Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
ProcessVorticity.cpp
Go to the documentation of this file.
1 ////////////////////////////////////////////////////////////////////////////////
2 //
3 // File: ProcessVorticity.cpp
4 //
5 // For more information, please see: http://www.nektar.info/
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // License for the specific language governing rights and limitations under
14 // Permission is hereby granted, free of charge, to any person obtaining a
15 // copy of this software and associated documentation files (the "Software"),
16 // to deal in the Software without restriction, including without limitation
17 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
18 // and/or sell copies of the Software, and to permit persons to whom the
19 // Software is furnished to do so, subject to the following conditions:
20 //
21 // The above copyright notice and this permission notice shall be included
22 // in all copies or substantial portions of the Software.
23 //
24 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
25 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
26 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
27 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
28 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
29 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
30 // DEALINGS IN THE SOFTWARE.
31 //
32 // Description: Computes vorticity field.
33 //
34 ////////////////////////////////////////////////////////////////////////////////
35 
36 #include <string>
37 #include <iostream>
38 using namespace std;
39 
40 #include "ProcessVorticity.h"
41 #include "ProcessMapping.h"
42 #include <GlobalMapping/Mapping.h>
43 
46 
47 namespace Nektar
48 {
49 namespace Utilities
50 {
51 
52 ModuleKey ProcessVorticity::className =
54  ModuleKey(eProcessModule, "vorticity"),
55  ProcessVorticity::create, "Computes vorticity field.");
56 
57 ProcessVorticity::ProcessVorticity(FieldSharedPtr f) : ProcessModule(f)
58 {
59 }
60 
62 {
63 }
64 
65 void ProcessVorticity::Process(po::variables_map &vm)
66 {
67  if (m_f->m_verbose)
68  {
69  if(m_f->m_comm->TreatAsRankZero())
70  {
71  cout << "ProcessVorticity: Calculating vorticity..." << endl;
72  }
73  }
74 
75  int i, j, s;
76  int expdim = m_f->m_graph->GetMeshDimension();
77  int spacedim = expdim;
78  if ((m_f->m_fielddef[0]->m_numHomogeneousDir) == 1 ||
79  (m_f->m_fielddef[0]->m_numHomogeneousDir) == 2)
80  {
81  spacedim = 3;
82  }
83  int nfields = m_f->m_fielddef[0]->m_fields.size();
84  if (spacedim == 1)
85  {
86  ASSERTL0(false, "Error: Vorticity for a 1D problem cannot "
87  "be computed")
88  }
89  int addfields = (spacedim == 2)? 1:3;
90 
91  int npoints = m_f->m_exp[0]->GetNpoints();
92  Array<OneD, Array<OneD, NekDouble> > grad(spacedim*spacedim);
93  Array<OneD, Array<OneD, NekDouble> > outfield(addfields);
94 
95  int nstrips;
96 
97  m_f->m_session->LoadParameter("Strip_Z",nstrips,1);
98 
99  m_f->m_exp.resize(nfields*nstrips);
100 
101  for (i = 0; i < spacedim*spacedim; ++i)
102  {
103  grad[i] = Array<OneD, NekDouble>(npoints);
104  }
105 
106  for (i = 0; i < addfields; ++i)
107  {
108  outfield[i] = Array<OneD, NekDouble>(npoints);
109  }
110 
111  Array<OneD, Array<OneD, NekDouble> > tmp(spacedim);
112  for( int i = 0; i<spacedim; i++)
113  {
114  tmp[i] = Array<OneD, NekDouble> (npoints);
115  }
116 
117  vector<MultiRegions::ExpListSharedPtr> Exp(nstrips*addfields);
118 
119  // Get mapping
122 
123  for(s = 0; s < nstrips; ++s) //homogeneous strip varient
124  {
125  // Get velocity and convert to Cartesian system,
126  // if it is still in transformed system
127  Array<OneD, Array<OneD, NekDouble> > vel (spacedim);
128  if (m_f->m_fieldMetaDataMap.count("MappingCartesianVel"))
129  {
130  if(m_f->m_fieldMetaDataMap["MappingCartesianVel"] == "False")
131  {
132  // Initialize arrays and copy velocity
133  for ( int i =0; i<spacedim; ++i )
134  {
135  vel[i] = Array<OneD, NekDouble> (npoints);
136  if (m_f->m_exp[0]->GetWaveSpace())
137  {
138  m_f->m_exp[0]->HomogeneousBwdTrans(
139  m_f->m_exp[s*nfields+i]->GetPhys(),
140  vel[i]);
141  }
142  else
143  {
144  Vmath::Vcopy(npoints, m_f->m_exp[s*nfields+i]->GetPhys(),1,
145  vel[i],1);
146  }
147 
148  }
149  // Convert velocity to cartesian system
