Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
Classes | Public Member Functions | Protected Member Functions | Protected Attributes | Static Private Member Functions | Static Private Attributes | List of all members
Nektar::MultiRegions::GlobalLinSysPETSc Class Referenceabstract

A PETSc global linear system. More...

#include <GlobalLinSysPETSc.h>

Inheritance diagram for Nektar::MultiRegions::GlobalLinSysPETSc:
Inheritance graph
[legend]
Collaboration diagram for Nektar::MultiRegions::GlobalLinSysPETSc:
Collaboration graph
[legend]

Classes

struct  ShellCtx
 Internal struct for MatShell and PCShell calls to store current context for callback. More...
 

Public Member Functions

 GlobalLinSysPETSc (const GlobalLinSysKey &pKey, const boost::weak_ptr< ExpList > &pExp, const boost::shared_ptr< AssemblyMap > &pLocToGloMap)
 Constructor for full direct matrix solve. More...
 
virtual ~GlobalLinSysPETSc ()
 Clean up PETSc objects. More...
 
virtual void v_SolveLinearSystem (const int pNumRows, const Array< OneD, const NekDouble > &pInput, Array< OneD, NekDouble > &pOutput, const AssemblyMapSharedPtr &locToGloMap, const int pNumDir)
 Solve linear system using PETSc. More...
 
- Public Member Functions inherited from Nektar::MultiRegions::GlobalLinSys
 GlobalLinSys (const GlobalLinSysKey &pKey, const boost::weak_ptr< ExpList > &pExpList, const boost::shared_ptr< AssemblyMap > &pLocToGloMap)
 Constructor for full direct matrix solve. More...
 
virtual ~GlobalLinSys ()
 
const GlobalLinSysKeyGetKey (void) const
 Returns the key associated with the system. More...
 
const boost::weak_ptr< ExpList > & GetLocMat (void) const
 
void InitObject ()
 
void Initialise (const boost::shared_ptr< AssemblyMap > &pLocToGloMap)
 
void Solve (const Array< OneD, const NekDouble > &in, Array< OneD, NekDouble > &out, const AssemblyMapSharedPtr &locToGloMap, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
 Solve the linear system for given input and output vectors using a specified local to global map. More...
 
boost::shared_ptr< GlobalLinSysGetSharedThisPtr ()
 Returns a shared pointer to the current object. More...
 
int GetNumBlocks ()
 
DNekScalMatSharedPtr GetBlock (unsigned int n)
 
DNekScalBlkMatSharedPtr GetStaticCondBlock (unsigned int n)
 
void DropStaticCondBlock (unsigned int n)
 
void SolveLinearSystem (const int pNumRows, const Array< OneD, const NekDouble > &pInput, Array< OneD, NekDouble > &pOutput, const AssemblyMapSharedPtr &locToGloMap, const int pNumDir=0)
 Solve the linear system for given input and output vectors. More...
 

Protected Member Functions

void SetUpScatter ()
 Set up PETSc local (equivalent to Nektar++ global) and global (equivalent to universal) scatter maps. More...
 
void SetUpMatVec (int nGlobal, int nDir)
 Construct PETSc matrix and vector handles. More...
 
void SetUpSolver (NekDouble tolerance)
 Set up KSP solver object. More...
 
void CalculateReordering (const Array< OneD, const int > &glo2uniMap, const Array< OneD, const int > &glo2unique, const AssemblyMapSharedPtr &pLocToGloMap)
 Calculate a reordering of universal IDs for PETSc. More...
 
virtual void v_DoMatrixMultiply (const Array< OneD, const NekDouble > &pInput, Array< OneD, NekDouble > &pOutput)=0
 
- Protected Member Functions inherited from Nektar::MultiRegions::GlobalLinSys
virtual int v_GetNumBlocks ()
 Get the number of blocks in this system. More...
 
virtual DNekScalMatSharedPtr v_GetBlock (unsigned int n)
 Retrieves the block matrix from n-th expansion using the matrix key provided by the m_linSysKey. More...
 
virtual DNekScalBlkMatSharedPtr v_GetStaticCondBlock (unsigned int n)
 Retrieves a the static condensation block matrices from n-th expansion using the matrix key provided by the m_linSysKey. More...
 
virtual void v_DropStaticCondBlock (unsigned int n)
 Releases the static condensation block matrices from NekManager of n-th expansion using the matrix key provided by the m_linSysKey. More...
 
