Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
Public Member Functions | Protected Member Functions | Private Member Functions | Private Attributes | List of all members
Nektar::LocalRegions::HexExp Class Reference

#include <HexExp.h>

Inheritance diagram for Nektar::LocalRegions::HexExp:
Inheritance graph
[legend]
Collaboration diagram for Nektar::LocalRegions::HexExp:
Collaboration graph
[legend]

Public Member Functions

 HexExp (const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc, const SpatialDomains::HexGeomSharedPtr &geom)
 Constructor using BasisKey class for quadrature points and order definition. More...
 
 HexExp (const HexExp &T)
 Copy Constructor. More...
 
 ~HexExp ()
 Destructor. More...
 
- Public Member Functions inherited from Nektar::StdRegions::StdHexExp
 StdHexExp ()
 
 StdHexExp (const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc)
 
 StdHexExp (const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc, NekDouble *coeffs, NekDouble *phys)
 
 StdHexExp (const StdHexExp &T)
 
 ~StdHexExp ()
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion3D
 StdExpansion3D ()
 
 StdExpansion3D (int numcoeffs, const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc)
 
 StdExpansion3D (const StdExpansion3D &T)
 
virtual ~StdExpansion3D ()
 
void PhysTensorDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray_d1, Array< OneD, NekDouble > &outarray_d2, Array< OneD, NekDouble > &outarray_d3)
 Calculate the 3D derivative in the local tensor/collapsed coordinate at the physical points. More...
 
void BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
void IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion
 StdExpansion ()
 Default Constructor. More...
 
 StdExpansion (const int numcoeffs, const int numbases, const LibUtilities::BasisKey &Ba=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bb=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bc=LibUtilities::NullBasisKey)
 Constructor. More...
 
 StdExpansion (const StdExpansion &T)
 Copy Constructor. More...
 
virtual ~StdExpansion ()
 Destructor. More...
 
int GetNumBases () const
 This function returns the number of 1D bases used in the expansion. More...
 
const Array< OneD, const
LibUtilities::BasisSharedPtr > & 
GetBase () const
 This function gets the shared point to basis. More...
 
const
LibUtilities::BasisSharedPtr
GetBasis (int dir) const
 This function gets the shared point to basis in the dir direction. More...
 
int GetNcoeffs (void) const
 This function returns the total number of coefficients used in the expansion. More...
 
int GetTotPoints () const
 This function returns the total number of quadrature points used in the element. More...
 
LibUtilities::BasisType GetBasisType (const int dir) const
 This function returns the type of basis used in the dir direction. More...
 
int GetBasisNumModes (const int dir) const
 This function returns the number of expansion modes in the dir direction. More...
 
int EvalBasisNumModesMax (void) const
 This function returns the maximum number of expansion modes over all local directions. More...
 
LibUtilities::PointsType GetPointsType (const int dir) const
 This function returns the type of quadrature points used in the dir direction. More...
 
int GetNumPoints (const int dir) const
 This function returns the number of quadrature points in the dir direction. More...
 
const Array< OneD, const
NekDouble > & 
GetPoints (const int dir) const
 This function returns a pointer to the array containing the quadrature points in dir direction. More...
 
int GetNverts () const
 This function returns the number of vertices of the expansion domain. More...
 
int GetNedges () const
 This function returns the number of edges of the expansion domain. More...
 
int GetEdgeNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th edge. More...
 
int GetTotalEdgeIntNcoeffs () const
 
int GetEdgeNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th edge. More...
 
int DetCartesianDirOfEdge (const int edge)
 
const LibUtilities::BasisKey DetEdgeBasisKey (const int i) const
 
const LibUtilities::BasisKey DetFaceBasisKey (const int i, const int k) const
 
int GetFaceNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th face. More...
 
int GetFaceNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th face. More...
 
int GetFaceIntNcoeffs (const int i) const
 
int GetTotalFaceIntNcoeffs () const
 
int GetTraceNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th edge/face. More...
 
LibUtilities::PointsKey GetFacePointsKey (const int i, const int j) const
 
int NumBndryCoeffs (void) const
 
int NumDGBndryCoeffs (void) const
 
LibUtilities::BasisType GetEdgeBasisType (const int i) const
 This function returns the type of expansion basis on the i-th edge. More...
 
const LibUtilities::PointsKey GetNodalPointsKey () const
 This function returns the type of expansion Nodal point type if defined. More...
 
int GetNfaces () const
 This function returns the number of faces of the expansion domain. More...
 
int GetNtrace () const
 Returns the number of trace elements connected to this element. More...
 
LibUtilities::ShapeType DetShapeType () const
 This function returns the shape of the expansion domain. More...
 
boost::shared_ptr< StdExpansionGetStdExp (void) const
 
boost::shared_ptr< StdExpansionGetLinStdExp (void) const
 
int GetShapeDimension () const
 
bool IsBoundaryInteriorExpansion ()
 
bool IsNodalNonTensorialExp ()
 
void BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Backward transformation from coefficient space to physical space. More...
 
void FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Forward transformation from physical space to coefficient space. More...
 
void FwdTrans_BndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble Integral (const Array< OneD, const NekDouble > &inarray)
 This function integrates the specified function over the domain. More...
 
void FillMode (const int mode, Array< OneD, NekDouble > &outarray)
 This function fills the array outarray with the mode-th mode of the expansion. More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 this function calculates the inner product of a given function f with the different modes of the expansion More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &base, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int coll_check)
 
void IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
int GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void SetElmtId (const int id)
 Set the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2=NullNekDouble1DArray, Array< OneD, NekDouble > &coords_3=NullNekDouble1DArray)
 this function returns the physical coordinates of the quadrature points of the expansion More...
 
void GetCoord (const Array< OneD, const NekDouble > &Lcoord, Array< OneD, NekDouble > &coord)
 given the coordinates of a point of the element in the local collapsed coordinate system, this function calculates the physical coordinates of the point More...
 
DNekMatSharedPtr GetStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr GetStdStaticCondMatrix (const StdMatrixKey &mkey)
 
IndexMapValuesSharedPtr GetIndexMap (const IndexMapKey &ikey)
 
const Array< OneD, const
NekDouble > & 
GetPhysNormals (void)
 
void SetPhysNormals (Array< OneD, const NekDouble > &normal)
 
virtual void SetUpPhysNormals (const int edge)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
DNekScalBlkMatSharedPtr GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
void DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
StdRegions::Orientation GetForient (int face)
 
StdRegions::Orientation GetEorient (int edge)
 
StdRegions::Orientation GetPorient (int point)
 
StdRegions::Orientation GetCartesianEorient (int edge)
 
void SetCoeffsToOrientation (Array< OneD, NekDouble > &coeffs, StdRegions::Orientation dir)
 
void SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
int CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
NekDouble StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
int GetCoordim ()
 
void GetBoundaryMap (Array< OneD, unsigned int > &outarray)
 
void GetInteriorMap (Array< OneD, unsigned int > &outarray)
 
int GetVertexMap (const int localVertexId, bool useCoeffPacking=false)
 
void GetEdgeInteriorMap (const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
 
void GetFaceNumModes (const int fid, const Orientation faceOrient, int &numModes0, int &numModes1)
 
void GetFaceInteriorMap (const int fid, const Orientation faceOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
 
void GetEdgeToElementMap (const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, int P=-1)
 
void GetFaceToElementMap (const int fid, const Orientation faceOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, int nummodesA=-1, int nummodesB=-1)
 
void GetEdgePhysVals (const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Extract the physical values along edge edge from inarray into outarray following the local edge orientation and point distribution defined by defined in EdgeExp. More...
 
void GetEdgePhysVals (const int edge, const boost::shared_ptr< StdExpansion > &EdgeExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GetTracePhysVals (const int edge, const boost::shared_ptr< StdExpansion > &EdgeExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GetVertexPhysVals (const int vertex, const Array< OneD, const NekDouble > &inarray, NekDouble &outarray)
 
void GetEdgeInterpVals (const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GetEdgeQFactors (const int edge, Array< OneD, NekDouble > &outarray)
 Extract the metric factors to compute the contravariant fluxes along edge edge and stores them into outarray following the local edge orientation (i.e. anticlockwise convention). More...
 
void GetFacePhysVals (const int face, const boost::shared_ptr< StdExpansion > &FaceExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient=eNoOrientation)
 
void GetEdgePhysMap (const int edge, Array< OneD, int > &outarray)
 
void GetFacePhysMap (const int face, Array< OneD, int > &outarray)
 
void MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
DNekMatSharedPtr CreateGeneralMatrix (const StdMatrixKey &mkey)
 this function generates the mass matrix $\mathbf{M}[i][j] = \int \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x}$ More...
 
void GeneralMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
DNekMatSharedPtr GenMatrix (const StdMatrixKey &mkey)
 
void PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void PhysDeriv_s (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_ds)
 
void PhysDeriv_n (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_dn)
 
void PhysDirectionalDeriv (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &direction, Array< OneD, NekDouble > &outarray)
 
void StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void AddRobinMassMatrix (const int edgeid, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat)
 
void AddRobinEdgeContribution (const int edgeid, const Array< OneD, const NekDouble > &primCoeffs, Array< OneD, NekDouble > &coeffs)
 
NekDouble PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
void LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
 Convert local cartesian coordinate xi into local collapsed coordinates eta. More...
 
const boost::shared_ptr
< SpatialDomains::GeomFactors > & 
GetMetricInfo (void) const
 
virtual int v_GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
virtual const Array< OneD,
const NekDouble > & 
v_GetPhysNormals (void)
 
virtual void v_SetPhysNormals (Array< OneD, const NekDouble > &normal)
 
virtual void v_SetUpPhysNormals (const int edge)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
virtual StdRegions::Orientation v_GetEorient (int edge)
 
virtual StdRegions::Orientation v_GetCartesianEorient (int edge)
 
virtual StdRegions::Orientation v_GetPorient (int point)
 
NekDouble Linf (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete $ L_\infty$ error $ |\epsilon|_\infty = \max |u - u_{exact}|$ where $ u_{exact}$ is given by the array sol. More...
 
NekDouble L2 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete $ L_2$ error, $ | \epsilon |_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 dx \right]^{1/2} d\xi_1 $ where $ u_{exact}$ is given by the array sol. More...
 
