Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
Public Member Functions | Protected Attributes | Private Member Functions | List of all members
Nektar::MultiRegions::ContField1D Class Reference

Abstraction of a global continuous one-dimensional spectral/hp element expansion which approximates the solution of a set of partial differential equations. More...

#include <ContField1D.h>

Inheritance diagram for Nektar::MultiRegions::ContField1D:
Inheritance graph
[legend]
Collaboration diagram for Nektar::MultiRegions::ContField1D:
Collaboration graph
[legend]

Public Member Functions

 ContField1D ()
 Default constructor. More...
 
 ContField1D (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &graph1D, const std::string &variable)
 Set up global continuous field based on an input mesh and boundary conditions. More...
 
 ContField1D (const ContField1D &In)
 Copy constructor. More...
 
 ContField1D (const LibUtilities::SessionReaderSharedPtr &pSession, const ExpList1D &In)
 Copy constructor. More...
 
virtual ~ContField1D ()
 Destructor. More...
 
void FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 Perform global forward transformation of a function $f(x)$,. More...
 
void BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 This function performs the backward transformation of the spectral/hp element expansion. More...
 
void MultiplyByInvMassMatrix (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 
const Array< OneD, const
MultiRegions::ExpListSharedPtr > & 
GetBndCondExpansions ()
 Return the boundary conditions expansion. More...
 
const Array< OneD, const
SpatialDomains::BoundaryConditionShPtr > & 
GetBndConditions ()
 
void GlobalToLocal (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Scatters from the global coefficients $\boldsymbol{\hat{u}}_g$ to the local coefficients $\boldsymbol{\hat{u}}_l$. More...
 
void LocalToGlobal ()
 Gathers the global coefficients $\boldsymbol{\hat{u}}_g$ from the local coefficients $\boldsymbol{\hat{u}}_l$. More...
 
void Assemble ()
 Assembles the global coefficients $\boldsymbol{\hat{u}}_g$ from the local coefficients $\boldsymbol{\hat{u}}_l$. More...
 
void Assemble (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Assembles the global coefficients $\boldsymbol{\hat{u}}_g$ from the local coefficients $\boldsymbol{\hat{u}}_l$. More...
 
const AssemblyMapCGSharedPtrGetLocalToGlobalMap () const
 Returns the map from local to global level. More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 Calculates the inner product of a function $f(x)$ with respect to all global expansion modes $\phi_n^e(x)$. More...
 
void GeneralMatrixOp (const GlobalMatrixKey &gkey, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 Calculates the result of the multiplication of a global matrix of type specified by mkey with a vector given by inarray. More...
 
- Public Member Functions inherited from Nektar::MultiRegions::DisContField1D
 DisContField1D ()
 Default constructor. More...
 
 DisContField1D (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &graph1D, const std::string &variable, const bool SetUpJustDG=true)
 Constructs a 1D discontinuous field based on a mesh and boundary conditions. More...
 
 DisContField1D (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &graph1D, const SpatialDomains::CompositeMap &domain, const SpatialDomains::BoundaryConditions &Allbcs, const std::string &variable, bool SetToOneSpaceDimensions=false)
 Constructor for a DisContField1D from a List of subdomains New Constructor for arterial network. More...
 
 DisContField1D (const DisContField1D &In)
 Constructs a 1D discontinuous field based on an existing field. More...
 
 DisContField1D (const ExpList1D &In)
 Constructs a 1D discontinuous field based on an existing field. (needed in order to use ContField( const ExpList1D &In) constructor. More...
 
virtual ~DisContField1D ()
 Destructor. More...
 
GlobalLinSysSharedPtr GetGlobalBndLinSys (const GlobalLinSysKey &mkey)
 For a given key, returns the associated global linear system. More...
 
std::vector< bool > & GetNegatedFluxNormal (void)
 
- Public Member Functions inherited from Nektar::MultiRegions::ExpList1D
 ExpList1D ()
 The default constructor. More...
 
 ExpList1D (const ExpList1D &In, const bool DeclareCoeffPhysArrays=true)
 The copy constructor. More...
 
 ExpList1D (const ExpList1D &In, const std::vector< unsigned int > &eIDs, const bool DeclareCoeffPhysArrays=true)
 Constructor copying only elements defined in eIds. More...
 
 ExpList1D (const LibUtilities::SessionReaderSharedPtr &pSession, const LibUtilities::BasisKey &Ba, const SpatialDomains::MeshGraphSharedPtr &graph1D)
 Construct an ExpList1D from a given graph. More...
 
 ExpList1D (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &graph1D, const bool DeclareCoeffPhysArrays=true)
 This constructor sets up a list of local expansions based on an input graph1D. More...
 
 ExpList1D (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &graph1D, const SpatialDomains::CompositeMap &domain, const bool DeclareCoeffPhysArrays=true, const std::string var="DefaultVar", bool SetToOneSpaceDimension=false)
 This constructor sets up a list of local expansions based on an input compositeMap. More...
 
 ExpList1D (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::CompositeMap &domain, const SpatialDomains::MeshGraphSharedPtr &graph2D, const bool DeclareCoeffPhysArrays=true, const std::string variable="DefaultVar")
 Specialised constructor for Neumann boundary conditions in DisContField2D and ContField2D. More...
 
 ExpList1D (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::CompositeMap &domain, const SpatialDomains::MeshGraphSharedPtr &graph1D, int i, const bool DeclareCoeffPhysArrays=true)
 
 ExpList1D (const LibUtilities::SessionReaderSharedPtr &pSession, const Array< OneD, const ExpListSharedPtr > &bndConstraint, const Array< OneD, const SpatialDomains::BoundaryConditionShPtr > &bndCond, const LocalRegions::ExpansionVector &locexp, const SpatialDomains::MeshGraphSharedPtr &graph2D, const PeriodicMap &periodicEdges, const bool DeclareCoeffPhysArrays=true, const std::string variable="DefaultVar")
 Specialised constructor for trace expansions. More...
 
virtual ~ExpList1D ()
 Destructor. More...
 
void PostProcess (LibUtilities::KernelSharedPtr kernel, Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray, NekDouble h, int elmId=0)
 Performs the post-processing on a specified element. More...
 
void PeriodicEval (Array< OneD, NekDouble > &inarray1, Array< OneD, NekDouble > &inarray2, NekDouble h, int nmodes, Array< OneD, NekDouble > &outarray)
 Evaluates the global spectral/hp expansion at some arbitray set of points. More...
 
void ParNormalSign (Array< OneD, NekDouble > &normsign)
 Set up the normals on each expansion. More...
 
- Public Member Functions inherited from Nektar::MultiRegions::ExpList
 ExpList ()
 The default constructor. More...
 
 ExpList (const LibUtilities::SessionReaderSharedPtr &pSession)
 The default constructor. More...
 
 ExpList (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 The default constructor. More...
 
 ExpList (const ExpList &in, const std::vector< unsigned int > &eIDs, const bool DeclareCoeffPhysArrays=true)
 Constructor copying only elements defined in eIds. More...
 
 ExpList (const ExpList &in, const bool DeclareCoeffPhysArrays=true)
 The copy constructor. More...
 
virtual ~ExpList ()
 The default destructor. More...
 
int GetNcoeffs (void) const
 Returns the total number of local degrees of freedom $N_{\mathrm{eof}}=\sum_{e=1}^{{N_{\mathrm{el}}}}N^{e}_m$. More...
 
int GetNcoeffs (const int eid) const
 Returns the total number of local degrees of freedom for element eid. More...
 
ExpansionType GetExpType (void)
 Returns the type of the expansion. More...
 
void SetExpType (ExpansionType Type)
 Returns the type of the expansion. More...
 
int EvalBasisNumModesMax (void) const
 Evaulates the maximum number of modes in the elemental basis order over all elements. More...
 
const Array< OneD, int > EvalBasisNumModesMaxPerExp (void) const
 Returns the vector of the number of modes in the elemental basis order over all elements. More...
 
int GetTotPoints (void) const
 Returns the total number of quadrature points m_npoints $=Q_{\mathrm{tot}}$. More...
 
int GetTotPoints (const int eid) const
 Returns the total number of quadrature points for eid's element $=Q_{\mathrm{tot}}$. More...
 
int GetNpoints (void) const
 Returns the total number of quadrature points m_npoints $=Q_{\mathrm{tot}}$. More...
 
int Get1DScaledTotPoints (const NekDouble scale) const
 Returns the total number of qudature points scaled by the factor scale on each 1D direction. More...
 
void SetWaveSpace (const bool wavespace)
 Sets the wave space to the one of the possible configuration true or false. More...
 
void SetModifiedBasis (const bool modbasis)
 Set Modified Basis for the stability analysis. More...
 
void SetPhys (int i, NekDouble val)
 Set the i th value of m_phys to value val. More...
 
bool GetWaveSpace (void) const
 This function returns the third direction expansion condition, which can be in wave space (coefficient) or not It is stored in the variable m_WaveSpace. More...
 
void SetPhys (const Array< OneD, const NekDouble > &inarray)
 Fills the array m_phys. More...
 
void SetPhysArray (Array< OneD, NekDouble > &inarray)
 Sets the array m_phys. More...
 
void SetPhysState (const bool physState)
 This function manually sets whether the array of physical values $\boldsymbol{u}_l$ (implemented as m_phys) is filled or not. More...
 
bool GetPhysState (void) const
 This function indicates whether the array of physical values $\boldsymbol{u}_l$ (implemented as m_phys) is filled or not. More...
 
NekDouble PhysIntegral (void)
 This function integrates a function $f(\boldsymbol{x})$ over the domain consisting of all the elements of the expansion. More...
 