PreconditionerSharedPtr CreatePrecon (AssemblyMapSharedPtr asmMap)
 Create a preconditioner object from the parameters defined in the supplied assembly map. More...
 

Protected Attributes

Mat m_matrix
 PETSc matrix object. More...
 
Vec m_x
 PETSc vector objects used for local storage. More...
 
Vec m_b
 
Vec m_locVec
 
KSP m_ksp
 KSP object that represents solver system. More...
 
PC m_pc
 PCShell for preconditioner. More...
 
PETScMatMult m_matMult
 Enumerator to select matrix multiplication type. More...
 
std::vector< int > m_reorderedMap
 Reordering that takes universal IDs to a unique row in the PETSc matrix. More...
 
VecScatter m_ctx
 PETSc scatter context that takes us between Nektar++ global ordering and PETSc vector ordering. More...
 
int m_nLocal
 Number of unique degrees of freedom on this process. More...
 
PreconditionerSharedPtr m_precon
 
- Protected Attributes inherited from Nektar::MultiRegions::GlobalLinSys
const GlobalLinSysKey m_linSysKey
 Key associated with this linear system. More...
 
const boost::weak_ptr< ExpListm_expList
 Local Matrix System. More...
 
const std::map< int,
RobinBCInfoSharedPtr
m_robinBCInfo
 Robin boundary info. More...
 
bool m_verbose
 

Static Private Member Functions

static PetscErrorCode DoMatrixMultiply (Mat M, Vec in, Vec out)
 Perform matrix multiplication using Nektar++ routines. More...
 
static PetscErrorCode DoPreconditioner (PC pc, Vec in, Vec out)
 Apply preconditioning using Nektar++ routines. More...
 
static void DoNekppOperation (Vec &in, Vec &out, ShellCtx *ctx, bool precon)
 Perform either matrix multiplication or preconditioning using Nektar++ routines. More...
 
static PetscErrorCode DoDestroyMatCtx (Mat M)
 Destroy matrix shell context object. More...
 
static PetscErrorCode DoDestroyPCCtx (PC pc)
 Destroy preconditioner context object. More...
 

Static Private Attributes

static std::string matMult
 
static std::string matMultIds []
 

Detailed Description

A PETSc global linear system.

Solves a linear system using PETSc.

Solves a linear system using single- or multi-level static condensation.

Definition at line 59 of file GlobalLinSysPETSc.h.

Constructor & Destructor Documentation

Nektar::MultiRegions::GlobalLinSysPETSc::GlobalLinSysPETSc ( const GlobalLinSysKey pKey,
const boost::weak_ptr< ExpList > &  pExp,
const boost::shared_ptr< AssemblyMap > &  pLocToGloMap 
)

Constructor for full direct matrix solve.

Definition at line 65 of file GlobalLinSysPETSc.cpp.

References m_matMult, and m_matrix.

69  : GlobalLinSys(pKey, pExp, pLocToGloMap)
70  {
71  // Determine whether to use standard sparse matrix approach or
72  // shell.
73  m_matMult = pExp.lock()->GetSession()
74  ->GetSolverInfoAsEnum<PETScMatMult>(
75  "PETScMatMult");
76 
77  // Check PETSc is initialized. For some reason, this is needed on
78  // OS X as logging is not initialized properly in the call within
79  // CommMpi.
80  PetscBool isInitialized;
81  PetscInitialized(&isInitialized);
82  if (!isInitialized)
83  {
84  PetscInitializeNoArguments();
85  }
86 
87  // Create matrix
88  MatCreate(PETSC_COMM_WORLD, &m_matrix);
89  }
GlobalLinSys(const GlobalLinSysKey &pKey, const boost::weak_ptr< ExpList > &pExpList, const boost::shared_ptr< AssemblyMap > &pLocToGloMap)
Constructor for full direct matrix solve.
PETScMatMult m_matMult
Enumerator to select matrix multiplication type.
Nektar::MultiRegions::GlobalLinSysPETSc::~GlobalLinSysPETSc ( )
virtual

Clean up PETSc objects.

Note that if SessionReader::Finalize is called before the end of the program, PETSc may have been finalized already, at which point we cannot deallocate our objects. If that's the case we do nothing and let the kernel clear up after us.