NekDouble H1 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete $ H^1$ error, $ | \epsilon |^1_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 + \nabla(u - u_{exact})\cdot\nabla(u - u_{exact})\cdot dx \right]^{1/2} d\xi_1 $ where $ u_{exact}$ is given by the array sol. More...
 
const NormalVectorGetEdgeNormal (const int edge) const
 
void ComputeEdgeNormal (const int edge)
 
void NegateEdgeNormal (const int edge)
 
bool EdgeNormalNegated (const int edge)
 
void ComputeFaceNormal (const int face)
 
void NegateFaceNormal (const int face)
 
bool FaceNormalNegated (const int face)
 
void ComputeVertexNormal (const int vertex)
 
const NormalVectorGetFaceNormal (const int face) const
 
const NormalVectorGetVertexNormal (const int vertex) const
 
const NormalVectorGetSurfaceNormal (const int id) const
 
const LibUtilities::PointsKeyVector GetPointsKeys () const
 
Array< OneD, unsigned int > GetEdgeInverseBoundaryMap (int eid)
 
Array< OneD, unsigned int > GetFaceInverseBoundaryMap (int fid, StdRegions::Orientation faceOrient=eNoOrientation)
 
DNekMatSharedPtr BuildInverseTransformationMatrix (const DNekScalMatSharedPtr &m_transformationmatrix)
 
void PhysInterpToSimplexEquiSpaced (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int npset=-1)
 This function performs an interpolation from the physical space points provided at input into an array of equispaced points which are not the collapsed coordinate. So for a tetrahedron you will only get a tetrahedral number of values. More...
 
void GetSimplexEquiSpacedConnectivity (Array< OneD, int > &conn, bool standard=true)
 This function provides the connectivity of local simplices (triangles or tets) to connect the equispaced data points provided by PhysInterpToSimplexEquiSpaced. More...
 
void EquiSpacedToCoeffs (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs a projection/interpolation from the equispaced points sometimes used in post-processing onto the coefficient space. More...
 
template<class T >
boost::shared_ptr< T > as ()
 
void IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
 
- Public Member Functions inherited from Nektar::LocalRegions::Expansion3D
 Expansion3D (SpatialDomains::Geometry3DSharedPtr pGeom)
 
virtual ~Expansion3D ()
 
void SetFaceExp (const int face, Expansion2DSharedPtr &f)
 
Expansion2DSharedPtr GetFaceExp (const int face)
 
void SetTraceToGeomOrientation (Array< OneD, NekDouble > &inout)
 Align trace orientation with the geometry orientation. More...
 
void SetFaceToGeomOrientation (const int face, Array< OneD, NekDouble > &inout)
 Align face orientation with the geometry orientation. More...
 
void AddHDGHelmholtzFaceTerms (const NekDouble tau, const int edge, Array< OneD, NekDouble > &facePhys, const StdRegions::VarCoeffMap &dirForcing, Array< OneD, NekDouble > &outarray)
 
void AddNormTraceInt (const int dir, Array< OneD, ExpansionSharedPtr > &FaceExp, Array< OneD, Array< OneD, NekDouble > > &faceCoeffs, Array< OneD, NekDouble > &outarray)
 
void AddNormTraceInt (const int dir, Array< OneD, const NekDouble > &inarray, Array< OneD, ExpansionSharedPtr > &FaceExp, Array< OneD, NekDouble > &outarray, const StdRegions::VarCoeffMap &varcoeffs)
 
void AddFaceBoundaryInt (const int face, ExpansionSharedPtr &FaceExp, Array< OneD, NekDouble > &facePhys, Array< OneD, NekDouble > &outarray, const StdRegions::VarCoeffMap &varcoeffs=StdRegions::NullVarCoeffMap)
 
SpatialDomains::Geometry3DSharedPtr GetGeom3D () const
 
void ReOrientFacePhysMap (const int nvert, const StdRegions::Orientation orient, const int nq0, const int nq1, Array< OneD, int > &idmap)
 
void v_NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
- Public Member Functions inherited from Nektar::LocalRegions::Expansion
 Expansion (SpatialDomains::GeometrySharedPtr pGeom)
 
 Expansion (const Expansion &pSrc)
 
virtual ~Expansion ()
 
DNekScalMatSharedPtr GetLocMatrix (const LocalRegions::MatrixKey &mkey)
 
DNekScalMatSharedPtr GetLocMatrix (const StdRegions::MatrixType mtype, const StdRegions::ConstFactorMap &factors=StdRegions::NullConstFactorMap, const StdRegions::VarCoeffMap &varcoeffs=StdRegions::NullVarCoeffMap)
 
SpatialDomains::GeometrySharedPtr GetGeom () const
 
void Reset ()
 
virtual const
SpatialDomains::GeomFactorsSharedPtr
v_GetMetricInfo () const
 
DNekMatSharedPtr BuildTransformationMatrix (const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType)
 
DNekMatSharedPtr BuildVertexMatrix (const DNekScalMatSharedPtr &r_bnd)
 
void ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int nmodes_offset, NekDouble *coeffs, std::vector< LibUtilities::BasisType > &fromType)
 
void AddEdgeNormBoundaryInt (const int edge, const boost::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void AddEdgeNormBoundaryInt (const int edge, const boost::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
void AddFaceNormBoundaryInt (const int face, const boost::shared_ptr< Expansion > &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
void DGDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, ExpansionSharedPtr > &EdgeExp, Array< OneD, Array< OneD, NekDouble > > &coeffs, Array< OneD, NekDouble > &outarray)
 

Protected Member Functions

virtual NekDouble v_Integral (const Array< OneD, const NekDouble > &inarray)
 Integrate the physical point list inarray over region. More...
 
virtual void v_PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2)
 Calculate the derivative of the physical points. More...
 
virtual void v_PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Calculate the derivative of the physical points in a single direction. More...
 
virtual void v_FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Forward transform from physical quadrature space stored in inarray and evaluate the expansion coefficients and store in (this)->_coeffs. More...
 
virtual void v_IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Calculate the inner product of inarray with respect to the elements basis. More...
 
virtual void v_IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
 Calculate the inner product of inarray with respect to the given basis B = base0 * base1 * base2. More...
 
virtual void v_IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Calculates the inner product $ I_{pqr} = (u, \partial_{x_i} \phi_{pqr}) $. More...
 
void IProductWRTDerivBase_MatOp (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual NekDouble v_StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
virtual NekDouble v_PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
virtual void v_GetCoord (const Array< OneD, const NekDouble > &Lcoords, Array< OneD, NekDouble > &coords)
 Retrieves the physical coordinates of a given set of reference coordinates. More...
 
virtual void v_GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3)
 
virtual LibUtilities::ShapeType v_DetShapeType () const
 Return the region shape using the enum-list of ShapeType. More...
 
virtual
StdRegions::StdExpansionSharedPtr 
v_GetStdExp (void) const
 
virtual
StdRegions::StdExpansionSharedPtr 
v_GetLinStdExp (void) const
 
virtual void v_ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int mode_offset, NekDouble *coeffs, std::vector< LibUtilities::BasisType > &fromType)
 
virtual bool v_GetFaceDGForwards (const int i) const
 
virtual void v_GetFacePhysMap (const int face, Array< OneD, int > &outarray)
 
void v_ComputeFaceNormal (const int face)
 
virtual void v_MassMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_LaplacianMatrixOp (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_WeakDerivMatrixOp (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_WeakDirectionalDerivMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_MassLevelCurvatureMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
void v_GeneralMatrixOp_MatOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdRegions::StdMatrixKey &mkey)
 
virtual DNekMatSharedPtr v_GenMatrix (const StdRegions::StdMatrixKey &mkey)
 
virtual DNekMatSharedPtr v_CreateStdMatrix (const StdRegions::StdMatrixKey &mkey)
 
DNekScalMatSharedPtr CreateMatrix (const MatrixKey &mkey)
 
DNekScalBlkMatSharedPtr CreateStaticCondMatrix (const MatrixKey &mkey)
 
virtual DNekScalMatSharedPtr v_GetLocMatrix (const MatrixKey &mkey)
 
virtual DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix (const MatrixKey &mkey)
 
void v_DropLocStaticCondMatrix (const MatrixKey &mkey)
 
virtual void v_ComputeLaplacianMetric ()
 
- Protected Member Functions inherited from Nektar::StdRegions::StdHexExp
virtual void v_StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2)
 
virtual void v_StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
virtual void v_IProductWRTBase_MatOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
virtual void v_IProductWRTDerivBase_MatOp (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
 
virtual void v_FillMode (const int mode, Array< OneD, NekDouble > &outarray)
 
virtual int v_GetNverts () const
 
virtual int v_GetNedges () const
 
virtual int v_GetNfaces () const
 
virtual int v_NumBndryCoeffs () const
 
virtual int v_NumDGBndryCoeffs () const
 
virtual int v_GetEdgeNcoeffs (const int i) const
 
virtual int v_GetTotalEdgeIntNcoeffs () const
 
virtual int v_GetFaceNcoeffs (const int i) const
 
virtual int v_GetFaceIntNcoeffs (const int i) const
 
virtual int v_GetTotalFaceIntNcoeffs () const
 
virtual int v_GetFaceNumPoints (const int i) const
 
virtual LibUtilities::PointsKey v_GetFacePointsKey (const int i, const int j) const
 
virtual int v_CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
virtual const
LibUtilities::BasisKey 
v_DetFaceBasisKey (const int i, const int k) const
 
virtual LibUtilities::BasisType v_GetEdgeBasisType (const int i) const
 
virtual bool v_IsBoundaryInteriorExpansion ()
 
virtual void v_GetFaceNumModes (const int fid, const Orientation faceOrient, int &numModes0, int &numModes1)
 
virtual void v_GetFaceToElementMap (const int fid, const Orientation faceOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, int nummodesA=-1, int nummodesB=-1)
 
virtual int v_GetVertexMap (int localVertexId, bool useCoeffPacking=false)
 
virtual void v_GetEdgeInteriorMap (const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
 
virtual void v_GetFaceInteriorMap (const int fid, const Orientation faceOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
 
virtual void v_GetInteriorMap (Array< OneD, unsigned int > &outarray)
 
virtual void v_GetBoundaryMap (Array< OneD, unsigned int > &outarray)
 
virtual void v_MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion3D
virtual NekDouble v_PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
 
virtual void v_LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_NegateFaceNormal (const int face)
 
virtual bool v_FaceNormalNegated (const int face)
 
virtual int v_GetTraceNcoeffs (const int i) const
 
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion
DNekMatSharedPtr CreateStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr CreateStdStaticCondMatrix (const StdMatrixKey &mkey)
 Create the static condensation of a matrix when using a boundary interior decomposition. More...
 
