Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
ProcessWSS.cpp
Go to the documentation of this file.
1 ////////////////////////////////////////////////////////////////////////////////
2 //
3 // File: ProcessWSS.cpp
4 //
5 // For more information, please see: http://www.nektar.info/
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // License for the specific language governing rights and limitations under
14 // Permission is hereby granted, free of charge, to any person obtaining a
15 // copy of this software and associated documentation files (the "Software"),
16 // to deal in the Software without restriction, including without limitation
17 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
18 // and/or sell copies of the Software, and to permit persons to whom the
19 // Software is furnished to do so, subject to the following conditions:
20 //
21 // The above copyright notice and this permission notice shall be included
22 // in all copies or substantial portions of the Software.
23 //
24 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
25 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
26 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
27 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
28 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
29 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
30 // DEALINGS IN THE SOFTWARE.
31 //
32 // Description: Computes wss field.
33 //
34 ////////////////////////////////////////////////////////////////////////////////
35 
36 #include <string>
37 #include <iostream>
38 using namespace std;
39 
40 #include "ProcessWSS.h"
41 
44 #include <MultiRegions/ExpList.h>
45 
46 namespace Nektar
47 {
48 namespace Utilities
49 {
50 
51 ModuleKey ProcessWSS::className =
53  ModuleKey(eProcessModule, "wss"),
54  ProcessWSS::create, "Computes wall shear stress field.");
55 
56 ProcessWSS::ProcessWSS(FieldSharedPtr f) : ProcessModule(f)
57 {
58  m_config["bnd"] = ConfigOption(false,"All","Boundary to be extracted");
59  m_config["addnormals"] = ConfigOption(true,"NotSet","Add normals to output");
60  f->m_writeBndFld = true;
61  f->m_declareExpansionAsContField = true;
62  f->m_requireBoundaryExpansion = true;
63  m_f->m_fldToBnd = false;
64 }
65 
67 {
68 }
69 
70 void ProcessWSS::Process(po::variables_map &vm)
71 {
72  if (m_f->m_verbose)
73  {
74  if(m_f->m_comm->TreatAsRankZero())
75  {
76  cout << "ProcessWSS: Calculating wall shear stress..." << endl;
77  }
78  }
79 
80  m_f->m_addNormals = m_config["addnormals"].m_beenSet;
81 
82  // Set up Field options to output boundary fld
83  string bvalues = m_config["bnd"].as<string>();
84 
85  if(bvalues.compare("All") == 0)
86  {
88  BndExp = m_f->m_exp[0]->GetBndCondExpansions();
89 
90  for(int i = 0; i < BndExp.num_elements(); ++i)
91  {
92  m_f->m_bndRegionsToWrite.push_back(i);
93  }
94  }
95  else
96  {
98  m_f->m_bndRegionsToWrite),"Failed to interpret range string");
99  }
100 
101  NekDouble kinvis = m_f->m_session->GetParameter("Kinvis");
102 
103  int i, j;
104  int spacedim = m_f->m_graph->GetSpaceDimension();
105  if ((m_f->m_fielddef[0]->m_numHomogeneousDir) == 1 ||
106  (m_f->m_fielddef[0]->m_numHomogeneousDir) == 2)
107  {
108  spacedim += m_f->m_fielddef[0]->m_numHomogeneousDir;
109  }
110 
111  int nfields = m_f->m_fielddef[0]->m_fields.size();
112  ASSERTL0(m_f->m_fielddef[0]->m_fields[0] == "u","Implicit assumption that input is in incompressible format of (u,v,p) or (u,v,w,p)");
113 
114  if (spacedim == 1)
115  {
116  ASSERTL0(false, "Error: wss for a 1D problem cannot "
117  "be computed");
118  }
119 
120  int newfields = spacedim + 1;
121  int nshear = spacedim + 1;
122  int nstress = spacedim*spacedim;
123  int ngrad = spacedim*spacedim;
124 