Definition at line 99 of file GlobalLinSysPETSc.cpp.

References m_b, m_ksp, m_locVec, m_matrix, m_pc, and m_x.

100  {
101  PetscBool isFinalized;
102  PetscFinalized(&isFinalized);
103 
104  // Sometimes, PetscFinalized returns false when (in fact) CommMpi's
105  // Finalise routine has been called. We therefore also need to check
106  // whether MPI has been finalised. This might arise from the
107  // additional call to PetscInitializeNoArguments in the constructor
108  // above.
109 #ifdef NEKTAR_USE_MPI
110  int mpiFinal = 0;
111  MPI_Finalized(&mpiFinal);
112  isFinalized = isFinalized || mpiFinal ? PETSC_TRUE : PETSC_FALSE;
113 #endif
114 
115  if (!isFinalized)
116  {
117  KSPDestroy(&m_ksp);
118  PCDestroy (&m_pc);
119  MatDestroy(&m_matrix);
120  VecDestroy(&m_x);
121  VecDestroy(&m_b);
122  VecDestroy(&m_locVec);
123  }
124  }
PC m_pc
PCShell for preconditioner.
Vec m_x
PETSc vector objects used for local storage.
KSP m_ksp
KSP object that represents solver system.

Member Function Documentation

void Nektar::MultiRegions::GlobalLinSysPETSc::CalculateReordering ( const Array< OneD, const int > &  glo2uniMap,
const Array< OneD, const int > &  glo2unique,
const AssemblyMapSharedPtr pLocToGloMap 
)
protected

Calculate a reordering of universal IDs for PETSc.

PETSc requires a unique, contiguous index of all global and universal degrees of freedom which represents its position inside the matrix. Presently Gs does not guarantee this, so this routine constructs a new universal mapping.

Parameters
glo2uniMapGlobal to universal map
glo2uniqueGlobal to unique map
pLocToGloMapAssembly map for this system

Definition at line 217 of file GlobalLinSysPETSc.cpp.

References ASSERTL0, Nektar::MultiRegions::GlobalLinSys::m_expList, m_nLocal, m_reorderedMap, Nektar::LibUtilities::ReduceSum, and Vmath::Vsum().

Referenced by Nektar::MultiRegions::GlobalLinSysPETScFull::GlobalLinSysPETScFull(), and Nektar::MultiRegions::GlobalLinSysPETScStaticCond::v_AssembleSchurComplement().

221  {
223  = m_expList.lock()->GetSession()->GetComm();
224 
225  const int nDirDofs = pLocToGloMap->GetNumGlobalDirBndCoeffs();
226  const int nHomDofs = glo2uniMap.num_elements() - nDirDofs;
227  const int nProc = vComm->GetSize();
228  const int rank = vComm->GetRank();
229 
230  int n, cnt;
231 
232  // Count number of unique degrees of freedom on each process.
233  m_nLocal = Vmath::Vsum(nHomDofs, glo2unique + nDirDofs, 1);
234  m_reorderedMap.resize(nHomDofs);
235 
236  // Reduce coefficient counts across all processors.
237  Array<OneD, int> localCounts(nProc, 0), localOffset(nProc, 0);
238  localCounts[rank] = nHomDofs;
239  vComm->AllReduce(localCounts, LibUtilities::ReduceSum);
240 
241  for (n = 1; n < nProc; ++n)
242  {
243  localOffset[n] = localOffset[n-1] + localCounts[n-1];
244  }
245 
246  int totHomDofs = Vmath::Vsum(nProc, localCounts, 1);
247  vector<unsigned int> allUniIds(totHomDofs, 0);
248 
249  // Assemble list of universal IDs
250  for (n = 0; n < nHomDofs; ++n)
251  {
252  int gid = n + nDirDofs;
253  allUniIds[n + localOffset[rank]] = glo2uniMap[gid];
254  }
255 
256  // Reduce this across processors so that each process has a list of
257  // all universal IDs.
258  vComm->AllReduce(allUniIds, LibUtilities::ReduceSum);
259  std::sort(allUniIds.begin(), allUniIds.end());
260  map<int,int> uniIdReorder;
261 
262  // Renumber starting from 0.
263  for (cnt = n = 0; n < allUniIds.size(); ++n)
264  {
265  if (uniIdReorder.count(allUniIds[n]) > 0)
266  {
267  continue;
268  }
269 
270  uniIdReorder[allUniIds[n]] = cnt++;
271  }
272 
273  // Populate reordering map.
274  for (n = 0; n < nHomDofs; ++n)
275  {
276  int gid = n + nDirDofs;
277  int uniId = glo2uniMap[gid];
278  ASSERTL0(uniIdReorder.count(uniId) > 0, "Error in ordering");
279  m_reorderedMap[n] = uniIdReorder[uniId];
280  }
281  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:188
boost::shared_ptr< Comm > CommSharedPtr
Pointer to a Communicator object.
Definition: Comm.h:53
int m_nLocal
Number of unique degrees of freedom on this process.
T Vsum(int n, const T *x, const int incx)
Subtract return sum(x)
Definition: Vmath.cpp:723
std::vector< int > m_reorderedMap
Reordering that takes universal IDs to a unique row in the PETSc matrix.
const boost::weak_ptr< ExpList > m_expList
Local Matrix System.
Definition: GlobalLinSys.h:129
PetscErrorCode Nektar::MultiRegions::GlobalLinSysPETSc::DoDestroyMatCtx ( Mat  M)
staticprivate