IndexMapValuesSharedPtr CreateIndexMap (const IndexMapKey &ikey)
 Create an IndexMap which contains mapping information linking any specific element shape with either its boundaries, edges, faces, verteces, etc. More...
 
void BwdTrans_MatOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GeneralMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree_Kernel (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
 
void LaplacianMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp_MatFree (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void HelmholtzMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
virtual void v_SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_SetCoeffsToOrientation (Array< OneD, NekDouble > &coeffs, StdRegions::Orientation dir)
 
- Protected Member Functions inherited from Nektar::LocalRegions::Expansion3D
virtual void v_DGDeriv (const int dir, const Array< OneD, const NekDouble > &incoeffs, Array< OneD, ExpansionSharedPtr > &FaceExp, Array< OneD, Array< OneD, NekDouble > > &faceCoeffs, Array< OneD, NekDouble > &out_d)
 Evaluate coefficients of weak deriviative in the direction dir given the input coefficicents incoeffs and the imposed boundary values in EdgeExp (which will have its phys space updated). More...
 
virtual void v_AddFaceNormBoundaryInt (const int face, const ExpansionSharedPtr &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddRobinMassMatrix (const int face, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat)
 
virtual StdRegions::Orientation v_GetForient (int face)
 
virtual void v_GetTracePhysVals (const int face, const StdRegions::StdExpansionSharedPtr &FaceExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient)
 Returns the physical values at the quadrature points of a face Wrapper function to v_GetFacePhysVals. More...
 
virtual void v_GetFacePhysVals (const int face, const StdRegions::StdExpansionSharedPtr &FaceExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient)
 
virtual Array< OneD, unsigned int > v_GetEdgeInverseBoundaryMap (int eid)
 
virtual Array< OneD, unsigned int > v_GetFaceInverseBoundaryMap (int fid, StdRegions::Orientation faceOrient=StdRegions::eNoOrientation)
 
virtual DNekMatSharedPtr v_BuildTransformationMatrix (const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType)
 
virtual DNekMatSharedPtr v_BuildInverseTransformationMatrix (const DNekScalMatSharedPtr &m_transformationmatrix)
 Build inverse and inverse transposed transformation matrix: $\mathbf{R^{-1}}$ and $\mathbf{R^{-T}}$. More...
 
virtual DNekMatSharedPtr v_BuildVertexMatrix (const DNekScalMatSharedPtr &r_bnd)
 
void ReOrientTriFacePhysMap (const StdRegions::Orientation orient, const int nq0, const int nq1, Array< OneD, int > &idmap)
 
void ReOrientQuadFacePhysMap (const StdRegions::Orientation orient, const int nq0, const int nq1, Array< OneD, int > &idmap)
 
- Protected Member Functions inherited from Nektar::LocalRegions::Expansion
void ComputeLaplacianMetric ()
 
void ComputeQuadratureMetric ()
 
virtual void v_MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddEdgeNormBoundaryInt (const int edge, const boost::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddEdgeNormBoundaryInt (const int edge, const boost::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddFaceNormBoundaryInt (const int face, const boost::shared_ptr< Expansion > &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 

Private Member Functions

 HexExp ()
 
virtual void v_LaplacianMatrixOp_MatFree_Kernel (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
 

Private Attributes

LibUtilities::NekManager
< MatrixKey, DNekScalMat,
MatrixKey::opLess
m_matrixManager
 
LibUtilities::NekManager
< MatrixKey, DNekScalBlkMat,
MatrixKey::opLess
m_staticCondMatrixManager
 

Additional Inherited Members

- Protected Attributes inherited from Nektar::StdRegions::StdExpansion3D
std::map< int, NormalVectorm_faceNormals
 
std::map< int, bool > m_negatedNormals
 
- Protected Attributes inherited from Nektar::StdRegions::StdExpansion
Array< OneD,
LibUtilities::BasisSharedPtr
m_base
 
int m_elmt_id
 
int m_ncoeffs
 
LibUtilities::NekManager
< StdMatrixKey, DNekMat,
StdMatrixKey::opLess
m_stdMatrixManager
 
LibUtilities::NekManager
< StdMatrixKey, DNekBlkMat,
StdMatrixKey::opLess
m_stdStaticCondMatrixManager
 
LibUtilities::NekManager
< IndexMapKey, IndexMapValues,
IndexMapKey::opLess
m_IndexMapManager
 
- Protected Attributes inherited from Nektar::LocalRegions::Expansion
SpatialDomains::GeometrySharedPtr m_geom
 
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
 
MetricMap m_metrics
 

Detailed Description

Defines a hexahedral local expansion.

Definition at line 64 of file HexExp.h.

Constructor & Destructor Documentation

Nektar::LocalRegions::HexExp::HexExp ( const LibUtilities::BasisKey Ba,
const LibUtilities::BasisKey Bb,
const LibUtilities::BasisKey Bc,
const SpatialDomains::HexGeomSharedPtr geom 
)

Constructor using BasisKey class for quadrature points and order definition.

Parameters
BaBasis key for first coordinate.
BbBasis key for second coordinate.
BcBasis key for third coordinate.

Definition at line 61 of file HexExp.cpp.

64  :
65  StdExpansion (Ba.GetNumModes()*Bb.GetNumModes()*Bc.GetNumModes(),3,Ba,Bb,Bc),
66  StdExpansion3D(Ba.GetNumModes()*Bb.GetNumModes()*Bc.GetNumModes(),Ba,Bb,Bc),
67  StdRegions::StdHexExp(Ba,Bb,Bc),
68  Expansion (geom),
69  Expansion3D (geom),
71  boost::bind(&HexExp::CreateMatrix, this, _1),
72  std::string("HexExpMatrix")),
74  boost::bind(&HexExp::CreateStaticCondMatrix, this, _1),
75  std::string("HexExpStaticCondMatrix"))
76  {
77  }
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: HexExp.h:267
DNekScalMatSharedPtr CreateMatrix(const MatrixKey &mkey)
Definition: HexExp.cpp:1354
Expansion(SpatialDomains::GeometrySharedPtr pGeom)
Definition: Expansion.cpp:48
DNekScalBlkMatSharedPtr CreateStaticCondMatrix(const MatrixKey &mkey)
Definition: HexExp.cpp:1679
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: HexExp.h:266
StdExpansion()
Default Constructor.
Expansion3D(SpatialDomains::Geometry3DSharedPtr pGeom)
Definition: Expansion3D.h:63
Nektar::LocalRegions::HexExp::HexExp ( const HexExp T)

Copy Constructor.

Parameters
THexExp to copy.

Definition at line 85 of file HexExp.cpp.

85  :
86  StdRegions::StdHexExp(T),
87  Expansion(T),
88  Expansion3D(T),
89  m_matrixManager(T.m_matrixManager),
90  m_staticCondMatrixManager(T.m_staticCondMatrixManager)
91  {
92  }
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: HexExp.h:267
Expansion(SpatialDomains::GeometrySharedPtr pGeom)
Definition: Expansion.cpp:48
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: HexExp.h:266
Expansion3D(SpatialDomains::Geometry3DSharedPtr pGeom)
Definition: Expansion3D.h:63
Nektar::LocalRegions::HexExp::~HexExp ( )

Destructor.

Definition at line 97 of file HexExp.cpp.

98  {
99  }
Nektar::LocalRegions::HexExp::HexExp ( )
private

Member Function Documentation

DNekScalMatSharedPtr Nektar::LocalRegions::HexExp::CreateMatrix ( const MatrixKey mkey)
protected

Definition at line 1354 of file HexExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), ASSERTL2, Nektar::LocalRegions::Expansion::BuildTransformationMatrix(), Nektar::LocalRegions::Expansion::BuildVertexMatrix(), Nektar::StdRegions::StdMatrixKey::ConstFactorExists(), Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::eFactorLambda, Nektar::StdRegions::eFactorSVVCutoffRatio, Nektar::StdRegions::eHelmholtz, Nektar::StdRegions::eHybridDGHelmBndLam, Nektar::StdRegions::eHybridDGHelmholtz, Nektar::StdRegions::eHybridDGLamToQ0, Nektar::StdRegions::eHybridDGLamToQ1, Nektar::StdRegions::eHybridDGLamToQ2, Nektar::StdRegions::eHybridDGLamToU, Nektar::StdRegions::eInvHybridDGHelmholtz, Nektar::StdRegions::eInvLaplacianWithUnityMean, Nektar::StdRegions::eInvMass, Nektar::StdRegions::eIProductWRTBase, Nektar::StdRegions::eLaplacian, Nektar::StdRegions::eLaplacian00, Nektar::StdRegions::eLaplacian01, Nektar::StdRegions::eLaplacian02, Nektar::StdRegions::eLaplacian11, Nektar::StdRegions::eLaplacian12, Nektar::StdRegions::eLaplacian22, Nektar::StdRegions::eMass, Nektar::SpatialDomains::eNoGeomType, Nektar::StdRegions::ePreconLinearSpace, Nektar::StdRegions::ePreconLinearSpaceMass, Nektar::StdRegions::ePreconR, Nektar::StdRegions::ePreconRMass, Nektar::StdRegions::ePreconRT, Nektar::StdRegions::ePreconRTMass, Nektar::StdRegions::eWeakDeriv0, Nektar::StdRegions::eWeakDeriv1, Nektar::StdRegions::eWeakDeriv2, Nektar::StdRegions::StdExpansion::GenMatrix(), Nektar::StdRegions::StdMatrixKey::GetConstFactor(), Nektar::StdRegions::StdMatrixKey::GetConstFactors(), Nektar::StdRegions::StdExpansion::GetLocStaticCondMatrix(), Nektar::StdRegions::StdMatrixKey::GetMatrixType(), Nektar::StdRegions::StdMatrixKey::GetNVarCoeff(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdMatrixKey::GetShapeType(), Nektar::StdRegions::StdExpansion::GetStdMatrix(), Nektar::StdRegions::StdMatrixKey::GetVarCoeffs(), m_matrixManager, Nektar::LocalRegions::Expansion::m_metricinfo, and Nektar::Transpose().