NekDouble PhysIntegral (const Array< OneD, const NekDouble > &inarray)
 This function integrates a function $f(\boldsymbol{x})$ over the domain consisting of all the elements of the expansion. More...
 
void IProductWRTBase_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function calculates the inner product of a function $f(\boldsymbol{x})$ with respect to all {local} expansion modes $\phi_n^e(\boldsymbol{x})$. More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 
void IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function calculates the inner product of a function $f(\boldsymbol{x})$ with respect to the derivative (in direction. More...
 
void IProductWRTDerivBase (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, NekDouble > &outarray)
 This function calculates the inner product of a function $f(\boldsymbol{x})$ with respect to the derivative (in direction. More...
 
void FwdTrans_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function elementally evaluates the forward transformation of a function $u(\boldsymbol{x})$ onto the global spectral/hp expansion. More...
 
void FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 
void MultiplyByElmtInvMass (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function elementally mulplies the coefficient space of Sin my the elemental inverse of the mass matrix. More...
 
void MultiplyByInvMassMatrix (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 
void SmoothField (Array< OneD, NekDouble > &field)
 Smooth a field across elements. More...
 
void HelmSolve (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const FlagList &flags, const StdRegions::ConstFactorMap &factors, const StdRegions::VarCoeffMap &varcoeff=StdRegions::NullVarCoeffMap, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
 Solve helmholtz problem. More...
 
void LinearAdvectionDiffusionReactionSolve (const Array< OneD, Array< OneD, NekDouble > > &velocity, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const NekDouble lambda, CoeffState coeffstate=eLocal, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
 Solve Advection Diffusion Reaction. More...
 
void LinearAdvectionReactionSolve (const Array< OneD, Array< OneD, NekDouble > > &velocity, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const NekDouble lambda, CoeffState coeffstate=eLocal, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
 Solve Advection Diffusion Reaction. More...
 
void FwdTrans_BndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void BwdTrans_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function elementally evaluates the backward transformation of the global spectral/hp element expansion. More...
 
void BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 
void GetCoords (Array< OneD, NekDouble > &coord_0, Array< OneD, NekDouble > &coord_1=NullNekDouble1DArray, Array< OneD, NekDouble > &coord_2=NullNekDouble1DArray)
 This function calculates the coordinates of all the elemental quadrature points $\boldsymbol{x}_i$. More...
 
void HomogeneousFwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
 
void HomogeneousBwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
 
void DealiasedProd (const Array< OneD, NekDouble > &inarray1, const Array< OneD, NekDouble > &inarray2, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 
void GetBCValues (Array< OneD, NekDouble > &BndVals, const Array< OneD, NekDouble > &TotField, int BndID)
 
void NormVectorIProductWRTBase (Array< OneD, const NekDouble > &V1, Array< OneD, const NekDouble > &V2, Array< OneD, NekDouble > &outarray, int BndID)
 
void NormVectorIProductWRTBase (Array< OneD, Array< OneD, NekDouble > > &V, Array< OneD, NekDouble > &outarray)
 
void ApplyGeomInfo ()
 Apply geometry information to each expansion. More...
 
void Reset ()
 Reset geometry information and reset matrices. More...
 
void WriteTecplotHeader (std::ostream &outfile, std::string var="")
 
void WriteTecplotZone (std::ostream &outfile, int expansion=-1)
 
void WriteTecplotField (std::ostream &outfile, int expansion=-1)
 
void WriteTecplotConnectivity (std::ostream &outfile, int expansion=-1)
 
void WriteVtkHeader (std::ostream &outfile)
 
void WriteVtkFooter (std::ostream &outfile)
 
void WriteVtkPieceHeader (std::ostream &outfile, int expansion, int istrip=0)
 
void WriteVtkPieceFooter (std::ostream &outfile, int expansion)
 
void WriteVtkPieceData (std::ostream &outfile, int expansion, std::string var="v")
 
int GetCoordim (int eid)
 This function returns the dimension of the coordinates of the element eid. More...
 
void SetCoeff (int i, NekDouble val)
 Set the i th coefficiient in m_coeffs to value val. More...
 
void SetCoeffs (int i, NekDouble val)
 Set the i th coefficiient in m_coeffs to value val. More...
 
void SetCoeffsArray (Array< OneD, NekDouble > &inarray)
 Set the m_coeffs array to inarray. More...
 
const Array< OneD, const
NekDouble > & 
GetCoeffs () const
 This function returns (a reference to) the array $\boldsymbol{\hat{u}}_l$ (implemented as m_coeffs) containing all local expansion coefficients. More...
 
void ImposeDirichletConditions (Array< OneD, NekDouble > &outarray)
 Impose Dirichlet Boundary Conditions onto Array. More...
 
void FillBndCondFromField (void)
 Fill Bnd Condition expansion from the values stored in expansion. More...
 
void LocalToGlobal (void)
 Put the coefficients into global ordering using m_coeffs. More...
 
void GlobalToLocal (void)
 Put the coefficients into local ordering and place in m_coeffs. More...
 
NekDouble GetCoeff (int i)
 Get the i th value (coefficient) of m_coeffs. More...
 
NekDouble GetCoeffs (int i)
 Get the i th value (coefficient) of m_coeffs. More...
 
const Array< OneD, const
NekDouble > & 
GetPhys () const
 This function returns (a reference to) the array $\boldsymbol{u}_l$ (implemented as m_phys) containing the function $u^{\delta}(\boldsymbol{x})$ evaluated at the quadrature points. More...
 
NekDouble Linf (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &soln=NullNekDouble1DArray)
 This function calculates the $L_\infty$ error of the global spectral/hp element approximation. More...
 
NekDouble L2 (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &soln=NullNekDouble1DArray)
 This function calculates the $L_2$ error with respect to soln of the global spectral/hp element approximation. More...
 
NekDouble H1 (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &soln=NullNekDouble1DArray)
 Calculates the $H^1$ error of the global spectral/hp element approximation. More...
 
NekDouble Integral (const Array< OneD, const NekDouble > &inarray)
 
Array< OneD, const NekDoubleHomogeneousEnergy (void)
 This function calculates the energy associated with each one of the modesof a 3D homogeneous nD expansion. More...
 
void SetHomo1DSpecVanVisc (Array< OneD, NekDouble > visc)
 This function sets the Spectral Vanishing Viscosity in homogeneous1D expansion. More...
 
Array< OneD, const unsigned int > GetZIDs (void)
 This function returns a vector containing the wave numbers in z-direction associated with the 3D homogenous expansion. Required if a parellelisation is applied in the Fourier direction. More...
 
LibUtilities::TranspositionSharedPtr GetTransposition (void)
 This function returns the transposition class associaed with the homogeneous expansion. More...
 
NekDouble GetHomoLen (void)
 This function returns the Width of homogeneous direction associaed with the homogeneous expansion. More...
 
Array< OneD, const unsigned int > GetYIDs (void)
 This function returns a vector containing the wave numbers in y-direction associated with the 3D homogenous expansion. Required if a parellelisation is applied in the Fourier direction. More...
 
void PhysInterp1DScaled (const NekDouble scale, const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function interpolates the physical space points in inarray to outarray using the same points defined in the expansion but where the number of points are rescaled by 1DScale. More...
 
void PhysGalerkinProjection1DScaled (const NekDouble scale, const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function Galerkin projects the physical space points in inarray to outarray where inarray is assumed to be defined in the expansion but where the number of points are rescaled by 1DScale. More...
 
int GetExpSize (void)
 This function returns the number of elements in the expansion. More...
 
int GetNumElmts (void)
 This function returns the number of elements in the expansion which may be different for a homogeoenous extended expansionp. More...
 
const boost::shared_ptr
< LocalRegions::ExpansionVector
GetExp () const
 This function returns the vector of elements in the expansion. More...
 
LocalRegions::ExpansionSharedPtrGetExp (int n) const
 This function returns (a shared pointer to) the local elemental expansion of the $n^{\mathrm{th}}$ element. More...
 
LocalRegions::ExpansionSharedPtrGetExp (const Array< OneD, const NekDouble > &gloCoord)
 This function returns (a shared pointer to) the local elemental expansion containing the arbitrary point given by gloCoord. More...
 
int GetExpIndex (const Array< OneD, const NekDouble > &gloCoord, NekDouble tol=0.0, bool returnNearestElmt=false)
 
int GetExpIndex (const Array< OneD, const NekDouble > &gloCoords, Array< OneD, NekDouble > &locCoords, NekDouble tol=0.0, bool returnNearestElmt=false)
 
int GetCoeff_Offset (int n) const
 Get the start offset position for a global list of m_coeffs correspoinding to element n. More...
 
int GetPhys_Offset (int n) const
 Get the start offset position for a global list of m_phys correspoinding to element n. More...
 
int GetOffset_Elmt_Id (int n) const
 Get the element id associated with the n th consecutive block of data in m_phys and m_coeffs. More...
 
Array< OneD, NekDouble > & UpdateCoeffs ()
 This function returns (a reference to) the array $\boldsymbol{\hat{u}}_l$ (implemented as m_coeffs) containing all local expansion coefficients. More...
 
Array< OneD, NekDouble > & UpdatePhys ()
 This function returns (a reference to) the array $\boldsymbol{u}_l$ (implemented as m_phys) containing the function $u^{\delta}(\boldsymbol{x})$ evaluated at the quadrature points. More...
 
void PhysDeriv (Direction edir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d)
 
void PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 This function discretely evaluates the derivative of a function $f(\boldsymbol{x})$ on the domain consisting of all elements of the expansion. More...
 
void PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d)
 
const Array< OneD, const
boost::shared_ptr< ExpList > > & 
GetBndCondExpansions ()
 
boost::shared_ptr< ExpList > & UpdateBndCondExpansion (int i)
 
void Upwind (const Array< OneD, const Array< OneD, NekDouble > > &Vec, const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &Upwind)
 
void Upwind (const Array< OneD, const NekDouble > &Vn, const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &Upwind)
 
boost::shared_ptr< ExpList > & GetTrace ()
 
boost::shared_ptr
< AssemblyMapDG > & 
GetTraceMap (void)
 
const Array< OneD, const int > & GetTraceBndMap (void)
 
void GetNormals (Array< OneD, Array< OneD, NekDouble > > &normals)
 
void AddTraceIntegral (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void AddTraceIntegral (const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
void AddFwdBwdTraceIntegral (const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &outarray)
 
void GetFwdBwdTracePhys (Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd)
 
void GetFwdBwdTracePhys (const Array< OneD, const NekDouble > &field, Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd)
 
const std::vector< bool > & GetLeftAdjacentFaces (void) const
 
void ExtractTracePhys (Array< OneD, NekDouble > &outarray)
 
void ExtractTracePhys (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
const Array< OneD, const
SpatialDomains::BoundaryConditionShPtr > & 
GetBndConditions ()
 
Array< OneD,
SpatialDomains::BoundaryConditionShPtr > & 
UpdateBndConditions ()
 
void EvaluateBoundaryConditions (const NekDouble time=0.0, const std::string varName="", const NekDouble=NekConstants::kNekUnsetDouble, const NekDouble=NekConstants::kNekUnsetDouble)
 
void GeneralMatrixOp (const GlobalMatrixKey &gkey, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 This function calculates the result of the multiplication of a matrix of type specified by mkey with a vector given by inarray. More...
 