150  mapping->ContravarToCartesian(vel, vel);
151  // Convert back to wavespace if necessary
152  if (m_f->m_exp[0]->GetWaveSpace())
153  {
154  for ( int i =0; i<spacedim; ++i )
155  {
156  m_f->m_exp[0]->HomogeneousFwdTrans(vel[i], vel[i]);
157  }
158  }
159  }
160  else
161  {
162  for ( int i =0; i<spacedim; ++i )
163  {
164  vel[i] = Array<OneD, NekDouble> (npoints);
165  Vmath::Vcopy(npoints, m_f->m_exp[s*nfields+i]->GetPhys(), 1,
166  vel[i], 1);
167  }
168  }
169  }
170  else
171  {
172  for ( int i =0; i<spacedim; ++i )
173  {
174  vel[i] = Array<OneD, NekDouble> (npoints);
175  Vmath::Vcopy(npoints, m_f->m_exp[s*nfields+i]->GetPhys(), 1,
176  vel[i], 1);
177  }
178  }
179 
180  // Calculate Gradient & Vorticity
181  if (spacedim == 2)
182  {
183  for (i = 0; i < spacedim; ++i)
184  {
185  m_f->m_exp[s*nfields+i]->PhysDeriv(vel[i],
186  tmp[0],
187  tmp[1]);
188  mapping->CovarToCartesian(tmp, tmp);
189  for( int j = 0; j<spacedim; j++)
190  {
191  Vmath::Vcopy(npoints, tmp[j], 1, grad[i*spacedim+j], 1 );
192  }
193  }
194  // W_z = Vx - Uy
195  Vmath::Vsub(npoints, grad[1*spacedim+0], 1,
196  grad[0*spacedim+1], 1,
197  outfield[0], 1);
198  }
199  else
200  {
201  for (i = 0; i < spacedim; ++i)
202  {
203  m_f->m_exp[s*nfields+i]->PhysDeriv(vel[i],
204  tmp[0],
205  tmp[1],
206  tmp[2]);
207  mapping->CovarToCartesian(tmp, tmp);
208  for( int j = 0; j<spacedim; j++)
209  {
210  Vmath::Vcopy(npoints, tmp[j], 1, grad[i*spacedim+j], 1 );
211  }
212  }
213 
214  // W_x = Wy - Vz
215  Vmath::Vsub(npoints, grad[2*spacedim+1], 1, grad[1*spacedim+2], 1,
216  outfield[0],1);
217  // W_y = Uz - Wx
218  Vmath::Vsub(npoints, grad[0*spacedim+2], 1, grad[2*spacedim+0], 1,
219  outfield[1], 1);
220  // W_z = Vx - Uy
221  Vmath::Vsub(npoints, grad[1*spacedim+0], 1, grad[0*spacedim+1], 1,
222  outfield[2], 1);
223  }
224 
225  for (i = 0; i < addfields; ++i)
226  {
227  int n = s*addfields + i;
228  Exp[n] = m_f->AppendExpList(m_f->m_fielddef[0]->m_numHomogeneousDir);
229  Exp[n]->UpdatePhys() = outfield[i];
230  Exp[n]->FwdTrans_IterPerExp(outfield[i],
231  Exp[n]->UpdateCoeffs());
232  }
233  }
234 
236  for(s = 0; s < nstrips; ++s)
237  {
238  for(i = 0; i < addfields; ++i)
239  {
240  it = m_f->m_exp.begin()+s*(nfields+addfields)+nfields+i;
241  m_f->m_exp.insert(it, Exp[s*addfields+i]);
242  }
243  }
244 
245  vector<string > outname;
246  if (addfields == 1)
247  {
248  outname.push_back("W_z");
249  }
250  else
251  {
252  outname.push_back("W_x");
253  outname.push_back("W_y");
254  outname.push_back("W_z");
255  }
256 
257  std::vector<LibUtilities::FieldDefinitionsSharedPtr> FieldDef
258  = m_f->m_exp[0]->GetFieldDefinitions();
259  std::vector<std::vector<NekDouble> > FieldData(FieldDef.size());
260 
261  for(s = 0; s < nstrips; ++s) //homogeneous strip varient
262  {
263  for (j = 0; j < nfields + addfields; ++j)
264  {
265  for (i = 0; i < FieldDef.size()/nstrips; ++i)
266  {
267  int n = s * FieldDef.size()/nstrips + i;
268 
269  if (j >= nfields)
270  {
271  FieldDef[n]->m_fields.push_back(outname[j-nfields]);
272  }
273  else
274  {
275  FieldDef[n]->m_fields.push_back(m_f->m_fielddef[0]->m_fields[j]);
276  }
277  m_f->m_exp[s*(nfields + addfields)+j]->AppendFieldData(FieldDef[n], FieldData[n]);
278  }
279  }
280  }
281 
282  m_f->m_fielddef = FieldDef;
283  m_f->m_data = FieldData;
284 }
285 
286 }
287 }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:188
pair< ModuleType, string > ModuleKey
virtual void Process()=0
STL namespace.
FieldSharedPtr m_f
Field object.
static GlobalMapping::MappingSharedPtr GetMapping(FieldSharedPtr f)
boost::shared_ptr< Field > FieldSharedPtr
Definition: Field.hpp:698
GLOBAL_MAPPING_EXPORT typedef boost::shared_ptr< Mapping > MappingSharedPtr
A shared pointer to a Mapping object.
Definition: Mapping.h:51
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.cpp:329
StandardMatrixTag boost::call_traits< LhsDataType >::const_reference rhs typedef NekMatrix< LhsDataType, StandardMatrixTag >::iterator iterator
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1047
ModuleFactory & GetModuleFactory()
Abstract base class for processing modules.
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, tDescription pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:215