125  Array<OneD, Array<OneD, NekDouble> > velocity(nfields), grad(ngrad), fgrad(ngrad);
126  Array<OneD, Array<OneD, NekDouble> > stress(nstress), fstress(nstress);
127  Array<OneD, Array<OneD, NekDouble> > fshear(nshear);
128 
130  Array<OneD, MultiRegions::ExpListSharedPtr> BndElmtExp(spacedim);
131 
132  // Extract original fields to boundary (for output)
133  for (int i = 0; i < m_f->m_exp.size(); ++i)
134  {
135  m_f->m_exp[i]->FillBndCondFromField();
136  }
137 
138  m_f->m_exp.resize(nfields + newfields);
139  string var = "u";
140  for(i = 0; i < newfields; ++i)
141  {
142  m_f->m_exp[nfields + i] = m_f->AppendExpList(m_f->m_fielddef[0]->m_numHomogeneousDir, var);
143  }
144 
145  if(spacedim == 2)
146  {
147  m_f->m_fielddef[0]->m_fields.push_back("Shear_x");
148  m_f->m_fielddef[0]->m_fields.push_back("Shear_y");
149  m_f->m_fielddef[0]->m_fields.push_back("Shear_mag");
150  }
151  else
152  {
153  m_f->m_fielddef[0]->m_fields.push_back("Shear_x");
154  m_f->m_fielddef[0]->m_fields.push_back("Shear_y");
155  m_f->m_fielddef[0]->m_fields.push_back("Shear_z");
156  m_f->m_fielddef[0]->m_fields.push_back("Shear_mag");
157  }
158 
159  // Create map of boundary ids for partitioned domains
161  m_f->m_exp[0]->GetGraph());
163  bcs.GetBoundaryRegions();
164  SpatialDomains::BoundaryRegionCollection::const_iterator breg_it;
165  map<int,int> BndRegionMap;
166  int cnt =0;
167  for(breg_it = bregions.begin(); breg_it != bregions.end();
168  ++breg_it, ++cnt)
169  {
170  BndRegionMap[breg_it->first] = cnt;
171  }
172  // Loop over boundaries to Write
173  for(int b = 0; b < m_f->m_bndRegionsToWrite.size(); ++b)
174  {
175  if(BndRegionMap.count(m_f->m_bndRegionsToWrite[b]) == 1)
176  {
177  int bnd = BndRegionMap[m_f->m_bndRegionsToWrite[b]];
178  // Get expansion list for boundary and for elements containing this bnd
179  for(i = 0; i < newfields; i++)
180  {
181  BndExp[i] = m_f->m_exp[nfields + i]->UpdateBndCondExpansion(bnd);
182  }
183  for(i = 0; i < spacedim; i++)
184  {
185  m_f->m_exp[i]->GetBndElmtExpansion(bnd, BndElmtExp[i]);
186  }
187 
188  // Get number of points in expansions
189  int nqb = BndExp[0]->GetTotPoints();
190  int nqe = BndElmtExp[0]->GetTotPoints();
191 
192  // Initialise local arrays for the velocity gradients, and stress components
193  // size of total number of quadrature points for elements in this bnd
194  for(i = 0; i < ngrad; ++i)
195  {
196  grad[i] = Array<OneD, NekDouble>(nqe);
197  }
198 
199  for(i = 0; i < nstress; ++i)
200  {
201  stress[i] = Array<OneD, NekDouble>(nqe);
202  }
203 
204  // initialise arrays in the boundary
205  for(i = 0; i < nstress; ++i)
206  {
207  fstress[i] = Array<OneD, NekDouble>(nqb);
208  }
209 
210  for(i = 0; i < ngrad; ++i)
211  {
212  fgrad[i] = Array<OneD, NekDouble>(nqb);
213  }
214 
215  for(i = 0; i < nshear; ++i)
216  {
217  fshear[i] = Array<OneD, NekDouble>(nqb, 0.0);
218  }
219 
220  //Extract Velocities
221  for(i = 0; i < spacedim; ++i)
222  {
223  velocity[i] = BndElmtExp[i]->GetPhys();
224  }
225 
226  //Compute gradients (velocity correction scheme method)
227  for(i = 0; i < spacedim; ++i)
228  {
229  if (spacedim == 2)
230  {
231  BndElmtExp[i]->PhysDeriv(velocity[i],grad[i*spacedim+0],
232  grad[i*spacedim+1]);
233  }
234  else
235  {
236  BndElmtExp[i]->PhysDeriv(velocity[i],grad[i*spacedim+0],
237  grad[i*spacedim+1],
238  grad[i*spacedim+2]);
239  }
240  }
241 
242  //Compute stress component terms tau_ij = mu*(u_i,j + u_j,i)
243  for(i = 0; i < spacedim; ++i)
244  {
245  for(j = 0; j < spacedim; ++j)
246  {
247  Vmath::Vadd(nqe, grad[i*spacedim+j], 1,
248  grad[j*spacedim+i], 1,
249  stress[i*spacedim+j], 1);
250 
251  Vmath::Smul(nqe, kinvis, stress[i*spacedim+j], 1,
252  stress[i*spacedim+j], 1);
253  }
254  }
255 
256  // Get boundary stress values.