void GeneralMatrixOp_IterPerExp (const GlobalMatrixKey &gkey, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void SetUpPhysNormals ()
 
void GetBoundaryToElmtMap (Array< OneD, int > &ElmtID, Array< OneD, int > &EdgeID)
 
void GetBndElmtExpansion (int i, boost::shared_ptr< ExpList > &result)
 
void ExtractElmtToBndPhys (int i, Array< OneD, NekDouble > &elmt, Array< OneD, NekDouble > &boundary)
 
void ExtractPhysToBndElmt (int i, const Array< OneD, const NekDouble > &phys, Array< OneD, NekDouble > &bndElmt)
 
void GetBoundaryNormals (int i, Array< OneD, Array< OneD, NekDouble > > &normals)
 
void GeneralGetFieldDefinitions (std::vector< LibUtilities::FieldDefinitionsSharedPtr > &fielddef, int NumHomoDir=0, Array< OneD, LibUtilities::BasisSharedPtr > &HomoBasis=LibUtilities::NullBasisSharedPtr1DArray, std::vector< NekDouble > &HomoLen=LibUtilities::NullNekDoubleVector, bool homoStrips=false, std::vector< unsigned int > &HomoSIDs=LibUtilities::NullUnsignedIntVector, std::vector< unsigned int > &HomoZIDs=LibUtilities::NullUnsignedIntVector, std::vector< unsigned int > &HomoYIDs=LibUtilities::NullUnsignedIntVector)
 
const
NekOptimize::GlobalOptParamSharedPtr
GetGlobalOptParam (void)
 
std::map< int,
RobinBCInfoSharedPtr
GetRobinBCInfo ()
 
void GetPeriodicEntities (PeriodicMap &periodicVerts, PeriodicMap &periodicEdges, PeriodicMap &periodicFaces=NullPeriodicMap)
 
std::vector
< LibUtilities::FieldDefinitionsSharedPtr
GetFieldDefinitions ()
 
void GetFieldDefinitions (std::vector< LibUtilities::FieldDefinitionsSharedPtr > &fielddef)
 
void AppendFieldData (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata)
 Append the element data listed in elements fielddef->m_ElementIDs onto fielddata. More...
 
void AppendFieldData (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, Array< OneD, NekDouble > &coeffs)
 Append the data in coeffs listed in elements fielddef->m_ElementIDs onto fielddata. More...
 
void ExtractElmtDataToCoeffs (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, std::string &field, Array< OneD, NekDouble > &coeffs)
 Extract the data in fielddata into the coeffs using the basic ExpList Elemental expansions rather than planes in homogeneous case. More...
 
void ExtractCoeffsToCoeffs (const boost::shared_ptr< ExpList > &fromExpList, const Array< OneD, const NekDouble > &fromCoeffs, Array< OneD, NekDouble > &toCoeffs)
 Extract the data from fromField using fromExpList the coeffs using the basic ExpList Elemental expansions rather than planes in homogeneous case. More...
 
void ExtractDataToCoeffs (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, std::string &field, Array< OneD, NekDouble > &coeffs)
 Extract the data in fielddata into the coeffs. More...
 
boost::shared_ptr< ExpListGetSharedThisPtr ()
 Returns a shared pointer to the current object. More...
 
boost::shared_ptr
< LibUtilities::SessionReader
GetSession ()
 Returns the session object. More...
 
boost::shared_ptr
< LibUtilities::Comm
GetComm ()
 Returns the comm object. More...
 
SpatialDomains::MeshGraphSharedPtr GetGraph ()
 
LibUtilities::BasisSharedPtr GetHomogeneousBasis (void)
 
boost::shared_ptr< ExpList > & GetPlane (int n)
 
void CreateCollections (Collections::ImplementationType ImpType=Collections::eNoImpType)
 Construct collections of elements containing a single element type and polynomial order from the list of expansions. More...
 
void ClearGlobalLinSysManager (void)
 

Protected Attributes

AssemblyMapCGSharedPtr m_locToGloMap
 (A shared pointer to) the object which contains all the required information for the transformation from local to global degrees of freedom. More...
 
CoeffState m_coeffState
 A enum list declaring how to interpret coeffs, i.e. eLocal, eHybrid or eGlobal. More...
 
GlobalMatrixMapShPtr m_globalMat
 (A shared pointer to) a list which collects all the global matrices being assembled, such that they should be constructed only once. More...
 
LibUtilities::NekManager
< GlobalLinSysKey,
GlobalLinSys
m_globalLinSysManager
 A manager which collects all the global linear systems being assembled, such that they should be constructed only once. More...
 
- Protected Attributes inherited from Nektar::MultiRegions::DisContField1D
int m_numDirBndCondExpansions
 The number of boundary segments on which Dirichlet boundary conditions are imposed. More...
 
Array< OneD,
MultiRegions::ExpListSharedPtr
m_bndCondExpansions
 Discretised boundary conditions. More...
 
Array< OneD,
SpatialDomains::BoundaryConditionShPtr
m_bndConditions
 An array which contains the information about the boundary condition on the different boundary regions. More...
 
GlobalLinSysMapShPtr m_globalBndMat
 Global boundary matrix. More...
 
ExpListSharedPtr m_trace
 Trace space storage for points between elements. More...
 
AssemblyMapDGSharedPtr m_traceMap
 Local to global DG mapping for trace space. More...
 
std::set< int > m_boundaryVerts
 A set storing the global IDs of any boundary edges. More...
 
PeriodicMap m_periodicVerts
 A map which identifies groups of periodic vertices. More...
 
std::vector< int > m_periodicFwdCopy
 A vector indicating degress of freedom which need to be copied from forwards to backwards space in case of a periodic boundary condition. More...
 
std::vector< int > m_periodicBwdCopy
 
std::vector< bool > m_leftAdjacentVerts
 
- Protected Attributes inherited from Nektar::MultiRegions::ExpList
LibUtilities::CommSharedPtr m_comm
 Communicator. More...
 
LibUtilities::SessionReaderSharedPtr m_session
 Session. More...
 
SpatialDomains::MeshGraphSharedPtr m_graph
 Mesh associated with this expansion list. More...
 
int m_ncoeffs
 The total number of local degrees of freedom. m_ncoeffs $=N_{\mathrm{eof}}=\sum_{e=1}^{{N_{\mathrm{el}}}}N^{e}_l$. More...
 
int m_npoints
 
Array< OneD, NekDoublem_coeffs
 Concatenation of all local expansion coefficients. More...
 
Array< OneD, NekDoublem_phys
 The global expansion evaluated at the quadrature points. More...
 
bool m_physState
 The state of the array m_phys. More...
 
boost::shared_ptr
< LocalRegions::ExpansionVector
m_exp
 The list of local expansions. More...
 
Collections::CollectionVector m_collections
 
std::vector< int > m_coll_coeff_offset
 Offset of elemental data into the array m_coeffs. More...
 
std::vector< int > m_coll_phys_offset
 Offset of elemental data into the array m_phys. More...
 
Array< OneD, int > m_coeff_offset
 Offset of elemental data into the array m_coeffs. More...
 
Array< OneD, int > m_phys_offset
 Offset of elemental data into the array m_phys. More...
 
Array< OneD, int > m_offset_elmt_id
 Array containing the element id m_offset_elmt_id[n] that the n^th consecutive block of data in m_coeffs and m_phys is associated, i.e. for an array of constant expansion size and single shape elements m_phys[n*m_npoints] is the data related to m_exp[m_offset_elmt_id[n]];. More...
 
NekOptimize::GlobalOptParamSharedPtr m_globalOptParam
 
BlockMatrixMapShPtr m_blockMat
 
bool m_WaveSpace
 
boost::unordered_map< int, int > m_elmtToExpId
 Mapping from geometry ID of element to index inside m_exp. More...
 

Private Member Functions

GlobalLinSysSharedPtr GetGlobalLinSys (const GlobalLinSysKey &mkey)
 Returns the linear system specified by mkey. More...
 
GlobalLinSysSharedPtr GenGlobalLinSys (const GlobalLinSysKey &mkey)
 
void GlobalSolve (const GlobalLinSysKey &key, const Array< OneD, const NekDouble > &rhs, Array< OneD, NekDouble > &inout, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
 Solve the linear system specified by the key key. More...
 
virtual void v_FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate)
 Perform a forward transform. More...
 
virtual void v_MultiplyByInvMassMatrix (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate)
 
virtual void v_ImposeDirichletConditions (Array< OneD, NekDouble > &outarray)
 Impose the Dirichlet Boundary Conditions on outarray. More...
 
virtual void v_GlobalToLocal (void)
 Scatters from the global coefficients $\boldsymbol{\hat{u}}_g$ to the local coefficients $\boldsymbol{\hat{u}}_l$. More...
 
virtual void v_LocalToGlobal (void)
 Gathers the global coefficients $\boldsymbol{\hat{u}}_g$ from the local coefficients $\boldsymbol{\hat{u}}_l$. More...
 
virtual void v_HelmSolve (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const FlagList &flags, const StdRegions::ConstFactorMap &factors, const StdRegions::VarCoeffMap &varcoeff, const Array< OneD, const NekDouble > &dirForcing)
 
virtual const Array< OneD,
const
SpatialDomains::BoundaryConditionShPtr > & 
v_GetBndConditions ()
 
virtual void v_BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate)
 
virtual void v_IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate)
 
virtual void v_GeneralMatrixOp (const GlobalMatrixKey &gkey, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate)
 Calculates the result of the multiplication of a global matrix of type specified by mkey with a vector given by inarray. More...
 
virtual void v_ClearGlobalLinSysManager (void)
 

Additional Inherited Members

- Public Attributes inherited from Nektar::MultiRegions::ExpList
ExpansionType m_expType
 
- Protected Member Functions inherited from Nektar::MultiRegions::DisContField1D
void GenerateBoundaryConditionExpansion (const SpatialDomains::MeshGraphSharedPtr &graph1D, const SpatialDomains::BoundaryConditions &bcs, const std::string variable)
 Discretises the boundary conditions. More...
 
void FindPeriodicVertices (const SpatialDomains::BoundaryConditions &bcs, const std::string variable)
 Generate a associative map of periodic vertices in a mesh. More...
 
virtual ExpListSharedPtrv_GetTrace ()
 
virtual AssemblyMapDGSharedPtrv_GetTraceMap (void)
 
virtual void v_AddTraceIntegral (const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
virtual void v_GetFwdBwdTracePhys (Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd)
 
virtual void v_GetFwdBwdTracePhys (const Array< OneD, const NekDouble > &field, Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd)
 This method extracts the "forward" and "backward" trace data from the array field and puts the data into output vectors Fwd and Bwd. More...
 
