54 ProcessScalGrad::create,
"Computes scalar gradient field.");
59 f->m_writeBndFld =
true;
60 f->m_declareExpansionAsContField =
true;
61 m_f->m_fldToBnd =
false;
72 if(
m_f->m_comm->TreatAsRankZero())
74 cout <<
"ProcessScalGrad: Calculating scalar gradient..." << endl;
81 string bvalues =
m_config[
"bnd"].as<
string>();
83 if(bvalues.compare(
"All") == 0)
86 BndExp =
m_f->m_exp[0]->GetBndCondExpansions();
88 for(i = 0; i < BndExp.num_elements(); ++i)
90 m_f->m_bndRegionsToWrite.push_back(i);
96 m_f->m_bndRegionsToWrite),
"Failed to interpret range string");
99 int spacedim =
m_f->m_graph->GetSpaceDimension();
100 if ((
m_f->m_fielddef[0]->m_numHomogeneousDir) == 1 ||
101 (
m_f->m_fielddef[0]->m_numHomogeneousDir) == 2)
106 int nfields =
m_f->m_fielddef[0]->m_fields.size();
111 ASSERTL0(
false,
"Error: scalar gradient for a 1D problem cannot "
116 int ngrad = spacedim;
117 int n, cnt, elmtid, nq, offset, boundary, nfq;
118 int npoints =
m_f->m_exp[0]->GetNpoints();
128 m_f->m_exp[0]->GetBoundaryToElmtMap(BoundarytoElmtID, BoundarytoTraceID);
130 for (i = 0; i < nfields; i++)
132 var =
m_f->m_fielddef[0]->m_fields[i];
133 stringstream filename;
134 filename << var <<
"_scalar_gradient";
136 m_f->m_fielddef[0]->m_fields[i] = var;
138 BndExp[i] =
m_f->m_exp[i]->GetBndCondExpansions();
143 for(cnt = n = 0; n < BndExp[0].num_elements(); ++n)
145 bool doneBnd =
false;
147 for(
int b = 0; b <
m_f->m_bndRegionsToWrite.size(); ++b)
149 if(n ==
m_f->m_bndRegionsToWrite[b])
152 for(i = 0; i < BndExp[0][n]->GetExpSize(); ++i, cnt++)
155 elmtid = BoundarytoElmtID[cnt];
156 elmt =
m_f->m_exp[0]->GetExp(elmtid);
157 nq = elmt->GetTotPoints();
158 offset =
m_f->m_exp[0]->GetPhys_Offset(elmtid);
162 for(j = 0; j < ngrad; ++j)
173 for(j = 0; j < nfields; j++)
175 outfield[j] = BndExp[j][n]->UpdateCoeffs() + BndExp[j][n]->GetCoeff_Offset(i);
183 boundary = BoundarytoTraceID[cnt];
189 = elmt->GetFaceNormal(boundary);
192 for(j = 0; j < ngrad; ++j)
198 for(k = 0; k < nfields; k++)
202 scalar =
m_f->m_exp[k]->GetPhys() + offset;
203 elmt->PhysDeriv(scalar, grad[0],grad[1],grad[2]);
205 for(j = 0; j < ngrad; ++j)
207 elmt->GetFacePhysVals(boundary,bc,grad[j],fgrad[j]);
213 for (j=0; j<ngrad; j++)
215 Vmath::Vvtvp(nfq, normals[j], 1, fgrad[j], 1, gradnorm, 1, gradnorm, 1);
220 for (j=0; j<ngrad; j++)
222 Vmath::Svtvp(nfq, normals[j][0], fgrad[j], 1, gradnorm, 1, gradnorm, 1);
225 bc->FwdTrans(gradnorm, outfield[k]);
234 cnt += BndExp[0][n]->GetExpSize();
238 for(j = 0; j < nfields; ++j)
240 for(
int b = 0; b <
m_f->m_bndRegionsToWrite.size(); ++b)
242 m_f->m_exp[j]->UpdateBndCondExpansion(
m_f->m_bndRegionsToWrite[b]) = BndExp[j][
m_f->m_bndRegionsToWrite[b]];
#define ASSERTL0(condition, msg)
pair< ModuleType, string > ModuleKey
static bool GenerateOrderedVector(const char *const str, std::vector< unsigned int > &vec)
map< string, ConfigOption > m_config
List of configuration values.
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
FieldSharedPtr m_f
Field object.
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
boost::shared_ptr< StdExpansion2D > StdExpansion2DSharedPtr
boost::shared_ptr< Field > FieldSharedPtr
Represents a command-line configuration option.
virtual ~ProcessScalGrad()
boost::shared_ptr< GeomFactors > GeomFactorsSharedPtr
Pointer to a GeomFactors object.
void Zero(int n, T *x, const int incx)
Zero vector.
boost::shared_ptr< StdExpansion > StdExpansionSharedPtr
Geometry is curved or has non-constant factors.
ModuleFactory & GetModuleFactory()
Abstract base class for processing modules.
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, tDescription pDesc="")
Register a class with the factory.