with 1.0
216  for (int i=0; i<nvel; i++)
217  {
218  Vmath::Sadd(physTot, 1.0, outarray[i*nvel+i], 1,
219  outarray[i*nvel+i], 1);
220  }
221 
222  // G^{11} = 1+fz^2
223  Vmath::Vadd(physTot, outarray[0*nvel+0], 1, m_GeometricInfo[2], 1,
224  outarray[0*nvel+0], 1);
225 
226  // G^{22} = 1+gz^2
227  Vmath::Vadd(physTot, outarray[1*nvel+1], 1, m_GeometricInfo[5], 1,
228  outarray[1*nvel+1], 1);
229 
230  // G^{12} and G^{21} = fz*gz
231  Vmath::Vcopy(physTot, m_GeometricInfo[6],1, outarray[0*nvel+1], 1);
232  Vmath::Vcopy(physTot, outarray[0*nvel+1], 1, outarray[1*nvel+0], 1);
233 
234  // G^{13} and G^{31} = -fz
235  Vmath::Vcopy(physTot, m_GeometricInfo[0],1,wk,1); // fz
236  Vmath::Neg(physTot, wk, 1);
237  Vmath::Vcopy(physTot, wk, 1, outarray[0*nvel+2], 1);
238  Vmath::Vcopy(physTot, wk, 1, outarray[2*nvel+0], 1);
239 
240  // G^{23} and G^{32} = -gz
241  Vmath::Vcopy(physTot, m_GeometricInfo[3],1,wk,1); // fz
242  Vmath::Neg(physTot, wk, 1);
243  Vmath::Vcopy(physTot, wk, 1, outarray[1*nvel+2], 1);
244  Vmath::Vcopy(physTot, wk, 1, outarray[2*nvel+1], 1);
245 }
246 
248  const Array<OneD, Array<OneD, NekDouble> > &inarray,
249  Array<OneD, Array<OneD, NekDouble> > &outarray)
250 {
251  int physTot = m_fields[0]->GetTotPoints();
252  int nvel = m_nConvectiveFields;
253 
254  for (int i = 0; i< nvel; i++)
255  {
256  for (int j = 0; j< nvel; j++)
257  {
258  outarray[i*nvel+j] = Array<OneD, NekDouble>(physTot,0.0);
259  }
260  }
261 
262  // Calculate non-zero terms
263 
264  // outarray(0,2) = U3 * fzz
265  Vmath::Vmul(physTot,m_GeometricInfo[1],1,inarray[2],1,
266  outarray[0*nvel+2],1);
267 
268  // outarray(1,2) = U3 * gzz
269  Vmath::Vmul(physTot,m_GeometricInfo[4],1,inarray[2],1,
270  outarray[1*nvel+2],1);
271 
272 }
273 
275  const Array<OneD, Array<OneD, NekDouble> > &inarray,
276  Array<OneD, Array<OneD, NekDouble> > &outarray)
277 {
278  int physTot = m_fields[0]->GetTotPoints();
279  int nvel = m_nConvectiveFields;
280 
281  for (int i = 0; i< nvel; i++)
282  {
283  for (int j = 0; j< nvel; j++)
284  {
285  outarray[i*nvel+j] = Array<OneD, NekDouble>(physTot,0.0);
286  }
287  }
288 
289  // Calculate non-zero terms
290 
291  // outarray(2,2) = U1 * fzz + U^2 * gzz
292  Vmath::Vmul(physTot,m_GeometricInfo[1],1,inarray[0],1,outarray[2*nvel+2],1);
293  Vmath::Vvtvp(physTot, m_GeometricInfo[4], 1, inarray[1], 1,
294  outarray[2*nvel+2], 1, outarray[2*nvel+2],1);
295 }
296 
298 {
299  int phystot = m_fields[0]->GetTotPoints();
300  // Allocation of geometry memory
302  for (int i = 0; i < m_GeometricInfo.num_elements(); i++)
303  {
304  m_GeometricInfo[i] = Array<OneD, NekDouble>(phystot, 0.0);
305  }
306 
307  bool waveSpace = m_fields[0]->GetWaveSpace();
308  m_fields[0]->SetWaveSpace(false);
309 
310  // Calculate derivatives of x transformation --> m_GeometricInfo 0-1
311  m_fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[2],
312  m_coords[0],m_GeometricInfo[0]);
313  m_fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[2],
315  // m_GeometricInfo[2] = fz^2
316  Vmath::Vmul(phystot,m_GeometricInfo[0],1,m_GeometricInfo[0],1,
317  m_GeometricInfo[2],1);
318 
319  // Calculate derivatives of transformation -> m_GeometricInfo 3-4
320  m_fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[2],
321  m_coords[1],m_GeometricInfo[3]);
322  m_fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[2],
324  // m_GeometricInfo[5] = gz^2
325  Vmath::Vmul(phystot,m_GeometricInfo[3],1,m_GeometricInfo[3],1,
326  m_GeometricInfo[5],1);
327 
328  // m_GeometricInfo[6] = gz*fz
329  Vmath::Vmul(phystot,m_GeometricInfo[0],1,m_GeometricInfo[3],1,
330  m_GeometricInfo[6],1);