virtual void v_ExtractTracePhys (Array< OneD, NekDouble > &outarray)
 
virtual void v_ExtractTracePhys (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This method extracts the trace (verts in 1D) from the field inarray and puts the values in outarray. More...
 
void SetBoundaryConditionExpansion (const SpatialDomains::MeshGraphSharedPtr &graph1D, const SpatialDomains::BoundaryConditions &bcs, const std::string variable, Array< OneD, MultiRegions::ExpListSharedPtr > &bndCondExpansions, Array< OneD, SpatialDomains::BoundaryConditionShPtr > &bndConditions)
 Populates the list of boundary condition expansions. More...
 
void SetMultiDomainBoundaryConditionExpansion (const SpatialDomains::MeshGraphSharedPtr &graph1D, const SpatialDomains::BoundaryConditions &bcs, const std::string variable, Array< OneD, MultiRegions::ExpListSharedPtr > &bndCondExpansions, Array< OneD, SpatialDomains::BoundaryConditionShPtr > &bndConditions, int subdomain)
 Populates the list of boundary condition expansions in multidomain case. More...
 
void GenerateFieldBnd1D (SpatialDomains::BoundaryConditions &bcs, const std::string variable)
 
virtual std::map< int,
RobinBCInfoSharedPtr
v_GetRobinBCInfo ()
 
virtual const Array< OneD,
const
MultiRegions::ExpListSharedPtr > & 
v_GetBndCondExpansions ()
 
virtual
MultiRegions::ExpListSharedPtr
v_UpdateBndCondExpansion (int i)
 
virtual Array< OneD,
SpatialDomains::BoundaryConditionShPtr > & 
v_UpdateBndConditions ()
 
virtual void v_GetBoundaryToElmtMap (Array< OneD, int > &ElmtID, Array< OneD, int > &VertID)
 
virtual void v_GetBndElmtExpansion (int i, boost::shared_ptr< ExpList > &result)
 
virtual void v_Reset ()
 Reset this field, so that geometry information can be updated. More...
 
virtual void v_EvaluateBoundaryConditions (const NekDouble time=0.0, const std::string varName="", const NekDouble x2_in=NekConstants::kNekUnsetDouble, const NekDouble x3_in=NekConstants::kNekUnsetDouble)
 Evaluate all boundary conditions at a given time.. More...
 
- Protected Member Functions inherited from Nektar::MultiRegions::ExpList1D
void v_Upwind (const Array< OneD, const Array< OneD, NekDouble > > &Vec, const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &Upwind)
 Upwind the Fwd and Bwd states based on the velocity field given by Vec. More...
 
void v_Upwind (const Array< OneD, const NekDouble > &Vn, const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &Upwind)
 Upwind the Fwd and Bwd states based on the one- dimensional normal velocity field given by Vn. More...
 
void v_GetNormals (Array< OneD, Array< OneD, NekDouble > > &normals)
 Populate normals with the normals of all expansions. More...
 
- Protected Member Functions inherited from Nektar::MultiRegions::ExpList
boost::shared_ptr< DNekMatGenGlobalMatrixFull (const GlobalLinSysKey &mkey, const boost::shared_ptr< AssemblyMapCG > &locToGloMap)
 
const DNekScalBlkMatSharedPtr GenBlockMatrix (const GlobalMatrixKey &gkey)
 This function assembles the block diagonal matrix of local matrices of the type mtype. More...
 
const DNekScalBlkMatSharedPtrGetBlockMatrix (const GlobalMatrixKey &gkey)
 
void MultiplyByBlockMatrix (const GlobalMatrixKey &gkey, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
boost::shared_ptr< GlobalMatrixGenGlobalMatrix (const GlobalMatrixKey &mkey, const boost::shared_ptr< AssemblyMapCG > &locToGloMap)
 Generates a global matrix from the given key and map. More...
 
void GlobalEigenSystem (const boost::shared_ptr< DNekMat > &Gmat, Array< OneD, NekDouble > &EigValsReal, Array< OneD, NekDouble > &EigValsImag, Array< OneD, NekDouble > &EigVecs=NullNekDouble1DArray)
 
boost::shared_ptr< GlobalLinSysGenGlobalLinSys (const GlobalLinSysKey &mkey, const boost::shared_ptr< AssemblyMapCG > &locToGloMap)
 This operation constructs the global linear system of type mkey. More...
 
boost::shared_ptr< GlobalLinSysGenGlobalBndLinSys (const GlobalLinSysKey &mkey, const AssemblyMapSharedPtr &locToGloMap)
 Generate a GlobalLinSys from information provided by the key "mkey" and the mapping provided in LocToGloBaseMap. More...
 
void ReadGlobalOptimizationParameters ()
 
virtual int v_GetNumElmts (void)
 
virtual const Array< OneD,
const int > & 
v_GetTraceBndMap ()
 
virtual void v_AddTraceIntegral (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddFwdBwdTraceIntegral (const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &outarray)
 
virtual const std::vector< bool > & v_GetLeftAdjacentFaces (void) const
 
virtual void v_LinearAdvectionDiffusionReactionSolve (const Array< OneD, Array< OneD, NekDouble > > &velocity, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const NekDouble lambda, CoeffState coeffstate=eLocal, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
 
virtual void v_LinearAdvectionReactionSolve (const Array< OneD, Array< OneD, NekDouble > > &velocity, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const NekDouble lambda, CoeffState coeffstate=eLocal, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
 
virtual void v_FillBndCondFromField ()
 
virtual void v_BwdTrans_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_FwdTrans_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_SmoothField (Array< OneD, NekDouble > &field)
 
virtual void v_IProductWRTBase_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_GetCoords (Array< OneD, NekDouble > &coord_0, Array< OneD, NekDouble > &coord_1, Array< OneD, NekDouble > &coord_2=NullNekDouble1DArray)
 
virtual void v_PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2)
 
virtual void v_PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d)
 
virtual void v_PhysDeriv (Direction edir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d)
 
virtual void v_HomogeneousFwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
 
virtual void v_HomogeneousBwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
 
virtual void v_DealiasedProd (const Array< OneD, NekDouble > &inarray1, const Array< OneD, NekDouble > &inarray2, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 
virtual void v_GetBCValues (Array< OneD, NekDouble > &BndVals, const Array< OneD, NekDouble > &TotField, int BndID)
 
virtual void v_NormVectorIProductWRTBase (Array< OneD, const NekDouble > &V1, Array< OneD, const NekDouble > &V2, Array< OneD, NekDouble > &outarray, int BndID)
 
virtual void v_NormVectorIProductWRTBase (Array< OneD, Array< OneD, NekDouble > > &V, Array< OneD, NekDouble > &outarray)
 
virtual void v_ExtractElmtToBndPhys (int i, Array< OneD, NekDouble > &elmt, Array< OneD, NekDouble > &boundary)
 
virtual void v_ExtractPhysToBndElmt (int i, const Array< OneD, const NekDouble > &phys, Array< OneD, NekDouble > &bndElmt)
 
virtual void v_GetBoundaryNormals (int i, Array< OneD, Array< OneD, NekDouble > > &normals)
 
virtual std::vector
< LibUtilities::FieldDefinitionsSharedPtr
v_GetFieldDefinitions (void)
 
virtual void v_GetFieldDefinitions (std::vector< LibUtilities::FieldDefinitionsSharedPtr > &fielddef)
 
virtual void v_AppendFieldData (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata)
 
virtual void v_AppendFieldData (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, Array< OneD, NekDouble > &coeffs)
 
virtual void v_ExtractDataToCoeffs (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, std::string &field, Array< OneD, NekDouble > &coeffs)
 Extract data from raw field data into expansion list. More...
 
virtual void v_ExtractCoeffsToCoeffs (const boost::shared_ptr< ExpList > &fromExpList, const Array< OneD, const NekDouble > &fromCoeffs, Array< OneD, NekDouble > &toCoeffs)
 
virtual void v_WriteTecplotHeader (std::ostream &outfile, std::string var="")
 
virtual void v_WriteTecplotZone (std::ostream &outfile, int expansion)
 
virtual void v_WriteTecplotField (std::ostream &outfile, int expansion)
 
virtual void v_WriteTecplotConnectivity (std::ostream &outfile, int expansion)
 
virtual void v_WriteVtkPieceData (std::ostream &outfile, int expansion, std::string var)
 
virtual NekDouble v_L2 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &soln=NullNekDouble1DArray)
 
virtual NekDouble v_Integral (const Array< OneD, const NekDouble > &inarray)
 
virtual Array< OneD, const
NekDouble
v_HomogeneousEnergy (void)
 
virtual
LibUtilities::TranspositionSharedPtr 
v_GetTransposition (void)
 
virtual NekDouble v_GetHomoLen (void)
 
virtual Array< OneD, const
unsigned int > 
v_GetZIDs (void)
 
virtual Array< OneD, const
unsigned int > 
v_GetYIDs (void)
 
virtual void v_PhysInterp1DScaled (const NekDouble scale, const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_PhysGalerkinProjection1DScaled (const NekDouble scale, const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void ExtractFileBCs (const std::string &fileName, const std::string &varName, const boost::shared_ptr< ExpList > locExpList)
 
- Static Protected Member Functions inherited from Nektar::MultiRegions::ExpList
static
SpatialDomains::BoundaryConditionShPtr 
GetBoundaryCondition (const SpatialDomains::BoundaryConditionCollection &collection, unsigned int index, const std::string &variable)
 

Detailed Description

Abstraction of a global continuous one-dimensional spectral/hp element expansion which approximates the solution of a set of partial differential equations.

As opposed to the class #ContExpList1D, the class ContField1D is able to incorporate the boundary conditions imposed to the problem to be solved. Therefore, the class is equipped with three additional data members:

The first data structure, m_bndCondExpansions, contains the point Expansion on the boundary, #m_bndTypes stores information about the type of boundary condition on the different parts of the boundary while #m_bndCondEquations holds the equation of the imposed boundary conditions.