Destroy matrix shell context object.

Note the matrix shell and preconditioner share a common context so this might have already been deallocated below, in which case we do nothing.

Parameters
MMatrix shell object

Definition at line 468 of file GlobalLinSysPETSc.cpp.

Referenced by SetUpMatVec().

469  {
470  void *ptr;
471  MatShellGetContext(M, &ptr);
472  ShellCtx *ctx = (ShellCtx *)ptr;
473  delete ctx;
474  return 0;
475  }
PetscErrorCode Nektar::MultiRegions::GlobalLinSysPETSc::DoDestroyPCCtx ( PC  pc)
staticprivate

Destroy preconditioner context object.

Note the matrix shell and preconditioner share a common context so this might have already been deallocated above, in which case we do nothing.

Parameters
pcPreconditioner object

Definition at line 486 of file GlobalLinSysPETSc.cpp.

Referenced by SetUpMatVec().

487  {
488  void *ptr;
489  PCShellGetContext(pc, &ptr);
490  ShellCtx *ctx = (ShellCtx *)ptr;
491  delete ctx;
492  return 0;
493  }
PetscErrorCode Nektar::MultiRegions::GlobalLinSysPETSc::DoMatrixMultiply ( Mat  M,
Vec  in,
Vec  out 
)
staticprivate

Perform matrix multiplication using Nektar++ routines.

This static function uses Nektar++ routines to calculate the matrix-vector product of M with in, storing the output in out.

Parameters
MOriginal MatShell matrix, which stores the ShellCtx object.
inInput vector.
outOutput vector.

Definition at line 420 of file GlobalLinSysPETSc.cpp.

References DoNekppOperation().

Referenced by SetUpMatVec().

422  {
423  // Grab our shell context from M.
424  void *ptr;
425  MatShellGetContext(M, &ptr);
426  ShellCtx *ctx = (ShellCtx *)ptr;
427 
428  DoNekppOperation(in, out, ctx, false);
429 
430  // Must return 0, otherwise PETSc complains.
431  return 0;
432  }
static void DoNekppOperation(Vec &in, Vec &out, ShellCtx *ctx, bool precon)
Perform either matrix multiplication or preconditioning using Nektar++ routines.
void Nektar::MultiRegions::GlobalLinSysPETSc::DoNekppOperation ( Vec &  in,
Vec &  out,
ShellCtx ctx,
bool  precon 
)
staticprivate

Perform either matrix multiplication or preconditioning using Nektar++ routines.

This static function uses Nektar++ routines to calculate the matrix-vector product of M with in, storing the output in out.

Todo:
There's a lot of scatters and copies that might possibly be eliminated to make this more efficient.
Parameters
inInput vector.
outOutput vector.
ctxShellCtx object that points to our instance of GlobalLinSysPETSc.
preconIf true, we apply a preconditioner, if false, we perform a matrix multiplication.

Definition at line 366 of file GlobalLinSysPETSc.cpp.