1355  {
1356  DNekScalMatSharedPtr returnval;
1358 
1360  "Geometric information is not set up");
1361 
1362  switch(mkey.GetMatrixType())
1363  {
1364  case StdRegions::eMass:
1365  {
1366  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed ||
1367  mkey.GetNVarCoeff())
1368  {
1369  NekDouble one = 1.0;
1370  DNekMatSharedPtr mat = GenMatrix(mkey);
1371  returnval = MemoryManager<DNekScalMat>
1372  ::AllocateSharedPtr(one,mat);
1373  }
1374  else
1375  {
1376  NekDouble jac = (m_metricinfo->GetJac(ptsKeys))[0];
1377  DNekMatSharedPtr mat
1378  = GetStdMatrix(mkey);
1379  returnval = MemoryManager<DNekScalMat>
1380  ::AllocateSharedPtr(jac,mat);
1381  }
1382  }
1383  break;
1384  case StdRegions::eInvMass:
1385  {
1386  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1387  {
1388  NekDouble one = 1.0;
1389  StdRegions::StdMatrixKey masskey(StdRegions::eMass,
1390  DetShapeType(), *this);
1391  DNekMatSharedPtr mat = GenMatrix(masskey);
1392  mat->Invert();
1393 
1394  returnval = MemoryManager<DNekScalMat>
1395  ::AllocateSharedPtr(one,mat);
1396  }
1397  else
1398  {
1399  NekDouble fac = 1.0/(m_metricinfo->GetJac(ptsKeys))[0];
1400  DNekMatSharedPtr mat
1401  = GetStdMatrix(mkey);
1402  returnval = MemoryManager<DNekScalMat>
1403  ::AllocateSharedPtr(fac,mat);
1404  }
1405  }
1406  break;
1410  {
1411  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed ||
1412  mkey.GetNVarCoeff())
1413  {
1414  NekDouble one = 1.0;
1415  DNekMatSharedPtr mat = GenMatrix(mkey);
1416 
1417  returnval = MemoryManager<DNekScalMat>
1418  ::AllocateSharedPtr(one,mat);
1419  }
1420  else
1421  {
1422  NekDouble jac = (m_metricinfo->GetJac(ptsKeys))[0];
1423  Array<TwoD, const NekDouble> df
1424  = m_metricinfo->GetDerivFactors(ptsKeys);
1425  int dir = 0;
1426 
1427  switch(mkey.GetMatrixType())
1428  {
1430  dir = 0;
1431  break;
1433  dir = 1;
1434  break;
1436  dir = 2;
1437  break;
1438  default:
1439  break;
1440  }
1441 
1442  MatrixKey deriv0key(StdRegions::eWeakDeriv0,
1443  mkey.GetShapeType(), *this);
1444  MatrixKey deriv1key(StdRegions::eWeakDeriv1,
1445  mkey.GetShapeType(), *this);
1446  MatrixKey deriv2key(StdRegions::eWeakDeriv2,
1447  mkey.GetShapeType(), *this);
1448 
1449  DNekMat &deriv0 = *GetStdMatrix(deriv0key);
1450  DNekMat &deriv1 = *GetStdMatrix(deriv1key);
1451  DNekMat &deriv2 = *GetStdMatrix(deriv2key);
1452 
1453  int rows = deriv0.GetRows();
1454  int cols = deriv1.GetColumns();
1455 
1457  ::AllocateSharedPtr(rows,cols);
1458 
1459  (*WeakDeriv) = df[3*dir ][0]*deriv0
1460  + df[3*dir+1][0]*deriv1
1461  + df[3*dir+2][0]*deriv2;
1462 
1463  returnval = MemoryManager<DNekScalMat>
1464  ::AllocateSharedPtr(jac,WeakDeriv);
1465  }
1466  }
1467  break;
1469  {
1470  if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed ||
1471  mkey.GetNVarCoeff()||
1472  mkey.ConstFactorExists(
1474  {
1475  NekDouble one = 1.0;
1476  DNekMatSharedPtr mat = GenMatrix(mkey);
1477 
1478  returnval = MemoryManager<DNekScalMat>
1479  ::AllocateSharedPtr(one,mat);
1480  }
1481  else
1482  {
1483  MatrixKey lap00key(StdRegions::eLaplacian00,
1484  mkey.GetShapeType(), *this);
1485  MatrixKey lap01key(StdRegions::eLaplacian01,
1486  mkey.GetShapeType(), *this);
1487  MatrixKey lap02key(StdRegions::eLaplacian02,
1488  mkey.GetShapeType(), *this);
1489  MatrixKey lap11key(StdRegions::eLaplacian11,
1490  mkey.GetShapeType(), *this);
1491  MatrixKey lap12key(StdRegions::eLaplacian12,
1492  mkey.GetShapeType(), *this);
1493  MatrixKey lap22key(StdRegions::eLaplacian22,
1494  mkey.GetShapeType(), *this);
1495 
1496  DNekMat &lap00 = *GetStdMatrix(lap00key);
1497  DNekMat &lap01 = *GetStdMatrix(lap01key);
1498  DNekMat &lap02 = *GetStdMatrix(lap02key);
1499  DNekMat &lap11 = *GetStdMatrix(lap11key);
1500  DNekMat &lap12 = *GetStdMatrix(lap12key);
1501  DNekMat &lap22 = *GetStdMatrix(lap22key);
1502 
1503  NekDouble jac = (m_metricinfo->GetJac(ptsKeys))[0];
1504  Array<TwoD, const NekDouble> gmat
1505  = m_metricinfo->GetGmat(ptsKeys);
1506 
1507  int rows = lap00.GetRows();
1508  int cols = lap00.GetColumns();
1509 
1511  ::AllocateSharedPtr(rows,cols);
1512 
1513  (*lap) = gmat[0][0]*lap00
1514  + gmat[4][0]*lap11
1515  + gmat[8][0]*lap22
1516  + gmat[3][0]*(lap01 + Transpose(lap01))
1517  + gmat[6][0]*(lap02 + Transpose(lap02))
1518  + gmat[7][0]*(lap12 + Transpose(lap12));
1519 
1520  returnval = MemoryManager<DNekScalMat>
1521  ::AllocateSharedPtr(jac,lap);
1522  }
1523  }
1524  break;
1526  {
1527  NekDouble lambda = mkey.GetConstFactor(StdRegions::eFactorLambda);
1528  MatrixKey masskey(StdRegions::eMass,
1529  mkey.GetShapeType(), *this);
1530  DNekScalMat &MassMat = *(this->m_matrixManager[masskey]);
1531  MatrixKey lapkey(StdRegions::eLaplacian,
1532  mkey.GetShapeType(), *this, mkey.GetConstFactors(), mkey.GetVarCoeffs());
1533  DNekScalMat &LapMat = *(this->m_matrixManager[lapkey]);
1534 
1535  int rows = LapMat.GetRows();
1536  int cols = LapMat.GetColumns();
1537 
1539 
1540  NekDouble one = 1.0;
1541  (*helm) = LapMat + lambda*MassMat;
1542 
1543  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,helm);
1544  }
1545  break;
1547  {
1548  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1549  {
1550  NekDouble one = 1.0;
1551  DNekMatSharedPtr mat = GenMatrix(mkey);
1552  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1553  }
1554  else
1555  {
1556  NekDouble jac = (m_metricinfo->GetJac(ptsKeys))[0];
1557  DNekMatSharedPtr mat = GetStdMatrix(mkey);
1558  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(jac,mat);
1559  }
1560  }
1561  break;
1569  {
1570  NekDouble one = 1.0;
1571 
1572  DNekMatSharedPtr mat = GenMatrix(mkey);
1573  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1574  }
1575  break;
1577  {
1578  NekDouble one = 1.0;
1579 
1580 // StdRegions::StdMatrixKey hkey(StdRegions::eHybridDGHelmholtz,
1581 // DetShapeType(),*this,
1582 // mkey.GetConstant(0),
1583 // mkey.GetConstant(1));
1584  MatrixKey hkey(StdRegions::eHybridDGHelmholtz, DetShapeType(), *this, mkey.GetConstFactors(), mkey.GetVarCoeffs());
1585  DNekMatSharedPtr mat = GenMatrix(hkey);
1586 
1587  mat->Invert();
1588  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1589  }
1590  break;
1592  {
1593  NekDouble one = 1.0;
1594  MatrixKey helmkey(StdRegions::eHelmholtz, mkey.GetShapeType(), *this, mkey.GetConstFactors(), mkey.GetVarCoeffs());
1595  DNekScalBlkMatSharedPtr helmStatCond = GetLocStaticCondMatrix(helmkey);
1596  DNekScalMatSharedPtr A =helmStatCond->GetBlock(0,0);
1598 
1600  }
1601  break;
1603  {
1604  NekDouble one = 1.0;
1605  MatrixKey masskey(StdRegions::eMass, mkey.GetShapeType(), *this);
1606  DNekScalBlkMatSharedPtr massStatCond = GetLocStaticCondMatrix(masskey);
1607  DNekScalMatSharedPtr A =massStatCond->GetBlock(0,0);
1609 
1611  }
1612  break;
1613  case StdRegions::ePreconR:
1614  {
1615  NekDouble one = 1.0;
1616  MatrixKey helmkey(StdRegions::eHelmholtz, mkey.GetShapeType(), *this,mkey.GetConstFactors(), mkey.GetVarCoeffs());
1617  DNekScalBlkMatSharedPtr helmStatCond = GetLocStaticCondMatrix(helmkey);
1618  DNekScalMatSharedPtr A =helmStatCond->GetBlock(0,0);
1619 
1620  DNekScalMatSharedPtr Atmp;
1621  DNekMatSharedPtr R=BuildTransformationMatrix(A,mkey.GetMatrixType());
1622 
1624  }
1625  break;
1626  case StdRegions::ePreconRT:
1627  {
1628  NekDouble one = 1.0;
1629  MatrixKey helmkey(StdRegions::eHelmholtz, mkey.GetShapeType(), *this,mkey.GetConstFactors(), mkey.GetVarCoeffs());
1630  DNekScalBlkMatSharedPtr helmStatCond = GetLocStaticCondMatrix(helmkey);
1631  DNekScalMatSharedPtr A =helmStatCond->GetBlock(0,0);
1632 
1633  DNekScalMatSharedPtr Atmp;
1634  DNekMatSharedPtr RT=BuildTransformationMatrix(A,mkey.GetMatrixType());
1635 
1637  }
1638  break;
1640  {
1641  NekDouble one = 1.0;
1642  MatrixKey masskey(StdRegions::eMass, mkey.GetShapeType(), *this);
1643  DNekScalBlkMatSharedPtr massStatCond = GetLocStaticCondMatrix(masskey);
1644  DNekScalMatSharedPtr A =massStatCond->GetBlock(0,0);
1645 
1646  DNekScalMatSharedPtr Atmp;
1647  DNekMatSharedPtr R=BuildTransformationMatrix(A,mkey.GetMatrixType());
1648 
1650  }
1651  break;
1653  {
1654  NekDouble one = 1.0;
1655  MatrixKey masskey(StdRegions::eMass, mkey.GetShapeType(), *this);
1656  DNekScalBlkMatSharedPtr massStatCond = GetLocStaticCondMatrix(masskey);
1657  DNekScalMatSharedPtr A =massStatCond->GetBlock(0,0);
1658 
1659  DNekScalMatSharedPtr Atmp;
1660  DNekMatSharedPtr RT=BuildTransformationMatrix(A,mkey.GetMatrixType());
1661 
1663  }
1664  break;
1665  default:
1666  {
1667  NekDouble one = 1.0;
1668  DNekMatSharedPtr mat = GenMatrix(mkey);
1669 
1670  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1671  }
1672  break;
1673  }
1674 
1675  return returnval;
1676  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
Definition: StdExpansion.h:470
DNekMatSharedPtr GenMatrix(const StdMatrixKey &mkey)
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:242
DNekMatSharedPtr BuildTransformationMatrix(const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType)
Definition: Expansion.cpp:90
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:131
DNekMatSharedPtr BuildVertexMatrix(const DNekScalMatSharedPtr &r_bnd)
Definition: Expansion.cpp:98
DNekScalBlkMatSharedPtr GetLocStaticCondMatrix(const LocalRegions::MatrixKey &mkey)
Definition: StdExpansion.h:753
boost::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:70
DNekMatSharedPtr GetStdMatrix(const StdMatrixKey &mkey)
Definition: StdExpansion.h:706
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
boost::shared_ptr< DNekScalBlkMat > DNekScalBlkMatSharedPtr
Definition: NekTypeDefs.hpp:74
NekMatrix< InnerMatrixType, BlockMatrixTag > Transpose(NekMatrix< InnerMatrixType, BlockMatrixTag > &rhs)
NekMatrix< NekDouble, StandardMatrixTag > DNekMat
Definition: NekTypeDefs.hpp:52
double NekDouble
#define ASSERTL2(condition, msg)
Assert Level 2 – Debugging which is used FULLDEBUG compilation mode. This level assert is designed t...
Definition: ErrorUtil.hpp:250
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: HexExp.h:266
Geometry is curved or has non-constant factors.
NekMatrix< NekMatrix< NekDouble, StandardMatrixTag >, ScaledMatrixTag > DNekScalMat
DNekScalBlkMatSharedPtr Nektar::LocalRegions::HexExp::CreateStaticCondMatrix ( const MatrixKey mkey)
protected

Definition at line 1679 of file HexExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), ASSERTL2, Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::eHelmholtz, Nektar::StdRegions::eLaplacian, Nektar::SpatialDomains::eNoGeomType, Nektar::StdRegions::StdExpansion::GetBoundaryMap(), Nektar::StdRegions::StdExpansion::GetInteriorMap(), Nektar::LocalRegions::Expansion::GetLocMatrix(), Nektar::StdRegions::StdMatrixKey::GetMatrixType(), Nektar::StdRegions::StdMatrixKey::GetNVarCoeff(), Nektar::StdRegions::StdExpansion::GetStdStaticCondMatrix(), Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::StdRegions::StdExpansion::m_ncoeffs, and Nektar::StdRegions::StdExpansion::NumBndryCoeffs().