Furthermore, in case of Dirichlet boundary conditions, this class is capable of lifting a known solution satisfying these boundary conditions. If we denote the unknown solution by $u^{\mathcal{H}}(\boldsymbol{x})$ and the known Dirichlet boundary conditions by $u^{\mathcal{D}}(\boldsymbol{x})$, the expansion then can be decomposed as

\[ u^{\delta}(\boldsymbol{x}_i)=u^{\mathcal{D}}(\boldsymbol{x}_i)+ u^{\mathcal{H}}(\boldsymbol{x}_i)=\sum_{n=0}^{N^{\mathcal{D}}-1} \hat{u}_n^{\mathcal{D}}\Phi_n(\boldsymbol{x}_i)+ \sum_{n={N^{\mathcal{D}}}}^{N_{\mathrm{dof}} -1}\hat{u}_n^{\mathcal{H}} \Phi_n(\boldsymbol{x}_i).\]

This lifting is accomplished by ordering the known global degrees of freedom, prescribed by the Dirichlet boundary conditions, first in the global array $\boldsymbol{\hat{u}}$, that is,

\[\boldsymbol{\hat{u}}=\left[ \begin{array}{c} \boldsymbol{\hat{u}}^{\mathcal{D}}\\ \boldsymbol{\hat{u}}^{\mathcal{H}} \end{array} \right].\]

Such kind of expansions are also referred to as continuoous fields. This class should be used when solving 2D problems using a standard Galerkin approach.

Definition at line 56 of file ContField1D.h.

Constructor & Destructor Documentation

Nektar::MultiRegions::ContField1D::ContField1D ( )

Default constructor.

Constructs an empty 1D continuous field.

Definition at line 86 of file ContField1D.cpp.

86  :
88  m_locToGloMap(),
90  boost::bind(&ContField1D::GenGlobalLinSys, this, _1),
91  std::string("GlobalLinSys"))
92  {
93  }
DisContField1D()
Default constructor.
LibUtilities::NekManager< GlobalLinSysKey, GlobalLinSys > m_globalLinSysManager
A manager which collects all the global linear systems being assembled, such that they should be cons...
Definition: ContField1D.h:164
GlobalLinSysSharedPtr GenGlobalLinSys(const GlobalLinSysKey &mkey)
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField1D.h:149
Nektar::MultiRegions::ContField1D::ContField1D ( const LibUtilities::SessionReaderSharedPtr pSession,
const SpatialDomains::MeshGraphSharedPtr graph1D,
const std::string &  variable 
)

Set up global continuous field based on an input mesh and boundary conditions.

Given a mesh graph1D, containing information about the domain and the spectral/hp element expansion, this constructor fills the list of local expansions m_exp with the proper expansions, calculates the total number of quadrature points $\boldsymbol{x}_i$ and local expansion coefficients $\hat{u}^e_n$ and allocates memory for the arrays m_coeffs and m_phys. Furthermore, it constructs the mapping array (contained in m_locToGloMap) for the transformation between local elemental level and global level, it calculates the total number global expansion coefficients $\hat{u}_n$. The constructor also discretises the boundary conditions, specified by the argument bcs, by expressing them in terms of the coefficient of the expansion on the boundary.

Parameters
graph1DA 1D mesh, containing information about the domain and the spectral/hp element expansion.
bcsThe boundary conditions.
variableAn optional parameter to indicate for which variable the field should be constructed.

Definition at line 117 of file ContField1D.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), Nektar::MultiRegions::DisContField1D::m_bndCondExpansions, Nektar::MultiRegions::DisContField1D::m_bndConditions, m_locToGloMap, Nektar::MultiRegions::ExpList::m_ncoeffs, Nektar::MultiRegions::DisContField1D::m_periodicVerts, and Nektar::MultiRegions::ExpList::m_session.

119  :
120  DisContField1D(pSession,graph1D,variable,false),
121  m_locToGloMap(),
123  boost::bind(&ContField1D::GenGlobalLinSys, this, _1),
124  std::string("GlobalLinSys"))
125  {
126  SpatialDomains::BoundaryConditions bcs(pSession, graph1D);
127 
132  false,
133  variable,
135  }
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
Array< OneD, SpatialDomains::BoundaryConditionShPtr > m_bndConditions
An array which contains the information about the boundary condition on the different boundary region...
DisContField1D()
Default constructor.
int m_ncoeffs
The total number of local degrees of freedom. m_ncoeffs .
Definition: ExpList.h:917
LibUtilities::NekManager< GlobalLinSysKey, GlobalLinSys > m_globalLinSysManager
A manager which collects all the global linear systems being assembled, such that they should be cons...
Definition: ContField1D.h:164
LibUtilities::SessionReaderSharedPtr m_session
Session.
Definition: ExpList.h:910
Array< OneD, MultiRegions::ExpListSharedPtr > m_bndCondExpansions
Discretised boundary conditions.
GlobalLinSysSharedPtr GenGlobalLinSys(const GlobalLinSysKey &mkey)
PeriodicMap m_periodicVerts
A map which identifies groups of periodic vertices.
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField1D.h:149
Nektar::MultiRegions::ContField1D::ContField1D ( const ContField1D In)

Copy constructor.

Constructs a 1D continuous field as a copy of an existing field including all boundary conditions.

Parameters
InExisting continuous field to duplicate.

Definition at line 143 of file ContField1D.cpp.

143  :
144  DisContField1D(In),
145  m_locToGloMap(In.m_locToGloMap),
147  boost::bind(&ContField1D::GenGlobalLinSys, this, _1),
148  std::string("GlobalLinSys"))
149  {
150  }
DisContField1D()
Default constructor.
LibUtilities::NekManager< GlobalLinSysKey, GlobalLinSys > m_globalLinSysManager
A manager which collects all the global linear systems being assembled, such that they should be cons...
Definition: ContField1D.h:164
GlobalLinSysSharedPtr GenGlobalLinSys(const GlobalLinSysKey &mkey)
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField1D.h:149
Nektar::MultiRegions::ContField1D::ContField1D ( const LibUtilities::SessionReaderSharedPtr pSession,
const ExpList1D In 
)

Copy constructor.

Constructs a 1D continuous field as a copy of an existing explist 1D field and adding all the boundary conditions.

Parameters
InExisting explist1D field .

Definition at line 157 of file ContField1D.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), m_locToGloMap, and Nektar::MultiRegions::ExpList::m_ncoeffs.

157  :
158  DisContField1D(In),
159  m_locToGloMap(),
161  boost::bind(&ContField1D::GenGlobalLinSys, this, _1),
162  std::string("GlobalLinSys"))
163  {
165  ::AllocateSharedPtr(pSession, m_ncoeffs, In);
166 
167  }
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
DisContField1D()
Default constructor.
int m_ncoeffs
The total number of local degrees of freedom. m_ncoeffs .
Definition: ExpList.h:917
LibUtilities::NekManager< GlobalLinSysKey, GlobalLinSys > m_globalLinSysManager
A manager which collects all the global linear systems being assembled, such that they should be cons...
Definition: ContField1D.h:164
GlobalLinSysSharedPtr GenGlobalLinSys(const GlobalLinSysKey &mkey)
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField1D.h:149
Nektar::MultiRegions::ContField1D::~ContField1D ( )
virtual

Destructor.

Definition at line 172 of file ContField1D.cpp.

173  {
174  }

Member Function Documentation

void Nektar::MultiRegions::ContField1D::Assemble ( )
inline

Assembles the global coefficients $\boldsymbol{\hat{u}}_g$ from the local coefficients $\boldsymbol{\hat{u}}_l$.

This operation is evaluated as:

\begin{tabbing} \hspace{1cm} \= Do \= $e=$ $1, N_{\mathrm{el}}$ \\ \> \> Do \= $i=$ $0,N_m^e-1$ \\ \> \> \> $\boldsymbol{\hat{u}}_g[\mbox{map}[e][i]] = \boldsymbol{\hat{u}}_g[\mbox{map}[e][i]]+\mbox{sign}[e][i] \cdot \boldsymbol{\hat{u}}^{e}[i]$\\ \> \> continue\\ \> continue \end{tabbing}

where map $[e][i]$ is the mapping array and sign $[e][i]$ is an array of similar dimensions ensuring the correct modal connectivity between the different elements (both these arrays are contained in the data member m_locToGloMap). This operation is equivalent to the gather operation $\boldsymbol{\hat{u}}_g=\mathcal{A}^{T}\boldsymbol{\hat{u}}_l$, where $\mathcal{A}$ is the $N_{\mathrm{eof}}\times N_{\mathrm{dof}}$ permutation matrix.

Definition at line 309 of file ContField1D.h.

References Nektar::MultiRegions::ExpList::m_coeffs, and m_locToGloMap.

Referenced by IProductWRTBase(), MultiplyByInvMassMatrix(), and v_GeneralMatrixOp().

310  {
311  m_locToGloMap->Assemble(m_coeffs,m_coeffs);
312  }
Array< OneD, NekDouble > m_coeffs
Concatenation of all local expansion coefficients.
Definition: ExpList.h:939
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField1D.h:149
void Nektar::MultiRegions::ContField1D::Assemble ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
inline

Assembles the global coefficients $\boldsymbol{\hat{u}}_g$ from the local coefficients $\boldsymbol{\hat{u}}_l$.

This operation is evaluated as:

\begin{tabbing} \hspace{1cm} \= Do \= $e=$ $1, N_{\mathrm{el}}$ \\ \> \> Do \= $i=$ $0,N_m^e-1$ \\ \> \> \> $\boldsymbol{\hat{u}}_g[\mbox{map}[e][i]] = \boldsymbol{\hat{u}}_g[\mbox{map}[e][i]]+\mbox{sign}[e][i] \cdot \boldsymbol{\hat{u}}^{e}[i]$\\ \> \> continue\\ \> continue \end{tabbing}

where map $[e][i]$ is the mapping array and sign $[e][i]$ is an array of similar dimensions ensuring the correct modal connectivity between the different elements (both these arrays are contained in the data member m_locToGloMap). This operation is equivalent to the gather operation $\boldsymbol{\hat{u}}_g=\mathcal{A}^{T}\boldsymbol{\hat{u}}_l$, where $\mathcal{A}$ is the $N_{\mathrm{eof}}\times N_{\mathrm{dof}}$ permutation matrix.

Parameters
inarrayAn array of size $N_\mathrm{eof}$ containing the local degrees of freedom $\boldsymbol{x}_l$.
outarrayThe resulting global degrees of freedom $\boldsymbol{x}_g$ will be stored in this array of size $N_\mathrm{dof}$.

Definition at line 341 of file ContField1D.h.

References m_locToGloMap.

344  {
345  m_locToGloMap->Assemble(inarray,outarray);
346  }
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField1D.h:149
void Nektar::MultiRegions::ContField1D::BwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
CoeffState  coeffstate = eLocal 
)

This function performs the backward transformation of the spectral/hp element expansion.