References Nektar::MultiRegions::GlobalLinSysPETSc::ShellCtx::linSys, m_ctx, m_locVec, m_precon, m_reorderedMap, Nektar::MultiRegions::GlobalLinSysPETSc::ShellCtx::nDir, Nektar::MultiRegions::GlobalLinSysPETSc::ShellCtx::nGlobal, v_DoMatrixMultiply(), and Vmath::Vcopy().

Referenced by DoMatrixMultiply(), and DoPreconditioner().

368  {
369  const int nGlobal = ctx->nGlobal;
370  const int nDir = ctx->nDir;
371  const int nHomDofs = nGlobal - nDir;
372  GlobalLinSysPETSc *linSys = ctx->linSys;
373 
374  // Scatter from PETSc ordering to our local ordering. It's actually
375  // unclear whether this step might also do some communication in
376  // parallel, which is probably not ideal.
377  VecScatterBegin(linSys->m_ctx, in, linSys->m_locVec,
378  INSERT_VALUES, SCATTER_FORWARD);
379  VecScatterEnd (linSys->m_ctx, in, linSys->m_locVec,
380  INSERT_VALUES, SCATTER_FORWARD);
381 
382  // Temporary storage to pass to Nektar++
383  Array<OneD, NekDouble> tmpIn(nHomDofs), tmpOut(nHomDofs);
384 
385  // Get values from input vector and copy to tmpIn.
386  PetscScalar *tmpLocIn;
387  VecGetArray (linSys->m_locVec, &tmpLocIn);
388  Vmath::Vcopy (nHomDofs, tmpLocIn, 1, &tmpIn[0], 1);
389  VecRestoreArray(linSys->m_locVec, &tmpLocIn);
390 
391  // Do matrix multiply in Nektar++, store in tmpOut.
392  if (precon)
393  {
394  linSys->m_precon->DoPreconditioner(tmpIn, tmpOut);
395  }
396  else
397  {
398  linSys->v_DoMatrixMultiply(tmpIn, tmpOut);
399  }
400 
401  // Scatter back to PETSc ordering and put in out.
402  VecSetValues(out, nHomDofs, &linSys->m_reorderedMap[0],
403  &tmpOut[0], INSERT_VALUES);
404  VecAssemblyBegin(out);
405  VecAssemblyEnd (out);
406  }
GlobalLinSysPETSc(const GlobalLinSysKey &pKey, const boost::weak_ptr< ExpList > &pExp, const boost::shared_ptr< AssemblyMap > &pLocToGloMap)
Constructor for full direct matrix solve.
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1047
PetscErrorCode Nektar::MultiRegions::GlobalLinSysPETSc::DoPreconditioner ( PC  pc,
Vec  in,
Vec  out 
)
staticprivate

Apply preconditioning using Nektar++ routines.

This static function uses Nektar++ routines to apply the preconditioner stored in GlobalLinSysPETSc::m_precon from the context of pc to the vector in, storing the output in out.

Parameters
pcPreconditioner object that stores the ShellCtx.
inInput vector.
outOutput vector.

Definition at line 445 of file GlobalLinSysPETSc.cpp.

References DoNekppOperation().

Referenced by SetUpMatVec().

447  {
448  // Grab our PCShell context from pc.
449  void *ptr;
450  PCShellGetContext(pc, &ptr);
451  ShellCtx *ctx = (ShellCtx *)ptr;
452 
453  DoNekppOperation(in, out, ctx, true);
454 
455  // Must return 0, otherwise PETSc complains.
456  return 0;
457  }
static void DoNekppOperation(Vec &in, Vec &out, ShellCtx *ctx, bool precon)
Perform either matrix multiplication or preconditioning using Nektar++ routines.
void Nektar::MultiRegions::GlobalLinSysPETSc::SetUpMatVec ( int  nGlobal,
int  nDir 
)
protected

Construct PETSc matrix and vector handles.

Todo:
Preallocation should be done at this point, since presently matrix allocation takes a significant amount of time.
Parameters
nGlobalNumber of global degrees of freedom in the system (on this processor)
nDirNumber of Dirichlet degrees of freedom (on this processor).

Definition at line 294 of file GlobalLinSysPETSc.cpp.