1680  {
1681  DNekScalBlkMatSharedPtr returnval;
1682 
1683  ASSERTL2(m_metricinfo->GetGtype() != SpatialDomains::eNoGeomType,"Geometric information is not set up");
1684 
1685  // set up block matrix system
1686  unsigned int nbdry = NumBndryCoeffs();
1687  unsigned int nint = (unsigned int)(m_ncoeffs - nbdry);
1688  unsigned int exp_size[] = {nbdry,nint};
1689  unsigned int nblks = 2;
1690  returnval = MemoryManager<DNekScalBlkMat>::AllocateSharedPtr(nblks,nblks,exp_size,exp_size); //Really need a constructor which takes Arrays
1691  NekDouble factor = 1.0;
1692 
1693  switch(mkey.GetMatrixType())
1694  {
1696  case StdRegions::eHelmholtz: // special case since Helmholtz not defined in StdRegions
1697 
1698  // use Deformed case for both regular and deformed geometries
1699  factor = 1.0;
1700  goto UseLocRegionsMatrix;
1701  break;
1702  default:
1703  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed ||
1704  mkey.GetNVarCoeff())
1705  {
1706  factor = 1.0;
1707  goto UseLocRegionsMatrix;
1708  }
1709  else
1710  {
1711  DNekScalMatSharedPtr mat = GetLocMatrix(mkey);
1712  factor = mat->Scale();
1713  goto UseStdRegionsMatrix;
1714  }
1715  break;
1716  UseStdRegionsMatrix:
1717  {
1718  NekDouble invfactor = 1.0/factor;
1719  NekDouble one = 1.0;
1721  DNekScalMatSharedPtr Atmp;
1722  DNekMatSharedPtr Asubmat;
1723 
1724  returnval->SetBlock(0,0,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(factor,Asubmat = mat->GetBlock(0,0)));
1725  returnval->SetBlock(0,1,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,Asubmat = mat->GetBlock(0,1)));
1726  returnval->SetBlock(1,0,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(factor,Asubmat = mat->GetBlock(1,0)));
1727  returnval->SetBlock(1,1,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(invfactor,Asubmat = mat->GetBlock(1,1)));
1728  }
1729  break;
1730  UseLocRegionsMatrix:
1731  {
1732  int i,j;
1733  NekDouble invfactor = 1.0/factor;
1734  NekDouble one = 1.0;
1735  DNekScalMat &mat = *GetLocMatrix(mkey);
1740 
1741  Array<OneD,unsigned int> bmap(nbdry);
1742  Array<OneD,unsigned int> imap(nint);
1743  GetBoundaryMap(bmap);
1744  GetInteriorMap(imap);
1745 
1746  for(i = 0; i < nbdry; ++i)
1747  {
1748  for(j = 0; j < nbdry; ++j)
1749  {
1750  (*A)(i,j) = mat(bmap[i],bmap[j]);
1751  }
1752 
1753  for(j = 0; j < nint; ++j)
1754  {
1755  (*B)(i,j) = mat(bmap[i],imap[j]);
1756  }
1757  }
1758 
1759  for(i = 0; i < nint; ++i)
1760  {
1761  for(j = 0; j < nbdry; ++j)
1762  {
1763  (*C)(i,j) = mat(imap[i],bmap[j]);
1764  }
1765 
1766  for(j = 0; j < nint; ++j)
1767  {
1768  (*D)(i,j) = mat(imap[i],imap[j]);
1769  }
1770  }
1771 
1772  // Calculate static condensed system
1773  if(nint)
1774  {
1775  D->Invert();
1776  (*B) = (*B)*(*D);
1777  (*A) = (*A) - (*B)*(*C);
1778  }
1779 
1780  DNekScalMatSharedPtr Atmp;
1781 
1782  returnval->SetBlock(0,0,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(factor,A));
1783  returnval->SetBlock(0,1,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,B));
1784  returnval->SetBlock(1,0,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(factor,C));
1785  returnval->SetBlock(1,1,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(invfactor,D));
1786 
1787  }
1788  }
1789  return returnval;
1790  }
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:131
boost::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:70
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
DNekBlkMatSharedPtr GetStdStaticCondMatrix(const StdMatrixKey &mkey)
Definition: StdExpansion.h:711
boost::shared_ptr< DNekScalBlkMat > DNekScalBlkMatSharedPtr
Definition: NekTypeDefs.hpp:74
void GetInteriorMap(Array< OneD, unsigned int > &outarray)
Definition: StdExpansion.h:819
double NekDouble
boost::shared_ptr< DNekBlkMat > DNekBlkMatSharedPtr
Definition: NekTypeDefs.hpp:72
DNekScalMatSharedPtr GetLocMatrix(const LocalRegions::MatrixKey &mkey)
Definition: Expansion.cpp:85
#define ASSERTL2(condition, msg)
Assert Level 2 – Debugging which is used FULLDEBUG compilation mode. This level assert is designed t...
Definition: ErrorUtil.hpp:250
Geometry is curved or has non-constant factors.
NekMatrix< NekMatrix< NekDouble, StandardMatrixTag >, ScaledMatrixTag > DNekScalMat
void GetBoundaryMap(Array< OneD, unsigned int > &outarray)
Definition: StdExpansion.h:814
void Nektar::LocalRegions::HexExp::IProductWRTDerivBase_MatOp ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protected

Definition at line 492 of file HexExp.cpp.

References ASSERTL1, Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::StdRegions::eIProductWRTDerivBase0, Nektar::StdRegions::eIProductWRTDerivBase1, Nektar::StdRegions::eIProductWRTDerivBase2, Nektar::StdRegions::StdExpansion::GetTotPoints(), m_matrixManager, and Nektar::StdRegions::StdExpansion::m_ncoeffs.

496  {
497  int nq = GetTotPoints();
499 
500  switch(dir)
501  {
502  case 0:
503  {
505  }
506  break;
507  case 1:
508  {
510  }
511  break;
512  case 2:
513  {
515  }
516  break;
517  default:
518  {
519  ASSERTL1(false,"input dir is out of range");
520  }
521  break;
522  }
523 
524  MatrixKey iprodmatkey(mtype,DetShapeType(),*this);
525  DNekScalMatSharedPtr iprodmat = m_matrixManager[iprodmatkey];
526 
527  Blas::Dgemv('N',m_ncoeffs,nq,iprodmat->Scale(),(iprodmat->GetOwnedMatrix())->GetPtr().get(),
528  m_ncoeffs, inarray.get(), 1, 0.0, outarray.get(), 1);
529  }
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
Definition: StdExpansion.h:470
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:141
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: HexExp.h:266
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:228
void Nektar::LocalRegions::HexExp::IProductWRTDerivBase_SumFac ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protected

Calculates the inner product $ I_{pqr} = (u, \partial_{x_i} \phi_{pqr}) $.

The derivative of the basis functions is performed using the chain rule in order to incorporate the geometric factors. Assuming that the basis functions are a tensor product $\phi_{pqr}(\xi_1,\xi_2,\xi_3) = \phi_1(\xi_1)\phi_2(\xi_2)\phi_3(\xi_3)$, in the hexahedral element, this is straightforward and yields the result

\[ I_{pqr} = \sum_{k=1}^3 \left(u, \frac{\partial u}{\partial \xi_k} \frac{\partial \xi_k}{\partial x_i}\right) \]

Parameters
dirDirection in which to take the derivative.
inarrayThe function $ u $.
outarrayValue of the inner product.

Definition at line 430 of file HexExp.cpp.

References ASSERTL1, Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion3D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::StdRegions::StdExpansion::m_ncoeffs, Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric(), Vmath::Smul(), Vmath::Vadd(), and Vmath::Vmul().

Referenced by v_IProductWRTDerivBase().

434  {
435  ASSERTL1((dir==0)||(dir==1)||(dir==2),"Invalid direction.");
436 
437  const int nq0 = m_base[0]->GetNumPoints();
438  const int nq1 = m_base[1]->GetNumPoints();
439  const int nq2 = m_base[2]->GetNumPoints();
440  const int nq = nq0*nq1*nq2;
441  const int nm0 = m_base[0]->GetNumModes();
442  const int nm1 = m_base[1]->GetNumModes();
443 
444  const Array<TwoD, const NekDouble>& df =
445  m_metricinfo->GetDerivFactors(GetPointsKeys());
446 
447  Array<OneD, NekDouble> alloc(4*nq + m_ncoeffs + nm0*nq2*(nq1+nm1));
448  Array<OneD, NekDouble> tmp1 (alloc); // Quad metric
449  Array<OneD, NekDouble> tmp2 (alloc + nq); // Dir1 metric
450  Array<OneD, NekDouble> tmp3 (alloc + 2*nq); // Dir2 metric
451  Array<OneD, NekDouble> tmp4 (alloc + 3*nq); // Dir3 metric
452  Array<OneD, NekDouble> tmp5 (alloc + 4*nq); // iprod tmp
453  Array<OneD, NekDouble> wsp (tmp5 + m_ncoeffs); // Wsp
454 
455  MultiplyByQuadratureMetric(inarray, tmp1);
456 
457  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
458  {
459  Vmath::Vmul(nq,&df[3*dir][0], 1,tmp1.get(),1,tmp2.get(),1);
460  Vmath::Vmul(nq,&df[3*dir+1][0],1,tmp1.get(),1,tmp3.get(),1);
461  Vmath::Vmul(nq,&df[3*dir+2][0],1,tmp1.get(),1,tmp4.get(),1);
462  }
463  else
464  {
465  Vmath::Smul(nq, df[3*dir][0], tmp1.get(),1,tmp2.get(), 1);
466  Vmath::Smul(nq, df[3*dir+1][0],tmp1.get(),1,tmp3.get(), 1);
467  Vmath::Smul(nq, df[3*dir+2][0],tmp1.get(),1,tmp4.get(), 1);
468  }
469 
470  IProductWRTBase_SumFacKernel(m_base[0]->GetDbdata(),
471  m_base[1]->GetBdata(),
472  m_base[2]->GetBdata(),
473  tmp2,outarray,wsp,
474  false,true,true);
475 
476  IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(),
477  m_base[1]->GetDbdata(),
478  m_base[2]->GetBdata(),
479  tmp3,tmp5,wsp,
480  true,false,true);
481  Vmath::Vadd(m_ncoeffs, tmp5, 1, outarray, 1, outarray, 1);
482 
483  IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(),
484  m_base[1]->GetBdata(),
485  m_base[2]->GetDbdata(),
486  tmp4,tmp5,wsp,
487  true,true,false);
488  Vmath::Vadd(m_ncoeffs, tmp5, 1, outarray, 1, outarray, 1);
489  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:947
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:131
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:213
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:228
Array< OneD, LibUtilities::BasisSharedPtr > m_base
Geometry is curved or has non-constant factors.
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:299
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:183
void Nektar::LocalRegions::HexExp::v_ComputeFaceNormal ( const int  face)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 845 of file HexExp.cpp.