Given the coefficients of an expansion, this function evaluates the spectral/hp expansion $u^{\delta}(x)$ at the quadrature points $x_i$. This operation is evaluated locally by the function ExpList::BwdTrans.

The coefficients of the expansion should be contained in the variable m_coeffs of the ExpList object In. The resulting physical values at the quadrature points $u^{\delta}(x_i)$ are stored in the array m_phys.

Parameters
InAn ExpList, containing the local coefficients $\hat{u}_n^e$ in its array m_coeffs.

Definition at line 228 of file ContField1D.cpp.

References Nektar::MultiRegions::ExpList::BwdTrans_IterPerExp(), Nektar::MultiRegions::eLocal, and Nektar::MultiRegions::ExpList::GlobalToLocal().

Referenced by v_BwdTrans().

232  {
233  Array<OneD, NekDouble> tmpinarray;
234  if(coeffstate != eLocal)
235  {
236  tmpinarray = Array<OneD, NekDouble>(inarray);
237  GlobalToLocal(inarray,tmpinarray);
238  }
239  else
240  {
241  tmpinarray = inarray;
242  }
243 
244  BwdTrans_IterPerExp(tmpinarray,outarray);
245  }
Local coefficients.
void BwdTrans_IterPerExp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
This function elementally evaluates the backward transformation of the global spectral/hp element exp...
Definition: ExpList.h:1623
void GlobalToLocal(void)
Put the coefficients into local ordering and place in m_coeffs.
Definition: ExpList.h:1858
void Nektar::MultiRegions::ContField1D::FwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
CoeffState  coeffstate = eLocal 
)

Perform global forward transformation of a function $f(x)$,.

Given a function $f(x)$ defined at the quadrature points, this function determines the unknown global coefficients $\boldsymbol{\hat{u}}^{\mathcal{H}}$ employing a discrete Galerkin projection from physical space to coefficient space. The operation is evaluated by the function GlobalSolve using the global mass matrix.

The values of the function $f(x)$ evaluated at the quadrature points $x_i$ should be contained in the variable m_phys of the ExpList object Sin. The resulting global coefficients $\hat{u}_g$ are stored in the array m_coeffs.

Parameters
inarrayDiscrete $f(x)$.
outarrayStorage for result.
coeffstate

Definition at line 194 of file ContField1D.cpp.

References Nektar::MultiRegions::eGlobal, Nektar::MultiRegions::eLocal, Nektar::StdRegions::eMass, GlobalSolve(), Nektar::MultiRegions::ExpList::GlobalToLocal(), IProductWRTBase(), m_locToGloMap, and Nektar::MultiRegions::ExpList::m_ncoeffs.

Referenced by v_FwdTrans().

197  {
198  // Inner product of forcing
199  Array<OneD,NekDouble> wsp(m_ncoeffs);
200  IProductWRTBase(inarray,wsp,eGlobal);
201 
202  // Solve the system
203  GlobalLinSysKey key(StdRegions::eMass, m_locToGloMap);
204 
205  GlobalSolve(key,wsp,outarray);
206  if(coeffstate == eLocal)
207  {
208  GlobalToLocal(outarray,outarray);
209  }
210  }
Local coefficients.
Global coefficients.
int m_ncoeffs
The total number of local degrees of freedom. m_ncoeffs .
Definition: ExpList.h:917
void IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
Calculates the inner product of a function with respect to all global expansion modes ...
void GlobalSolve(const GlobalLinSysKey &key, const Array< OneD, const NekDouble > &rhs, Array< OneD, NekDouble > &inout, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
Solve the linear system specified by the key key.
void GlobalToLocal(void)
Put the coefficients into local ordering and place in m_coeffs.
Definition: ExpList.h:1858
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField1D.h:149
void Nektar::MultiRegions::ContField1D::GeneralMatrixOp ( const GlobalMatrixKey gkey,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
CoeffState  coeffstate = eLocal 
)

Calculates the result of the multiplication of a global matrix of type specified by mkey with a vector given by inarray.

GlobalLinSysSharedPtr Nektar::MultiRegions::ContField1D::GenGlobalLinSys ( const GlobalLinSysKey mkey)
private

Definition at line 371 of file ContField1D.cpp.

References ASSERTL1, Nektar::MultiRegions::ExpList::GenGlobalLinSys(), Nektar::MultiRegions::GlobalMatrixKey::LocToGloMapIsDefined(), and m_locToGloMap.

373  {
374  ASSERTL1(mkey.LocToGloMapIsDefined(),
375  "To use method must have a AssemblyMap "
376  "attached to key");
378  }
boost::shared_ptr< GlobalLinSys > GenGlobalLinSys(const GlobalLinSysKey &mkey, const boost::shared_ptr< AssemblyMapCG > &locToGloMap)
This operation constructs the global linear system of type mkey.
Definition: ExpList.cpp:1175
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:218
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField1D.h:149
const Array< OneD, const MultiRegions::ExpListSharedPtr > & Nektar::MultiRegions::ContField1D::GetBndCondExpansions ( )
inline

Return the boundary conditions expansion.

Definition at line 242 of file ContField1D.h.

References Nektar::MultiRegions::DisContField1D::m_bndCondExpansions.

243  {
244  return m_bndCondExpansions;
245  }
Array< OneD, MultiRegions::ExpListSharedPtr > m_bndCondExpansions
Discretised boundary conditions.
const Array< OneD, const SpatialDomains::BoundaryConditionShPtr > & Nektar::MultiRegions::ContField1D::GetBndConditions ( )
inline

Definition at line 248 of file ContField1D.h.

References Nektar::MultiRegions::DisContField1D::m_bndConditions.

Referenced by v_GetBndConditions().

249  {
250  return m_bndConditions;
251  }
Array< OneD, SpatialDomains::BoundaryConditionShPtr > m_bndConditions
An array which contains the information about the boundary condition on the different boundary region...
GlobalLinSysSharedPtr Nektar::MultiRegions::ContField1D::GetGlobalLinSys ( const GlobalLinSysKey mkey)
private

Returns the linear system specified by mkey.

The function searches the map #m_globalLinSys to see if the global matrix has been created before. If not, it calls the function #GenglobalLinSys to generate the requested global system.

Parameters
mkeyKey specifying the linear system.
Returns
Pointer to the required linear system.

Definition at line 365 of file ContField1D.cpp.

References m_globalLinSysManager.

Referenced by GlobalSolve().

367  {
368  return m_globalLinSysManager[mkey];
369  }
LibUtilities::NekManager< GlobalLinSysKey, GlobalLinSys > m_globalLinSysManager
A manager which collects all the global linear systems being assembled, such that they should be cons...
Definition: ContField1D.h:164
const AssemblyMapCGSharedPtr & Nektar::MultiRegions::ContField1D::GetLocalToGlobalMap ( ) const
inline

Returns the map from local to global level.

Definition at line 349 of file ContField1D.h.

References m_locToGloMap.

350  {
351  return m_locToGloMap;
352  }
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField1D.h:149
void Nektar::MultiRegions::ContField1D::GlobalSolve ( const GlobalLinSysKey key,
const Array< OneD, const NekDouble > &  rhs,
Array< OneD, NekDouble > &  inout,
const Array< OneD, const NekDouble > &  dirForcing = NullNekDouble1DArray 
)
private

Solve the linear system specified by the key key.

Given a linear system specified by the key key,

\[\boldsymbol{M}\boldsymbol{\hat{u}}_g=\boldsymbol{\hat{f}},\]

this function solves this linear system taking into account the boundary conditions specified in the data member m_bndCondExpansions. Therefore, it adds an array $\boldsymbol{\hat{g}}$ which represents the non-zero surface integral resulting from the weak boundary conditions (e.g. Neumann boundary conditions) to the right hand side, that is,

\[\boldsymbol{M}\boldsymbol{\hat{u}}_g=\boldsymbol{\hat{f}}+ \boldsymbol{\hat{g}}.\]

Furthermore, it lifts the known degrees of freedom which are prescribed by the Dirichlet boundary conditions. As these known coefficients $\boldsymbol{\hat{u}}^{\mathcal{D}}$ are numbered first in the global coefficient array $\boldsymbol{\hat{u}}_g$, the linear system can be decomposed as,

\[\left[\begin{array}{cc} \boldsymbol{M}^{\mathcal{DD}}&\boldsymbol{M}^{\mathcal{DH}}\\ \boldsymbol{M}^{\mathcal{HD}}&\boldsymbol{M}^{\mathcal{HH}} \end{array}\right] \left[\begin{array}{c} \boldsymbol{\hat{u}}^{\mathcal{D}}\\ \boldsymbol{\hat{u}}^{\mathcal{H}} \end{array}\right]= \left[\begin{array}{c} \boldsymbol{\hat{f}}^{\mathcal{D}}\\ \boldsymbol{\hat{f}}^{\mathcal{H}} \end{array}\right]+ \left[\begin{array}{c} \boldsymbol{\hat{g}}^{\mathcal{D}}\\ \boldsymbol{\hat{g}}^{\mathcal{H}} \end{array}\right] \]

which will then be solved for the unknown coefficients $\boldsymbol{\hat{u}}^{\mathcal{H}}$ as,

\[ \boldsymbol{M}^{\mathcal{HH}}\boldsymbol{\hat{u}}^{\mathcal{H}} = \boldsymbol{\hat{f}}^{\mathcal{H}} +\boldsymbol{\hat{g}}^{\mathcal{H}} -\boldsymbol{M}^{\mathcal{HD}}\boldsymbol{\hat{u}}^{\mathcal{D}}\]

Parameters
keySpecifes the linear system to solve.
rhsForcing term $\boldsymbol{f}$.
inoutSolution vector $\boldsymbol{\hat{u}}$.
dirForcing.

Definition at line 336 of file ContField1D.cpp.

References GetGlobalLinSys(), m_locToGloMap, and v_ImposeDirichletConditions().

Referenced by FwdTrans(), MultiplyByInvMassMatrix(), and v_HelmSolve().