References DoDestroyMatCtx(), DoDestroyPCCtx(), DoMatrixMultiply(), DoPreconditioner(), Nektar::MultiRegions::ePETScMatMultShell, Nektar::MultiRegions::GlobalLinSysPETSc::ShellCtx::linSys, m_b, m_matMult, m_matrix, m_nLocal, m_pc, m_x, Nektar::MultiRegions::GlobalLinSysPETSc::ShellCtx::nDir, and Nektar::MultiRegions::GlobalLinSysPETSc::ShellCtx::nGlobal.

Referenced by Nektar::MultiRegions::GlobalLinSysPETScFull::GlobalLinSysPETScFull(), and Nektar::MultiRegions::GlobalLinSysPETScStaticCond::v_AssembleSchurComplement().

295  {
296  // CREATE VECTORS
297  VecCreate (PETSC_COMM_WORLD, &m_x);
298  VecSetSizes (m_x, m_nLocal, PETSC_DECIDE);
299  VecSetFromOptions(m_x);
300  VecDuplicate (m_x, &m_b);
301 
302  // CREATE MATRICES
304  {
305  // Create ShellCtx context object which will store the matrix
306  // size and a pointer to the linear system. We do this so that
307  // we can call a member function to the matrix-vector and
308  // preconditioning multiplication in a subclass.
309  ShellCtx *ctx1 = new ShellCtx(), *ctx2 = new ShellCtx();
310  ctx1->nGlobal = ctx2->nGlobal = nGlobal;
311  ctx1->nDir = ctx2->nDir = nDir;
312  ctx1->linSys = ctx2->linSys = this;
313 
314  // Set up MatShell object.
315  MatCreateShell (PETSC_COMM_WORLD, m_nLocal, m_nLocal,
316  PETSC_DETERMINE, PETSC_DETERMINE,
317  (void *)ctx1, &m_matrix);
318  MatShellSetOperation(m_matrix, MATOP_MULT,
319  (void(*)(void))DoMatrixMultiply);
320  MatShellSetOperation(m_matrix, MATOP_DESTROY,
321  (void(*)(void))DoDestroyMatCtx);
322 
323  // Create a PCShell to go alongside the MatShell.
324  PCCreate (PETSC_COMM_WORLD, &m_pc);
325 #if PETSC_VERSION_GE(3,5,0)
326  PCSetOperators (m_pc, m_matrix, m_matrix);
327 #else
328  PCSetOperators (m_pc, m_matrix, m_matrix, SAME_NONZERO_PATTERN);
329 #endif
330  PCSetType (m_pc, PCSHELL);
331  PCShellSetApply (m_pc, DoPreconditioner);
332  PCShellSetDestroy(m_pc, DoDestroyPCCtx);
333  PCShellSetContext(m_pc, ctx2);
334  }
335  else
336  {
337  // Otherwise we create a PETSc matrix and use MatSetFromOptions
338  // so that we can set various options on the command line.
339  MatCreate (PETSC_COMM_WORLD, &m_matrix);
340  MatSetType (m_matrix, MATAIJ);
341  MatSetSizes (m_matrix, m_nLocal, m_nLocal,
342  PETSC_DETERMINE, PETSC_DETERMINE);
343  MatSetFromOptions(m_matrix);
344  MatSetUp (m_matrix);
345  }
346  }
PC m_pc
PCShell for preconditioner.
Vec m_x
PETSc vector objects used for local storage.
static PetscErrorCode DoPreconditioner(PC pc, Vec in, Vec out)
Apply preconditioning using Nektar++ routines.
int m_nLocal
Number of unique degrees of freedom on this process.
static PetscErrorCode DoMatrixMultiply(Mat M, Vec in, Vec out)
Perform matrix multiplication using Nektar++ routines.
static PetscErrorCode DoDestroyMatCtx(Mat M)
Destroy matrix shell context object.
static PetscErrorCode DoDestroyPCCtx(PC pc)
Destroy preconditioner context object.
PETScMatMult m_matMult
Enumerator to select matrix multiplication type.
void Nektar::MultiRegions::GlobalLinSysPETSc::SetUpScatter ( )
protected

Set up PETSc local (equivalent to Nektar++ global) and global (equivalent to universal) scatter maps.

These maps are used in GlobalLinSysPETSc::v_SolveLinearSystem to scatter the solution vector back to each process.

Definition at line 182 of file GlobalLinSysPETSc.cpp.

References m_ctx, m_locVec, m_reorderedMap, and m_x.