References ASSERTL0, Nektar::StdRegions::StdExpansion::DetFaceBasisKey(), Nektar::SpatialDomains::eMovingRegular, Nektar::SpatialDomains::eRegular, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetCoordim(), Nektar::LocalRegions::Expansion::GetGeom(), Nektar::LibUtilities::BasisKey::GetNumPoints(), Nektar::LibUtilities::BasisKey::GetPointsKey(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::LibUtilities::Interp2D(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion3D::m_faceNormals, Vmath::Sdiv(), Vmath::Vmul(), Vmath::Vsqrt(), Vmath::Vvtvp(), and Vmath::Zero().

846  {
847  int i;
848  const SpatialDomains::GeomFactorsSharedPtr & geomFactors =
849  GetGeom()->GetMetricInfo();
850  SpatialDomains::GeomType type = geomFactors->GetGtype();
852  const Array<TwoD, const NekDouble> & df = geomFactors->GetDerivFactors(ptsKeys);
853  const Array<OneD, const NekDouble> & jac = geomFactors->GetJac(ptsKeys);
854 
855  LibUtilities::BasisKey tobasis0 = DetFaceBasisKey(face,0);
856  LibUtilities::BasisKey tobasis1 = DetFaceBasisKey(face,1);
857 
858  // Number of quadrature points in face expansion.
859  int nq_face = tobasis0.GetNumPoints()*tobasis1.GetNumPoints();
860 
861  int vCoordDim = GetCoordim();
862 
863  m_faceNormals[face] = Array<OneD, Array<OneD, NekDouble> >(vCoordDim);
864  Array<OneD, Array<OneD, NekDouble> > &normal = m_faceNormals[face];
865  for (i = 0; i < vCoordDim; ++i)
866  {
867  normal[i] = Array<OneD, NekDouble>(nq_face);
868  }
869  // Regular geometry case
871  {
872  NekDouble fac;
873  // Set up normals
874  switch(face)
875  {
876  case 0:
877  for(i = 0; i < vCoordDim; ++i)
878  {
879  normal[i][0] = -df[3*i+2][0];
880  }
881  break;
882  case 1:
883  for(i = 0; i < vCoordDim; ++i)
884  {
885  normal[i][0] = -df[3*i+1][0];
886  }
887  break;
888  case 2:
889  for(i = 0; i < vCoordDim; ++i)
890  {
891  normal[i][0] = df[3*i][0];
892  }
893  break;
894  case 3:
895  for(i = 0; i < vCoordDim; ++i)
896  {
897  normal[i][0] = df[3*i+1][0];
898  }
899  break;
900  case 4:
901  for(i = 0; i < vCoordDim; ++i)
902  {
903  normal[i][0] = -df[3*i][0];
904  }
905  break;
906  case 5:
907  for(i = 0; i < vCoordDim; ++i)
908  {
909  normal[i][0] = df[3*i+2][0];
910  }
911  break;
912  default:
913  ASSERTL0(false,"face is out of range (edge < 5)");
914  }
915 
916  // normalise
917  fac = 0.0;
918  for(i =0 ; i < vCoordDim; ++i)
919  {
920  fac += normal[i][0]*normal[i][0];
921  }
922  fac = 1.0/sqrt(fac);
923  for (i = 0; i < vCoordDim; ++i)
924  {
925  Vmath::Fill(nq_face,fac*normal[i][0],normal[i],1);
926  }
927 
928  }
929  else // Set up deformed normals
930  {
931  int j, k;
932 
933  int nqe0 = m_base[0]->GetNumPoints();
934  int nqe1 = m_base[1]->GetNumPoints();
935  int nqe2 = m_base[2]->GetNumPoints();
936  int nqe01 = nqe0*nqe1;
937  int nqe02 = nqe0*nqe2;
938  int nqe12 = nqe1*nqe2;
939 
940  int nqe;
941  if (face == 0 || face == 5)
942  {
943  nqe = nqe01;
944  }
945  else if (face == 1 || face == 3)
946  {
947  nqe = nqe02;
948  }
949  else
950  {
951  nqe = nqe12;
952  }
953 
954  LibUtilities::PointsKey points0;
955  LibUtilities::PointsKey points1;
956 
957  Array<OneD, NekDouble> faceJac(nqe);
958  Array<OneD, NekDouble> normals(vCoordDim*nqe,0.0);
959 
960  // Extract Jacobian along face and recover local
961  // derivates (dx/dr) for polynomial interpolation by
962  // multiplying m_gmat by jacobian
963  switch(face)
964  {
965  case 0:
966  for(j = 0; j < nqe; ++j)
967  {
968  normals[j] = -df[2][j]*jac[j];
969  normals[nqe+j] = -df[5][j]*jac[j];
970  normals[2*nqe+j] = -df[8][j]*jac[j];
971  faceJac[j] = jac[j];
972  }
973 
974  points0 = ptsKeys[0];
975  points1 = ptsKeys[1];
976  break;
977  case 1:
978  for (j = 0; j < nqe0; ++j)
979  {
980  for(k = 0; k < nqe2; ++k)
981  {
982  int idx = j + nqe01*k;
983  normals[j+k*nqe0] = -df[1][idx]*jac[idx];
984  normals[nqe+j+k*nqe0] = -df[4][idx]*jac[idx];
985  normals[2*nqe+j+k*nqe0] = -df[7][idx]*jac[idx];
986  faceJac[j+k*nqe0] = jac[idx];
987  }
988  }
989  points0 = ptsKeys[0];
990  points1 = ptsKeys[2];
991  break;
992  case 2:
993  for (j = 0; j < nqe1; ++j)
994  {
995  for(k = 0; k < nqe2; ++k)
996  {
997  int idx = nqe0-1+nqe0*j+nqe01*k;
998  normals[j+k*nqe1] = df[0][idx]*jac[idx];
999  normals[nqe+j+k*nqe1] = df[3][idx]*jac[idx];
1000  normals[2*nqe+j+k*nqe1] = df[6][idx]*jac[idx];
1001  faceJac[j+k*nqe1] = jac[idx];
1002  }
1003  }
1004  points0 = ptsKeys[1];
1005  points1 = ptsKeys[2];
1006  break;
1007  case 3:
1008  for (j = 0; j < nqe0; ++j)
1009  {
1010  for(k = 0; k < nqe2; ++k)
1011  {
1012  int idx = nqe0*(nqe1-1)+j+nqe01*k;
1013  normals[j+k*nqe0] = df[1][idx]*jac[idx];
1014  normals[nqe+j+k*nqe0] = df[4][idx]*jac[idx];
1015  normals[2*nqe+j+k*nqe0] = df[7][idx]*jac[idx];
1016  faceJac[j+k*nqe0] = jac[idx];
1017  }
1018  }
1019  points0 = ptsKeys[0];
1020  points1 = ptsKeys[2];
1021  break;
1022  case 4:
1023  for (j = 0; j < nqe1; ++j)
1024  {
1025  for(k = 0; k < nqe2; ++k)
1026  {
1027  int idx = j*nqe0+nqe01*k;
1028  normals[j+k*nqe1] = -df[0][idx]*jac[idx];
1029  normals[nqe+j+k*nqe1] = -df[3][idx]*jac[idx];
1030  normals[2*nqe+j+k*nqe1] = -df[6][idx]*jac[idx];
1031  faceJac[j+k*nqe1] = jac[idx];
1032  }
1033  }
1034  points0 = ptsKeys[1];
1035  points1 = ptsKeys[2];
1036  break;
1037  case 5:
1038  for (j = 0; j < nqe01; ++j)
1039  {
1040  int idx = j+nqe01*(nqe2-1);
1041  normals[j] = df[2][idx]*jac[idx];
1042  normals[nqe+j] = df[5][idx]*jac[idx];
1043  normals[2*nqe+j] = df[8][idx]*jac[idx];
1044  faceJac[j] = jac[idx];
1045  }
1046  points0 = ptsKeys[0];
1047  points1 = ptsKeys[1];
1048  break;
1049  default:
1050  ASSERTL0(false,"face is out of range (face < 5)");
1051  }
1052 
1053  Array<OneD, NekDouble> work (nq_face, 0.0);
1054  // Interpolate Jacobian and invert
1055  LibUtilities::Interp2D(points0, points1, faceJac,
1056  tobasis0.GetPointsKey(),
1057  tobasis1.GetPointsKey(),
1058  work);
1059 
1060  Vmath::Sdiv(nq_face,1.0,&work[0],1,&work[0],1);
1061 
1062  // interpolate
1063  for(i = 0; i < GetCoordim(); ++i)
1064  {
1065  LibUtilities::Interp2D(points0, points1,
1066  &normals[i*nqe],
1067  tobasis0.GetPointsKey(),
1068  tobasis1.GetPointsKey(),
1069  &normal[i][0]);
1070  Vmath::Vmul(nq_face,work,1,normal[i],1,normal[i],1);
1071  }
1072 
1073  //normalise normal vectors
1074  Vmath::Zero(nq_face,work,1);
1075  for(i = 0; i < GetCoordim(); ++i)
1076  {
1077  Vmath::Vvtvp(nq_face,normal[i],1, normal[i],1,work,1,work,1);
1078  }
1079 
1080  Vmath::Vsqrt(nq_face,work,1,work,1);
1081  Vmath::Sdiv(nq_face,1.0,work,1,work,1);
1082 
1083  for(i = 0; i < GetCoordim(); ++i)
1084  {
1085  Vmath::Vmul(nq_face,normal[i],1,work,1,normal[i],1);
1086  }
1087  }
1088  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:198
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:242
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
Definition: Vmath.cpp:408
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:46
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:442
void Sdiv(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha/y.
Definition: Vmath.cpp:271
void Interp2D(const BasisKey &fbasis0, const BasisKey &fbasis1, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, const BasisKey &tbasis1, Array< OneD, NekDouble > &to)
this function interpolates a 2D function evaluated at the quadrature points of the 2D basis...
Definition: Interp.cpp:116
double NekDouble
std::map< int, NormalVector > m_faceNormals
SpatialDomains::GeometrySharedPtr GetGeom() const
Definition: Expansion.cpp:161
boost::shared_ptr< GeomFactors > GeomFactorsSharedPtr
Pointer to a GeomFactors object.
Definition: GeomFactors.h:62
Geometry is straight-sided with constant geometric factors.
const LibUtilities::BasisKey DetFaceBasisKey(const int i, const int k) const
Definition: StdExpansion.h:324
GeomType
Indicates the type of element geometry.
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:373
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:183
void Nektar::LocalRegions::HexExp::v_ComputeLaplacianMetric ( )
protectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 1874 of file HexExp.cpp.

References Nektar::LocalRegions::Expansion::ComputeQuadratureMetric(), Nektar::SpatialDomains::eDeformed, Nektar::LocalRegions::eMetricLaplacian00, Nektar::LocalRegions::eMetricLaplacian01, Nektar::LocalRegions::eMetricLaplacian02, Nektar::LocalRegions::eMetricLaplacian11, Nektar::LocalRegions::eMetricLaplacian12, Nektar::LocalRegions::eMetricLaplacian22, Nektar::LocalRegions::eMetricQuadrature, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::GetTotPoints(), Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::LocalRegions::Expansion::m_metrics, Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric(), and Vmath::Vcopy().