340  {
341  int NumDirBcs = m_locToGloMap->GetNumGlobalDirBndCoeffs();
342  int contNcoeffs = m_locToGloMap->GetNumGlobalCoeffs();
343 
344  // STEP 1: SET THE DIRICHLET DOFS TO THE RIGHT VALUE
345  // IN THE SOLUTION ARRAY
347 
348  // STEP 2: CALCULATE THE HOMOGENEOUS COEFFICIENTS
349  if(contNcoeffs - NumDirBcs > 0)
350  {
352  LinSys->Solve(rhs,inout,m_locToGloMap,dirForcing);
353  }
354  }
GlobalLinSysSharedPtr GetGlobalLinSys(const GlobalLinSysKey &mkey)
Returns the linear system specified by mkey.
virtual void v_ImposeDirichletConditions(Array< OneD, NekDouble > &outarray)
Impose the Dirichlet Boundary Conditions on outarray.
boost::shared_ptr< GlobalLinSys > GlobalLinSysSharedPtr
Pointer to a GlobalLinSys object.
Definition: GlobalLinSys.h:52
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField1D.h:149
void Nektar::MultiRegions::ContField1D::GlobalToLocal ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
inline

Scatters from the global coefficients $\boldsymbol{\hat{u}}_g$ to the local coefficients $\boldsymbol{\hat{u}}_l$.

This operation is evaluated as:

\begin{tabbing} \hspace{1cm} \= Do \= $e=$ $1, N_{\mathrm{el}}$ \\ \> \> Do \= $i=$ $0,N_m^e-1$ \\ \> \> \> $\boldsymbol{\hat{u}}^{e}[i] = \mbox{sign}[e][i] \cdot \boldsymbol{\hat{u}}_g[\mbox{map}[e][i]]$ \\ \> \> continue \\ \> continue \end{tabbing}

where map $[e][i]$ is the mapping array and sign $[e][i]$ is an array of similar dimensions ensuring the correct modal connectivity between the different elements (both these arrays are contained in the data member m_locToGloMap). This operation is equivalent to the scatter operation $\boldsymbol{\hat{u}}_l=\mathcal{A}\boldsymbol{\hat{u}}_g$, where $\mathcal{A}$ is the $N_{\mathrm{eof}}\times N_{\mathrm{dof}}$ permutation matrix.

Parameters
inarrayAn array of size $N_\mathrm{dof}$ containing the global degrees of freedom $\boldsymbol{x}_g$.
outarrayThe resulting local degrees of freedom $\boldsymbol{x}_l$ will be stored in this array of size $N_\mathrm{eof}$.

Definition at line 280 of file ContField1D.h.

References m_locToGloMap.

283  {
284  m_locToGloMap->GlobalToLocal(inarray,outarray);
285  }
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField1D.h:149
void Nektar::MultiRegions::ContField1D::IProductWRTBase ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
CoeffState  coeffstate = eLocal 
)

Calculates the inner product of a function $f(x)$ with respect to all global expansion modes $\phi_n^e(x)$.

The operation is evaluated locally (i.e. with respect to all local expansion modes) by the function ExpList::IProductWRTBase. The inner product with respect to the global expansion modes is than obtained by a global assembly operation.

The values of the function $f(x)$ evaluated at the quadrature points $x_i$ should be contained in the variable m_phys of the ExpList object in. The result is stored in the array m_coeffs.

Parameters
InAn ExpList, containing the discrete evaluation of $f(x)$ at the quadrature points in its array m_phys.

Definition at line 396 of file ContField1D.cpp.

References Assemble(), Nektar::MultiRegions::eGlobal, Nektar::MultiRegions::ExpList::IProductWRTBase_IterPerExp(), and Nektar::MultiRegions::ExpList::m_ncoeffs.

Referenced by FwdTrans(), v_HelmSolve(), and v_IProductWRTBase().

400  {
401  if(coeffstate == eGlobal)
402  {
403  Array<OneD, NekDouble> wsp(m_ncoeffs);
404  IProductWRTBase_IterPerExp(inarray,wsp);
405  Assemble(wsp,outarray);
406  }
407  else
408  {
409  IProductWRTBase_IterPerExp(inarray,outarray);
410  }
411  }
Global coefficients.
void IProductWRTBase_IterPerExp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
This function calculates the inner product of a function with respect to all {local} expansion modes...
Definition: ExpList.h:1573
int m_ncoeffs
The total number of local degrees of freedom. m_ncoeffs .
Definition: ExpList.h:917
void Assemble()
Assembles the global coefficients from the local coefficients .
Definition: ContField1D.h:309
void Nektar::MultiRegions::ContField1D::LocalToGlobal ( )

Gathers the global coefficients $\boldsymbol{\hat{u}}_g$ from the local coefficients $\boldsymbol{\hat{u}}_l$.

void Nektar::MultiRegions::ContField1D::MultiplyByInvMassMatrix ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
CoeffState  coeffstate = eLocal 
)

Definition at line 251 of file ContField1D.cpp.

References Assemble(), Nektar::MultiRegions::eGlobal, Nektar::StdRegions::eMass, GlobalSolve(), Nektar::MultiRegions::ExpList::GlobalToLocal(), m_locToGloMap, and Nektar::MultiRegions::ExpList::m_ncoeffs.

Referenced by v_MultiplyByInvMassMatrix().

255  {
256  GlobalLinSysKey key(StdRegions::eMass, m_locToGloMap);
257  if(coeffstate == eGlobal)
258  {
259  if(inarray.data() == outarray.data())
260  {
261  Array<OneD, NekDouble> tmp(inarray);
262  GlobalSolve(key,tmp,outarray);
263  }
264  else
265  {
266  GlobalSolve(key,inarray,outarray);
267  }
268  }
269  else
270  {
271  Array<OneD, NekDouble> globaltmp(m_ncoeffs,0.0);
272 
273  if(inarray.data() == outarray.data())
274  {
275  Array<OneD,NekDouble> tmp(inarray);
276  Assemble(tmp,outarray);
277  }
278  else
279  {
280  Assemble(inarray,outarray);
281  }
282 
283  GlobalSolve(key,outarray,globaltmp);
284  GlobalToLocal(globaltmp,outarray);
285  }
286  }
Global coefficients.
int m_ncoeffs
The total number of local degrees of freedom. m_ncoeffs .
Definition: ExpList.h:917
void GlobalSolve(const GlobalLinSysKey &key, const Array< OneD, const NekDouble > &rhs, Array< OneD, NekDouble > &inout, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
Solve the linear system specified by the key key.
void Assemble()
Assembles the global coefficients from the local coefficients .
Definition: ContField1D.h:309
void GlobalToLocal(void)
Put the coefficients into local ordering and place in m_coeffs.
Definition: ExpList.h:1858
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField1D.h:149
void Nektar::MultiRegions::ContField1D::v_BwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
CoeffState  coeffstate 
)
privatevirtual

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 571 of file ContField1D.cpp.

References BwdTrans().

575  {
576  BwdTrans(inarray,outarray,coeffstate);
577  }
void BwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
This function performs the backward transformation of the spectral/hp element expansion.
void Nektar::MultiRegions::ContField1D::v_ClearGlobalLinSysManager ( void  )
privatevirtual

Reset the GlobalLinSys Manager

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 628 of file ContField1D.cpp.

References m_globalLinSysManager.

629  {
630  m_globalLinSysManager.ClearManager("GlobalLinSys");
631  }
LibUtilities::NekManager< GlobalLinSysKey, GlobalLinSys > m_globalLinSysManager
A manager which collects all the global linear systems being assembled, such that they should be cons...
Definition: ContField1D.h:164
void Nektar::MultiRegions::ContField1D::v_FwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
CoeffState  coeffstate 
)
privatevirtual

Perform a forward transform.

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 414 of file ContField1D.cpp.

References FwdTrans().

418  {
419  FwdTrans(inarray,outarray,coeffstate);
420  }
void FwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
Perform global forward transformation of a function ,.
void Nektar::MultiRegions::ContField1D::v_GeneralMatrixOp ( const GlobalMatrixKey gkey,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
CoeffState  coeffstate 
)
privatevirtual

Calculates the result of the multiplication of a global matrix of type specified by mkey with a vector given by inarray.

This is equivalent to the operation:

\[\boldsymbol{M\hat{u}}_g\]

where $\boldsymbol{M}$ is the global matrix of type specified by mkey. After scattering the global array inarray to local level, this operation is evaluated locally by the function ExpList::GeneralMatrixOp. The global result is then obtained by a global assembly procedure.

Parameters
mkeyThis key uniquely defines the type matrix required for the operation.
inarrayThe vector $\boldsymbol{\hat{u}}_g$ of size $N_{\mathrm{dof}}$.
outarrayThe resulting vector of size $N_{\mathrm{dof}}$.

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 603 of file ContField1D.cpp.

References Assemble(), Nektar::MultiRegions::eGlobal, Nektar::MultiRegions::ExpList::GeneralMatrixOp_IterPerExp(), Nektar::MultiRegions::ExpList::GlobalToLocal(), and Nektar::MultiRegions::ExpList::m_ncoeffs.

608  {
609  if(coeffstate == eGlobal)
610  {
611  Array<OneD,NekDouble> tmp1(2*m_ncoeffs);
612  Array<OneD,NekDouble> tmp2(tmp1+m_ncoeffs);
613  GlobalToLocal(inarray,tmp1);
614  GeneralMatrixOp_IterPerExp(gkey,tmp1,tmp2);
615  Assemble(tmp2,outarray);
616  }
617  else
618  {
619  GeneralMatrixOp_IterPerExp(gkey,inarray,outarray);
620  }
621  }
void GeneralMatrixOp_IterPerExp(const GlobalMatrixKey &gkey, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: ExpList.cpp:829
Global coefficients.
int m_ncoeffs
The total number of local degrees of freedom. m_ncoeffs .
Definition: ExpList.h:917
void Assemble()
Assembles the global coefficients from the local coefficients .
Definition: ContField1D.h:309
void GlobalToLocal(void)
Put the coefficients into local ordering and place in m_coeffs.
Definition: ExpList.h:1858
const Array< OneD, const SpatialDomains::BoundaryConditionShPtr > & Nektar::MultiRegions::ContField1D::v_GetBndConditions ( void  )
privatevirtual

Reimplemented from Nektar::MultiRegions::DisContField1D.

Definition at line 566 of file ContField1D.cpp.

References GetBndConditions().

567  {
568  return GetBndConditions();
569  }
const Array< OneD, const SpatialDomains::BoundaryConditionShPtr > & GetBndConditions()
Definition: ContField1D.h:248
void Nektar::MultiRegions::ContField1D::v_GlobalToLocal ( void  )
privatevirtual

Scatters from the global coefficients $\boldsymbol{\hat{u}}_g$ to the local coefficients $\boldsymbol{\hat{u}}_l$.