331 
332  m_fields[0]->SetWaveSpace(waveSpace);
333 }
334 
335 }
336 }
Array< OneD, Array< OneD, NekDouble > > m_GeometricInfo
Array with metric terms of the mapping.
Definition: Mapping.h:415
virtual GLOBAL_MAPPING_EXPORT void v_ApplyChristoffelContravar(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray)
Array< OneD, Array< OneD, NekDouble > > m_coords
Array with the Cartesian coordinates.
Definition: Mapping.h:411
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:188
MappingFactory & GetMappingFactory()
Declaration of the mapping factory singleton.
Definition: Mapping.cpp:49
virtual GLOBAL_MAPPING_EXPORT void v_DotGradJacobian(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, NekDouble > &outarray)
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:46
virtual GLOBAL_MAPPING_EXPORT void v_ContravarFromCartesian(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray)
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:428
virtual GLOBAL_MAPPING_EXPORT void v_GetJacobian(Array< OneD, NekDouble > &outarray)
boost::shared_ptr< SessionReader > SessionReaderSharedPtr
Definition: MeshPartition.h:51
int m_nConvectiveFields
Number of velocity components.
Definition: Mapping.h:417
virtual GLOBAL_MAPPING_EXPORT void v_ApplyChristoffelCovar(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray)
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Definition: Mapping.h:409
static GLOBAL_MAPPING_EXPORT MappingSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession, const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const TiXmlElement *pMapping)
Creates an instance of this class.
Definition: MappingXYofZ.h:59
virtual GLOBAL_MAPPING_EXPORT void v_InitObject(const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const TiXmlElement *pMapping)
virtual GLOBAL_MAPPING_EXPORT void v_CovarToCartesian(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray)
virtual GLOBAL_MAPPING_EXPORT void v_InitObject(const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const TiXmlElement *pMapping)
Definition: Mapping.cpp:100
virtual GLOBAL_MAPPING_EXPORT void v_GetMetricTensor(Array< OneD, Array< OneD, NekDouble > > &outarray)
bool m_constantJacobian
Flag defining if the Jacobian is constant.
Definition: Mapping.h:427
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:382
virtual GLOBAL_MAPPING_EXPORT void v_CovarFromCartesian(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray)
void Sadd(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Add vector y = alpha + x.
Definition: Vmath.cpp:301
static std::string className
Name of the class.
Definition: MappingXYofZ.h:72
Base class for mapping to be applied to the coordinate system.
Definition: Mapping.h:69
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.cpp:329
MultiRegions::Direction const DirCartesianMap[]
Definition: ExpList.h:86
virtual GLOBAL_MAPPING_EXPORT void v_UpdateGeomInfo()
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:359
MappingXYofZ(const LibUtilities::SessionReaderSharedPtr &pSession, const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields)
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1047
virtual GLOBAL_MAPPING_EXPORT void v_ContravarToCartesian(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray)
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:285
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
virtual GLOBAL_MAPPING_EXPORT void v_GetInvMetricTensor(Array< OneD, Array< OneD, NekDouble > > &outarray)
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, tDescription pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:215