1875  {
1876  if (m_metrics.count(eMetricQuadrature) == 0)
1877  {
1879  }
1880 
1881  const SpatialDomains::GeomType type = m_metricinfo->GetGtype();
1882  const unsigned int nqtot = GetTotPoints();
1883  const unsigned int dim = 3;
1887  };
1888 
1889  for (unsigned int i = 0; i < dim; ++i)
1890  {
1891  for (unsigned int j = i; j < dim; ++j)
1892  {
1893  m_metrics[m[i][j]] = Array<OneD, NekDouble>(nqtot);
1894  const Array<TwoD, const NekDouble> &gmat =
1895  m_metricinfo->GetGmat(GetPointsKeys());
1896  if (type == SpatialDomains::eDeformed)
1897  {
1898  Vmath::Vcopy(nqtot, &gmat[i*dim+j][0], 1,
1899  &m_metrics[m[i][j]][0], 1);
1900  }
1901  else
1902  {
1903  Vmath::Fill(nqtot, gmat[i*dim+j][0],
1904  &m_metrics[m[i][j]][0], 1);
1905  }
1907  m_metrics[m[i][j]]);
1908 
1909  }
1910  }
1911  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:947
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:46
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:131
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:141
GeomType
Indicates the type of element geometry.
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1061
Geometry is curved or has non-constant factors.
DNekMatSharedPtr Nektar::LocalRegions::HexExp::v_CreateStdMatrix ( const StdRegions::StdMatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 1340 of file HexExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and Nektar::StdRegions::StdExpansion::m_base.

1342  {
1343  LibUtilities::BasisKey bkey0 = m_base[0]->GetBasisKey();
1344  LibUtilities::BasisKey bkey1 = m_base[1]->GetBasisKey();
1345  LibUtilities::BasisKey bkey2 = m_base[2]->GetBasisKey();
1346 
1348  ::AllocateSharedPtr(bkey0,bkey1,bkey2);
1349 
1350  return tmp->GetStdMatrix(mkey);
1351  }
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
boost::shared_ptr< StdHexExp > StdHexExpSharedPtr
Definition: StdHexExp.h:290
Array< OneD, LibUtilities::BasisSharedPtr > m_base
LibUtilities::ShapeType Nektar::LocalRegions::HexExp::v_DetShapeType ( ) const
protectedvirtual

Return the region shape using the enum-list of ShapeType.

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 622 of file HexExp.cpp.

References Nektar::LibUtilities::eHexahedron.

void Nektar::LocalRegions::HexExp::v_DropLocStaticCondMatrix ( const MatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1805 of file HexExp.cpp.

References m_staticCondMatrixManager.

1806  {
1807  m_staticCondMatrixManager.DeleteObject(mkey);
1808  }
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: HexExp.h:267
void Nektar::LocalRegions::HexExp::v_ExtractDataToCoeffs ( const NekDouble data,
const std::vector< unsigned int > &  nummodes,
const int  mode_offset,
NekDouble coeffs,
std::vector< LibUtilities::BasisType > &  fromType 
)
protectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 628 of file HexExp.cpp.

References ASSERTL0, ASSERTL1, Nektar::StdRegions::StdExpansion::BwdTrans(), Nektar::LibUtilities::eModified_A, Nektar::StdRegions::StdExpansion::FwdTrans(), Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::StdRegions::StdExpansion::GetNcoeffs(), Nektar::StdRegions::StdExpansion::GetTotPoints(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, Vmath::Vcopy(), and Vmath::Zero().

634  {
635  int data_order0 = nummodes[mode_offset];
636  int fillorder0 = min(m_base[0]->GetNumModes(),data_order0);
637  int data_order1 = nummodes[mode_offset+1];
638  int order1 = m_base[1]->GetNumModes();
639  int fillorder1 = min(order1,data_order1);
640  int data_order2 = nummodes[mode_offset+2];
641  int order2 = m_base[2]->GetNumModes();
642  int fillorder2 = min(order2,data_order2);
643 
644  // Check if same basis
645  if (fromType[0] != m_base[0]->GetBasisType() ||
646  fromType[1] != m_base[1]->GetBasisType() ||
647  fromType[2] != m_base[2]->GetBasisType())
648  {
649  // Construct a hex with the appropriate basis type at our
650  // quadrature points, and one more to do a forwards
651  // transform. We can then copy the output to coeffs.
652  StdRegions::StdHexExp tmpHex(
653  LibUtilities::BasisKey(
654  fromType[0], data_order0, m_base[0]->GetPointsKey()),
655  LibUtilities::BasisKey(
656  fromType[1], data_order1, m_base[1]->GetPointsKey()),
657  LibUtilities::BasisKey(
658  fromType[2], data_order2, m_base[2]->GetPointsKey()));
659  StdRegions::StdHexExp tmpHex2(m_base[0]->GetBasisKey(),
660  m_base[1]->GetBasisKey(),
661  m_base[2]->GetBasisKey());
662 
663  Array<OneD, const NekDouble> tmpData(tmpHex.GetNcoeffs(), data);
664  Array<OneD, NekDouble> tmpBwd(tmpHex2.GetTotPoints());
665  Array<OneD, NekDouble> tmpOut(tmpHex2.GetNcoeffs());
666 
667  tmpHex.BwdTrans(tmpData, tmpBwd);
668  tmpHex2.FwdTrans(tmpBwd, tmpOut);
669  Vmath::Vcopy(tmpOut.num_elements(), &tmpOut[0], 1, coeffs, 1);
670 
671  return;
672  }
673 
674  switch(m_base[0]->GetBasisType())
675  {
677  {
678  int i,j;
679  int cnt = 0;
680  int cnt1 = 0;
681 
682  ASSERTL1(m_base[1]->GetBasisType() ==
684  "Extraction routine not set up for this basis");
685  ASSERTL1(m_base[2]->GetBasisType() ==
687  "Extraction routine not set up for this basis");
688 
689  Vmath::Zero(m_ncoeffs,coeffs,1);
690  for(j = 0; j < fillorder0; ++j)
691  {
692  for(i = 0; i < fillorder1; ++i)
693  {
694  Vmath::Vcopy(fillorder2, &data[cnt], 1,
695  &coeffs[cnt1], 1);
696  cnt += data_order2;
697  cnt1 += order2;
698  }
699 
700  // count out data for j iteration
701  for(i = fillorder1; i < data_order1; ++i)
702  {
703  cnt += data_order2;
704  }
705 
706  for(i = fillorder1; i < order1; ++i)
707  {
708  cnt1 += order2;
709  }
710  }
711  break;
712  }
713  default:
714  ASSERTL0(false, "basis is either not set up or not "
715  "hierarchicial");
716  }
717  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:198
Principle Modified Functions .
Definition: BasisType.h:49
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:165
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:373
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:228
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1061
void Nektar::LocalRegions::HexExp::v_FwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Forward transform from physical quadrature space stored in inarray and evaluate the expansion coefficients and store in (this)->_coeffs.

Parameters
inarrayInput array
outarrayOutput array

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 288 of file HexExp.cpp.

References Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::StdRegions::eInvMass, Nektar::eWrapper, Nektar::StdRegions::StdExpansion::GetNcoeffs(), Nektar::StdRegions::StdExpansion::IProductWRTBase(), Nektar::StdRegions::StdExpansion::m_base, m_matrixManager, Nektar::StdRegions::StdExpansion::m_ncoeffs, and Vmath::Vcopy().

291  {
292  if( m_base[0]->Collocation() && m_base[1]->Collocation()
293  && m_base[2]->Collocation())
294  {
295  Vmath::Vcopy(GetNcoeffs(),&inarray[0],1,&outarray[0],1);
296  }
297  else
298  {
299  IProductWRTBase(inarray,outarray);
300 
301  // get Mass matrix inverse
302  MatrixKey masskey(StdRegions::eInvMass,
303  DetShapeType(),*this);
304  DNekScalMatSharedPtr matsys = m_matrixManager[masskey];
305 
306  // copy inarray in case inarray == outarray
307  DNekVec in (m_ncoeffs,outarray);
308  DNekVec out(m_ncoeffs,outarray,eWrapper);
309 
310  out = (*matsys)*in;
311  }
312  }
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
Definition: StdExpansion.h:470
void IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
this function calculates the inner product of a given function f with the different modes of the expa...
Definition: StdExpansion.h:635
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
NekVector< NekDouble > DNekVec
Definition: NekTypeDefs.hpp:49
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: HexExp.h:266
int GetNcoeffs(void) const
This function returns the total number of coefficients used in the expansion.
Definition: StdExpansion.h:131
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1061
void Nektar::LocalRegions::HexExp::v_GeneralMatrixOp_MatOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 1156 of file HexExp.cpp.

References Nektar::LocalRegions::Expansion::GetLocMatrix(), Nektar::StdRegions::StdExpansion::m_ncoeffs, and Vmath::Vcopy().

1160  {
1161  //int nConsts = mkey.GetNconstants();
1162  DNekScalMatSharedPtr mat = GetLocMatrix(mkey);
1163 
1164 // switch(nConsts)
1165 // {
1166 // case 0:
1167 // {
1168 // mat = GetLocMatrix(mkey.GetMatrixType());
1169 // }
1170 // break;
1171 // case 1:
1172 // {
1173 // mat = GetLocMatrix(mkey.GetMatrixType(),mkey.GetConstant(0));
1174 // }
1175 // break;
1176 // case 2:
1177 // {
1178 // mat = GetLocMatrix(mkey.GetMatrixType(),mkey.GetConstant(0),mkey.GetConstant(1));
1179 // }
1180 // break;
1181 //
1182 // default:
1183 // {
1184 // NEKERROR(ErrorUtil::efatal, "Unknown number of constants");
1185 // }
1186 // break;
1187 // }
1188 
1189  if(inarray.get() == outarray.get())
1190  {
1191  Array<OneD,NekDouble> tmp(m_ncoeffs);
1192  Vmath::Vcopy(m_ncoeffs,inarray.get(),1,tmp.get(),1);
1193 
1194  Blas::Dgemv('N',m_ncoeffs,m_ncoeffs,mat->Scale(),(mat->GetOwnedMatrix())->GetPtr().get(),
1195  m_ncoeffs, tmp.get(), 1, 0.0, outarray.get(), 1);
1196  }
1197  else
1198  {
1199  Blas::Dgemv('N',m_ncoeffs,m_ncoeffs,mat->Scale(),(mat->GetOwnedMatrix())->GetPtr().get(),
1200  m_ncoeffs, inarray.get(), 1, 0.0, outarray.get(), 1);
1201  }
1202  }
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
DNekScalMatSharedPtr GetLocMatrix(const LocalRegions::MatrixKey &mkey)
Definition: Expansion.cpp:85
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1061
DNekMatSharedPtr Nektar::LocalRegions::HexExp::v_GenMatrix ( const StdRegions::StdMatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 1316 of file HexExp.cpp.