This operation is evaluated as:

\begin{tabbing} \hspace{1cm} \= Do \= $e=$ $1, N_{\mathrm{el}}$ \\ \> \> Do \= $i=$ $0,N_m^e-1$ \\ \> \> \> $\boldsymbol{\hat{u}}^{e}[i] = \mbox{sign}[e][i] \cdot \boldsymbol{\hat{u}}_g[\mbox{map}[e][i]]$ \\ \> \> continue \\ \> continue \end{tabbing}

where map $[e][i]$ is the mapping array and sign $[e][i]$ is an array of similar dimensions ensuring the correct modal connectivity between the different elements (both these arrays are contained in the data member m_locToGloMap). This operation is equivalent to the scatter operation $\boldsymbol{\hat{u}}_l=\mathcal{A}\boldsymbol{\hat{u}}_g$, where $\mathcal{A}$ is the $N_{\mathrm{eof}}\times N_{\mathrm{dof}}$ permutation matrix.

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 487 of file ContField1D.cpp.

References Nektar::MultiRegions::ExpList::m_coeffs, and m_locToGloMap.

488  {
489  m_locToGloMap->GlobalToLocal(m_coeffs,m_coeffs);
490  }
Array< OneD, NekDouble > m_coeffs
Concatenation of all local expansion coefficients.
Definition: ExpList.h:939
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField1D.h:149
void Nektar::MultiRegions::ContField1D::v_HelmSolve ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const FlagList flags,
const StdRegions::ConstFactorMap factors,
const StdRegions::VarCoeffMap varcoeff,
const Array< OneD, const NekDouble > &  dirForcing 
)
privatevirtual

Consider the one dimensional Helmholtz equation,

\[\frac{d^2u}{dx^2}-\lambda u(x) = f(x),\]

supplemented with appropriate boundary conditions (which are contained in the data member m_bndCondExpansions). Applying a $C^0$ continuous Galerkin discretisation, this equation leads to the following linear system:

\[\left( \boldsymbol{M}+\lambda\boldsymbol{L}\right) \boldsymbol{\hat{u}}_g=\boldsymbol{\hat{f}}\]

where $\boldsymbol{M}$ and $\boldsymbol{L}$ are the mass and Laplacian matrix respectively. This function solves the system above for the global coefficients $\boldsymbol{\hat{u}}$ by a call to the function GlobalSolve.

The values of the function $f(x)$ evaluated at the quadrature points $\boldsymbol{x}_i$ should be contained in the variable m_phys of the ExpList object inarray. The resulting global coefficients $\boldsymbol{\hat{u}}_g$ are stored in the array m_coeffs.

Parameters
inarrayInput containing forcing function $\boldsymbol{f}$ at the quadrature points.
outarrayOutput containing the coefficients $\boldsymbol{u}_g$
lambdaParameter value.
SigmaCoefficients of lambda.
varcoeffVariable diffusivity coefficients.
coeffstate
dirForcingDirichlet Forcing.

Reimplemented from Nektar::MultiRegions::DisContField1D.

Definition at line 522 of file ContField1D.cpp.

References Nektar::SpatialDomains::eDirichlet, Nektar::MultiRegions::eGlobal, Nektar::StdRegions::eHelmholtz, Nektar::eUseGlobal, GlobalSolve(), Nektar::MultiRegions::ExpList::GlobalToLocal(), IProductWRTBase(), Nektar::FlagList::isSet(), Nektar::MultiRegions::DisContField1D::m_bndCondExpansions, Nektar::MultiRegions::DisContField1D::m_bndConditions, m_locToGloMap, and Vmath::Neg().

529  {
530  // Inner product of forcing
531  int contNcoeffs = m_locToGloMap->GetNumGlobalCoeffs();
532  Array<OneD,NekDouble> wsp(contNcoeffs);
533  IProductWRTBase(inarray,wsp,eGlobal);
534  // Note -1.0 term necessary to invert forcing function to
535  // be consistent with matrix definition
536  Vmath::Neg(contNcoeffs, wsp, 1);
537 
538  // Forcing function with weak boundary conditions
539  int i;
540  for(i = 0; i < m_bndCondExpansions.num_elements(); ++i)
541  {
542  if(m_bndConditions[i]->GetBoundaryConditionType() != SpatialDomains::eDirichlet)
543  {
544  wsp[m_locToGloMap->GetBndCondCoeffsToGlobalCoeffsMap(i)]
545  += m_bndCondExpansions[i]->GetCoeff(0);
546  }
547  }
548 
549  // Solve the system
550  GlobalLinSysKey key(StdRegions::eHelmholtz,
551  m_locToGloMap,factors,varcoeff);
552 
553  if(flags.isSet(eUseGlobal))
554  {
555  GlobalSolve(key,wsp,outarray,dirForcing);
556  }
557  else
558  {
559  Array<OneD,NekDouble> tmp(contNcoeffs,0.0);
560  GlobalSolve(key,wsp,tmp,dirForcing);
561  GlobalToLocal(tmp,outarray);
562  }
563  }
Array< OneD, SpatialDomains::BoundaryConditionShPtr > m_bndConditions
An array which contains the information about the boundary condition on the different boundary region...
Global coefficients.
void IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
Calculates the inner product of a function with respect to all global expansion modes ...
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:382
void GlobalSolve(const GlobalLinSysKey &key, const Array< OneD, const NekDouble > &rhs, Array< OneD, NekDouble > &inout, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
Solve the linear system specified by the key key.
Array< OneD, MultiRegions::ExpListSharedPtr > m_bndCondExpansions
Discretised boundary conditions.
void GlobalToLocal(void)
Put the coefficients into local ordering and place in m_coeffs.
Definition: ExpList.h:1858
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField1D.h:149
void Nektar::MultiRegions::ContField1D::v_ImposeDirichletConditions ( Array< OneD, NekDouble > &  outarray)
privatevirtual

Impose the Dirichlet Boundary Conditions on outarray.

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 430 of file ContField1D.cpp.

References Nektar::SpatialDomains::eDirichlet, Nektar::MultiRegions::DisContField1D::m_bndCondExpansions, Nektar::MultiRegions::DisContField1D::m_bndConditions, and m_locToGloMap.

Referenced by GlobalSolve().

431  {
432  for(int i = 0; i < m_bndCondExpansions.num_elements(); ++i)
433  {
434  if(m_bndConditions[i]->GetBoundaryConditionType() == SpatialDomains::eDirichlet)
435  {
436  outarray[m_locToGloMap->GetBndCondCoeffsToGlobalCoeffsMap(i)]
437  = m_bndCondExpansions[i]->GetCoeff(0);
438  }
439  }
440  }
Array< OneD, SpatialDomains::BoundaryConditionShPtr > m_bndConditions
An array which contains the information about the boundary condition on the different boundary region...
Array< OneD, MultiRegions::ExpListSharedPtr > m_bndCondExpansions
Discretised boundary conditions.
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField1D.h:149
void Nektar::MultiRegions::ContField1D::v_IProductWRTBase ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
CoeffState  coeffstate 
)
privatevirtual

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 579 of file ContField1D.cpp.

References IProductWRTBase().

583  {
584  IProductWRTBase(inarray,outarray,coeffstate);
585  }
void IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
Calculates the inner product of a function with respect to all global expansion modes ...
void Nektar::MultiRegions::ContField1D::v_LocalToGlobal ( void  )
privatevirtual

Gathers the global coefficients $\boldsymbol{\hat{u}}_g$ from the local coefficients $\boldsymbol{\hat{u}}_l$.

This operation is evaluated as:

\begin{tabbing} \hspace{1cm} \= Do \= $e=$ $1, N_{\mathrm{el}}$ \\ \> \> Do \= $i=$ $0,N_m^e-1$ \\ \> \> \> $\boldsymbol{\hat{u}}_g[\mbox{map}[e][i]] = \mbox{sign}[e][i] \cdot \boldsymbol{\hat{u}}^{e}[i]$\\ \> \> continue\\ \> continue \end{tabbing}

where map $[e][i]$ is the mapping array and sign $[e][i]$ is an array of similar dimensions ensuring the correct modal connectivity between the different elements (both these arrays are contained in the data member m_locToGloMap). This operation is equivalent to the gather operation $\boldsymbol{\hat{u}}_g=\mathcal{A}^{-1}\boldsymbol{\hat{u}}_l$, where $\mathcal{A}$ is the $N_{\mathrm{eof}}\times N_{\mathrm{dof}}$ permutation matrix.

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 462 of file ContField1D.cpp.

References Nektar::MultiRegions::ExpList::m_coeffs, and m_locToGloMap.

463  {
464  m_locToGloMap->LocalToGlobal(m_coeffs,m_coeffs);
465  }
Array< OneD, NekDouble > m_coeffs
Concatenation of all local expansion coefficients.
Definition: ExpList.h:939
AssemblyMapCGSharedPtr m_locToGloMap
(A shared pointer to) the object which contains all the required information for the transformation f...
Definition: ContField1D.h:149
void Nektar::MultiRegions::ContField1D::v_MultiplyByInvMassMatrix ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
CoeffState  coeffstate 
)
privatevirtual

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 422 of file ContField1D.cpp.

References MultiplyByInvMassMatrix().

426  {
427  MultiplyByInvMassMatrix(inarray,outarray,coeffstate);
428  }
void MultiplyByInvMassMatrix(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)

Member Data Documentation

CoeffState Nektar::MultiRegions::ContField1D::m_coeffState
protected

A enum list declaring how to interpret coeffs, i.e. eLocal, eHybrid or eGlobal.

Definition at line 154 of file ContField1D.h.

LibUtilities::NekManager<GlobalLinSysKey, GlobalLinSys> Nektar::MultiRegions::ContField1D::m_globalLinSysManager
protected

A manager which collects all the global linear systems being assembled, such that they should be constructed only once.

Definition at line 164 of file ContField1D.h.

Referenced by GetGlobalLinSys(), and v_ClearGlobalLinSysManager().

GlobalMatrixMapShPtr Nektar::MultiRegions::ContField1D::m_globalMat
protected

(A shared pointer to) a list which collects all the global matrices being assembled, such that they should be constructed only once.

Definition at line 159 of file ContField1D.h.

AssemblyMapCGSharedPtr Nektar::MultiRegions::ContField1D::m_locToGloMap
protected

(A shared pointer to) the object which contains all the required information for the transformation from local to global degrees of freedom.

Definition at line 149 of file ContField1D.h.

Referenced by Assemble(), ContField1D(), FwdTrans(), GenGlobalLinSys(), GetLocalToGlobalMap(), GlobalSolve(), GlobalToLocal(), MultiplyByInvMassMatrix(), v_GlobalToLocal(), v_HelmSolve(), v_ImposeDirichletConditions(), and v_LocalToGlobal().