Referenced by Nektar::MultiRegions::GlobalLinSysPETScFull::GlobalLinSysPETScFull(), and Nektar::MultiRegions::GlobalLinSysPETScStaticCond::v_AssembleSchurComplement().

183  {
184  const int nHomDofs = m_reorderedMap.size();
185 
186  // Create local and global numbering systems for vector
187  IS isGlobal, isLocal;
188  ISCreateGeneral (PETSC_COMM_SELF, nHomDofs, &m_reorderedMap[0],
189  PETSC_COPY_VALUES, &isGlobal);
190  ISCreateStride (PETSC_COMM_SELF, nHomDofs, 0, 1, &isLocal);
191 
192  // Create local vector for output
193  VecCreate (PETSC_COMM_SELF, &m_locVec);
194  VecSetSizes (m_locVec, nHomDofs, PETSC_DECIDE);
195  VecSetFromOptions(m_locVec);
196 
197  // Create scatter context
198  VecScatterCreate (m_x, isGlobal, m_locVec, isLocal, &m_ctx);
199 
200  // Clean up
201  ISDestroy(&isGlobal);
202  ISDestroy(&isLocal);
203  }
VecScatter m_ctx
PETSc scatter context that takes us between Nektar++ global ordering and PETSc vector ordering...
Vec m_x
PETSc vector objects used for local storage.
std::vector< int > m_reorderedMap
Reordering that takes universal IDs to a unique row in the PETSc matrix.
void Nektar::MultiRegions::GlobalLinSysPETSc::SetUpSolver ( NekDouble  tolerance)
protected

Set up KSP solver object.

This is reasonably generic setup – most solver types can be changed using the .petscrc file.

Parameters
toleranceResidual tolerance to converge to.

Definition at line 503 of file GlobalLinSysPETSc.cpp.

References Nektar::MultiRegions::ePETScMatMultShell, m_ksp, m_matMult, m_matrix, and m_pc.

Referenced by Nektar::MultiRegions::GlobalLinSysPETScFull::GlobalLinSysPETScFull(), and Nektar::MultiRegions::GlobalLinSysPETScStaticCond::v_AssembleSchurComplement().

504  {
505  KSPCreate(PETSC_COMM_WORLD, &m_ksp);
506  KSPSetTolerances(
507  m_ksp, tolerance, PETSC_DEFAULT, PETSC_DEFAULT, PETSC_DEFAULT);
508  KSPSetFromOptions(m_ksp);
509 #if PETSC_VERSION_GE(3,5,0)
510  KSPSetOperators(m_ksp, m_matrix, m_matrix);
511 #else
512  KSPSetOperators(m_ksp, m_matrix, m_matrix, SAME_NONZERO_PATTERN);
513 #endif
514 
516  {
517  KSPSetPC(m_ksp, m_pc);
518  }
519  }
PC m_pc
PCShell for preconditioner.
KSP m_ksp
KSP object that represents solver system.
PETScMatMult m_matMult
Enumerator to select matrix multiplication type.
virtual void Nektar::MultiRegions::GlobalLinSysPETSc::v_DoMatrixMultiply ( const Array< OneD, const NekDouble > &  pInput,
Array< OneD, NekDouble > &  pOutput 
)
protectedpure virtual
void Nektar::MultiRegions::GlobalLinSysPETSc::v_SolveLinearSystem ( const int  pNumRows,
const Array< OneD, const NekDouble > &  pInput,
Array< OneD, NekDouble > &  pOutput,
const AssemblyMapSharedPtr locToGloMap,
const int  pNumDir 
)
virtual

Solve linear system using PETSc.

The general strategy being a PETSc solve is to:

  • Copy values into the PETSc vector m_b
  • Solve the system m_ksp and place result into m_x.
  • Scatter results back into m_locVec using m_ctx scatter object.
  • Copy from m_locVec to output array #pOutput.

Implements Nektar::MultiRegions::GlobalLinSys.

Definition at line 136 of file GlobalLinSysPETSc.cpp.

References Nektar::MultiRegions::GlobalLinSys::CreatePrecon(), Nektar::MultiRegions::ePETScMatMultShell, m_b, m_ctx, m_ksp, m_locVec, m_matMult, m_precon, m_reorderedMap, m_x, and Vmath::Vcopy().