257  for(j = 0; j < nstress; ++j)
258  {
259  m_f->m_exp[0]->ExtractElmtToBndPhys(bnd, stress[j],fstress[j]);
260  }
261 
262  //Get normals
264  m_f->m_exp[0]->GetBoundaryNormals(bnd, normals);
265  // Reverse normals, to get correct orientation for the body
266  for(i = 0; i < spacedim; ++i)
267  {
268  Vmath::Neg(nqb, normals[i], 1);
269  }
270 
271  //calculate wss, and update coeffs in the boundary expansion
272  // S = tau_ij * n_j
273  for(i = 0; i < spacedim; ++i)
274  {
275  for(j = 0; j < spacedim; ++j)
276  {
277  Vmath::Vvtvp(nqb,normals[j],1,fstress[i*spacedim+j],1,
278  fshear[i],1,
279  fshear[i],1);
280  }
281  }
282 
283  // T = S - (S.n)n
284  for(i = 0; i < spacedim; ++i)
285  {
286  Vmath::Vvtvp(nqb,normals[i],1,fshear[i],1,
287  fshear[nshear-1],1,
288  fshear[nshear-1],1);
289  }
290  Vmath::Smul(nqb, -1.0, fshear[nshear-1], 1, fshear[nshear-1], 1);
291 
292  for (i = 0; i < spacedim; i++)
293  {
294  Vmath::Vvtvp(nqb,normals[i], 1, fshear[nshear-1], 1,
295  fshear[i], 1,
296  fshear[i], 1);
297  BndExp[i]->FwdTrans(fshear[i],
298  BndExp[i]->UpdateCoeffs());
299  }
300 
301  // Tw
302  Vmath::Zero(nqb, fshear[nshear-1], 1);
303  for(i = 0; i < spacedim; ++i)
304  {
305  Vmath::Vvtvp(nqb,fshear[i],1,fshear[i],1,
306  fshear[nshear-1],1,
307  fshear[nshear-1],1);
308  }
309  Vmath::Vsqrt(nqb, fshear[nshear-1], 1, fshear[nshear-1], 1);
310  BndExp[nshear-1]->FwdTrans(fshear[nshear-1],
311  BndExp[nshear-1]->UpdateCoeffs());
312  }
313  }
314 }
315 
316 }
317 }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:188
pair< ModuleType, string > ModuleKey
static bool GenerateOrderedVector(const char *const str, std::vector< unsigned int > &vec)
Definition: ParseUtils.hpp:97
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
Definition: Vmath.cpp:394
virtual void Process()=0
map< string, ConfigOption > m_config
List of configuration values.
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:428
STL namespace.
FieldSharedPtr m_f
Field object.
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
std::map< int, BoundaryRegionShPtr > BoundaryRegionCollection
Definition: Conditions.h:206
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:382
double NekDouble
boost::shared_ptr< Field > FieldSharedPtr
Definition: Field.hpp:698
Represents a command-line configuration option.
const BoundaryRegionCollection & GetBoundaryRegions(void) const
Definition: Conditions.h:227
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:359
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:285
ModuleFactory & GetModuleFactory()
Abstract base class for processing modules.
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, tDescription pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:215