142  {
143  const int nHomDofs = pNumRows - pNumDir;
144 
146  {
147  m_precon = CreatePrecon(locToGloMap);
148  m_precon->BuildPreconditioner();
149  }
150 
151  // Populate RHS vector from input
152  VecSetValues(m_b, nHomDofs, &m_reorderedMap[0],
153  &pInput[pNumDir], INSERT_VALUES);
154 
155  // Assemble RHS vector
156  VecAssemblyBegin(m_b);
157  VecAssemblyEnd (m_b);
158 
159  // Do system solve
160  KSPSolve(m_ksp, m_b, m_x);
161 
162  // Scatter results to local vector
163  VecScatterBegin(m_ctx, m_x, m_locVec,
164  INSERT_VALUES, SCATTER_FORWARD);
165  VecScatterEnd (m_ctx, m_x, m_locVec,
166  INSERT_VALUES, SCATTER_FORWARD);
167 
168  // Copy results into output vector
169  PetscScalar *tmp;
170  VecGetArray (m_locVec, &tmp);
171  Vmath::Vcopy (nHomDofs, tmp, 1, &pOutput[pNumDir], 1);
172  VecRestoreArray(m_locVec, &tmp);
173  }
VecScatter m_ctx
PETSc scatter context that takes us between Nektar++ global ordering and PETSc vector ordering...
Vec m_x
PETSc vector objects used for local storage.
KSP m_ksp
KSP object that represents solver system.
std::vector< int > m_reorderedMap
Reordering that takes universal IDs to a unique row in the PETSc matrix.
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1047
PETScMatMult m_matMult
Enumerator to select matrix multiplication type.
PreconditionerSharedPtr CreatePrecon(AssemblyMapSharedPtr asmMap)
Create a preconditioner object from the parameters defined in the supplied assembly map...

Member Data Documentation

Vec Nektar::MultiRegions::GlobalLinSysPETSc::m_b
protected

Definition at line 81 of file GlobalLinSysPETSc.h.

Referenced by SetUpMatVec(), v_SolveLinearSystem(), and ~GlobalLinSysPETSc().

VecScatter Nektar::MultiRegions::GlobalLinSysPETSc::m_ctx
protected

PETSc scatter context that takes us between Nektar++ global ordering and PETSc vector ordering.

Definition at line 93 of file GlobalLinSysPETSc.h.

Referenced by DoNekppOperation(), SetUpScatter(), and v_SolveLinearSystem().

KSP Nektar::MultiRegions::GlobalLinSysPETSc::m_ksp
protected

KSP object that represents solver system.

Definition at line 83 of file GlobalLinSysPETSc.h.

Referenced by SetUpSolver(), v_SolveLinearSystem(), and ~GlobalLinSysPETSc().

Vec Nektar::MultiRegions::GlobalLinSysPETSc::m_locVec
protected
PETScMatMult Nektar::MultiRegions::GlobalLinSysPETSc::m_matMult
protected
Mat Nektar::MultiRegions::GlobalLinSysPETSc::m_matrix
protected
int Nektar::MultiRegions::GlobalLinSysPETSc::m_nLocal
protected

Number of unique degrees of freedom on this process.

Definition at line 95 of file GlobalLinSysPETSc.h.

Referenced by CalculateReordering(), and SetUpMatVec().

PC Nektar::MultiRegions::GlobalLinSysPETSc::m_pc
protected

PCShell for preconditioner.

Definition at line 85 of file GlobalLinSysPETSc.h.

Referenced by SetUpMatVec(), SetUpSolver(), and ~GlobalLinSysPETSc().

PreconditionerSharedPtr Nektar::MultiRegions::GlobalLinSysPETSc::m_precon
protected
std::vector<int> Nektar::MultiRegions::GlobalLinSysPETSc::m_reorderedMap
protected
Vec Nektar::MultiRegions::GlobalLinSysPETSc::m_x
protected

PETSc vector objects used for local storage.

Definition at line 81 of file GlobalLinSysPETSc.h.

Referenced by SetUpMatVec(), SetUpScatter(), v_SolveLinearSystem(), and ~GlobalLinSysPETSc().

std::string Nektar::MultiRegions::GlobalLinSysPETSc::matMult
staticprivate
Initial value:

Definition at line 134 of file GlobalLinSysPETSc.h.

std::string Nektar::MultiRegions::GlobalLinSysPETSc::matMultIds
staticprivate