References Nektar::StdRegions::eHybridDGHelmBndLam, Nektar::StdRegions::eHybridDGHelmholtz, Nektar::StdRegions::eHybridDGLamToQ0, Nektar::StdRegions::eHybridDGLamToQ1, Nektar::StdRegions::eHybridDGLamToQ2, Nektar::StdRegions::eHybridDGLamToU, Nektar::StdRegions::eInvLaplacianWithUnityMean, Nektar::StdRegions::StdMatrixKey::GetMatrixType(), and Nektar::LocalRegions::Expansion3D::v_GenMatrix().

1318  {
1319  DNekMatSharedPtr returnval;
1320 
1321  switch(mkey.GetMatrixType())
1322  {
1330  returnval = Expansion3D::v_GenMatrix(mkey);
1331  break;
1332  default:
1333  returnval = StdHexExp::v_GenMatrix(mkey);
1334  }
1335 
1336  return returnval;
1337  }
boost::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:70
virtual DNekMatSharedPtr v_GenMatrix(const StdRegions::StdMatrixKey &mkey)
void Nektar::LocalRegions::HexExp::v_GetCoord ( const Array< OneD, const NekDouble > &  Lcoords,
Array< OneD, NekDouble > &  coords 
)
protectedvirtual

Retrieves the physical coordinates of a given set of reference coordinates.

Parameters
LcoordsLocal coordinates in reference space.
coordsCorresponding coordinates in physical space.

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 590 of file HexExp.cpp.

References ASSERTL1, and Nektar::LocalRegions::Expansion::m_geom.

593  {
594  int i;
595 
596  ASSERTL1(Lcoords[0] >= -1.0 && Lcoords[0] <= 1.0 &&
597  Lcoords[1] >= -1.0 && Lcoords[1] <= 1.0 &&
598  Lcoords[2] >= -1.0 && Lcoords[2] <= 1.0,
599  "Local coordinates are not in region [-1,1]");
600 
601  m_geom->FillGeom();
602 
603  for(i = 0; i < m_geom->GetCoordim(); ++i)
604  {
605  coords[i] = m_geom->GetCoord(i,Lcoords);
606  }
607  }
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:130
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:228
void Nektar::LocalRegions::HexExp::v_GetCoords ( Array< OneD, NekDouble > &  coords_1,
Array< OneD, NekDouble > &  coords_2,
Array< OneD, NekDouble > &  coords_3 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 609 of file HexExp.cpp.

References Nektar::LocalRegions::Expansion::v_GetCoords().

613  {
614  Expansion::v_GetCoords(coords_0, coords_1, coords_2);
615  }
virtual void v_GetCoords(Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3)
Definition: Expansion.cpp:224
bool Nektar::LocalRegions::HexExp::v_GetFaceDGForwards ( const int  i) const
protectedvirtual
void Nektar::LocalRegions::HexExp::v_GetFacePhysMap ( const int  face,
Array< OneD, int > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 729 of file HexExp.cpp.

References ASSERTL0, and Nektar::StdRegions::StdExpansion::m_base.

731  {
732  int nquad0 = m_base[0]->GetNumPoints();
733  int nquad1 = m_base[1]->GetNumPoints();
734  int nquad2 = m_base[2]->GetNumPoints();
735 
736  int nq0 = 0;
737  int nq1 = 0;
738 
739  switch(face)
740  {
741  case 0:
742  nq0 = nquad0;
743  nq1 = nquad1;
744 
745  //Directions A and B positive
746  if(outarray.num_elements()!=nq0*nq1)
747  {
748  outarray = Array<OneD, int>(nq0*nq1);
749  }
750 
751  for (int i = 0; i < nquad0*nquad1; ++i)
752  {
753  outarray[i] = i;
754  }
755 
756  break;
757  case 1:
758  nq0 = nquad0;
759  nq1 = nquad2;
760  //Direction A and B positive
761  if(outarray.num_elements()!=nq0*nq1)
762  {
763  outarray = Array<OneD, int>(nq0*nq1);
764  }
765 
766  //Direction A and B positive
767  for (int k = 0; k < nquad2; k++)
768  {
769  for(int i = 0; i < nquad0; ++i)
770  {
771  outarray[k*nquad0 + i] = nquad0*nquad1*k + i;
772  }
773  }
774  break;
775  case 2:
776  nq0 = nquad1;
777  nq1 = nquad2;
778 
779  //Direction A and B positive
780  if(outarray.num_elements()!=nq0*nq1)
781  {
782  outarray = Array<OneD, int>(nq0*nq1);
783  }
784 
785  for (int i = 0; i < nquad1*nquad2; i++)
786  {
787  outarray[i] = nquad0-1 + i*nquad0;
788  }
789  break;
790  case 3:
791  nq0 = nquad0;
792  nq1 = nquad2;
793 
794  //Direction A and B positive
795  if(outarray.num_elements()!=nq0*nq1)
796  {
797  outarray = Array<OneD, int>(nq0*nq1);
798  }
799 
800  for (int k = 0; k < nquad2; k++)
801  {
802  for (int i = 0; i < nquad0; i++)
803  {
804  outarray[k*nquad0 + i] = (nquad0*(nquad1-1))+(k*nquad0*nquad1) + i;
805  }
806  }
807  break;
808  case 4:
809  nq0 = nquad1;
810  nq1 = nquad2;
811 
812  //Direction A and B positive
813  if(outarray.num_elements()!=nq0*nq1)
814  {
815  outarray = Array<OneD, int>(nq0*nq1);
816  }
817 
818  for (int i = 0; i < nquad1*nquad2; i++)
819  {
820  outarray[i] = i*nquad0;
821  }
822  break;
823  case 5:
824  nq0 = nquad0;
825  nq1 = nquad1;
826  //Directions A and B positive
827  if(outarray.num_elements()!=nq0*nq1)
828  {
829  outarray = Array<OneD, int>(nq0*nq1);
830  }
831 
832  for (int i = 0; i < nquad0*nquad1; i++)
833  {
834  outarray[i] = nquad0*nquad1*(nquad2-1) + i;
835  }
836 
837  break;
838  default:
839  ASSERTL0(false,"face value (> 5) is out of range");
840  break;
841  }
842 
843  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:198
Array< OneD, LibUtilities::BasisSharedPtr > m_base
StdRegions::StdExpansionSharedPtr Nektar::LocalRegions::HexExp::v_GetLinStdExp ( void  ) const
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 570 of file HexExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), Nektar::StdRegions::StdExpansion::GetBasisType(), and Nektar::StdRegions::StdExpansion::m_base.

571  {
572  LibUtilities::BasisKey bkey0(m_base[0]->GetBasisType(),
573  2, m_base[0]->GetPointsKey());
574  LibUtilities::BasisKey bkey1(m_base[1]->GetBasisType(),
575  2, m_base[1]->GetPointsKey());
576  LibUtilities::BasisKey bkey2(m_base[2]->GetBasisType(),
577  2, m_base[2]->GetPointsKey());
578 
580  ::AllocateSharedPtr( bkey0, bkey1, bkey2);
581  }
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:165
Array< OneD, LibUtilities::BasisSharedPtr > m_base
DNekScalMatSharedPtr Nektar::LocalRegions::HexExp::v_GetLocMatrix ( const MatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 1793 of file HexExp.cpp.

References m_matrixManager.

1794  {
1795  return m_matrixManager[mkey];
1796  }
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: HexExp.h:266
DNekScalBlkMatSharedPtr Nektar::LocalRegions::HexExp::v_GetLocStaticCondMatrix ( const MatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1799 of file HexExp.cpp.

References m_staticCondMatrixManager.

1801  {
1802  return m_staticCondMatrixManager[mkey];
1803  }
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: HexExp.h:267
StdRegions::StdExpansionSharedPtr Nektar::LocalRegions::HexExp::v_GetStdExp ( void  ) const
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 561 of file HexExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and Nektar::StdRegions::StdExpansion::m_base.

562  {
564  ::AllocateSharedPtr(m_base[0]->GetBasisKey(),
565  m_base[1]->GetBasisKey(),
566  m_base[2]->GetBasisKey());
567  }
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Nektar::LocalRegions::HexExp::v_HelmholtzMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 1147 of file HexExp.cpp.

References Nektar::StdRegions::StdExpansion3D::v_HelmholtzMatrixOp_MatFree().

1151  {
1152  HexExp::v_HelmholtzMatrixOp_MatFree(inarray,outarray,mkey);
1153  }
virtual void v_HelmholtzMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
NekDouble Nektar::LocalRegions::HexExp::v_Integral ( const Array< OneD, const NekDouble > &  inarray)
protectedvirtual

Integrate the physical point list inarray over region.

Parameters
inarraydefinition of function to be returned at quadrature points of expansion.
Returns
$\int^1_{-1}\int^1_{-1} \int^1_{-1} u(\eta_1, \eta_2, \eta_3) J[i,j,k] d \eta_1 d \eta_2 d \eta_3 $ where $inarray[i,j,k] = u(\eta_{1i},\eta_{2j},\eta_{3k}) $ and $ J[i,j,k] $ is the Jacobian evaluated at the quadrature point.

Reimplemented from Nektar::StdRegions::StdExpansion3D.

Definition at line 116 of file HexExp.cpp.

References Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Smul(), and Vmath::Vmul().

118  {
119  int nquad0 = m_base[0]->GetNumPoints();
120  int nquad1 = m_base[1]->GetNumPoints();
121  int nquad2 = m_base[2]->GetNumPoints();
122  Array<OneD, const NekDouble> jac = m_metricinfo->GetJac(GetPointsKeys());
123  NekDouble returnVal;
124  Array<OneD,NekDouble> tmp(nquad0*nquad1*nquad2);
125 
126  // multiply inarray with Jacobian
127 
128  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
129  {
130  Vmath::Vmul(nquad0*nquad1*nquad2,&jac[0],1,
131  (NekDouble*)&inarray[0],1,&tmp[0],1);
132  }
133  else
134  {
135  Vmath::Smul(nquad0*nquad1*nquad2,(NekDouble) jac[0],
136  (NekDouble*)&inarray[0],1,&tmp[0],1);
137  }
138 
139  // call StdHexExp version;
140  returnVal = StdHexExp::v_Integral(tmp);
141 
142  return returnVal;
143  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:131
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:213
double NekDouble
Array< OneD, LibUtilities::BasisSharedPtr > m_base
Geometry is curved or has non-constant factors.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:183
void Nektar::LocalRegions::HexExp::v_IProductWRTBase ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Calculate the inner product of inarray with respect to the elements basis.

Parameters
inarrayInput array of physical space data.
outarrayOutput array of data.

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 326 of file HexExp.cpp.

References v_IProductWRTBase_SumFac().

329  {
330  HexExp::v_IProductWRTBase_SumFac(inarray, outarray);
331  }
virtual void v_IProductWRTBase_SumFac(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
Calculate the inner product of inarray with respect to the given basis B = base0 * base1 * base2...
Definition: HexExp.cpp:365
void Nektar::LocalRegions::HexExp::v_IProductWRTBase_SumFac ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
bool  multiplybyweights = true 
)
protectedvirtual

Calculate the inner product of inarray with respect to the given basis B = base0 * base1 * base2.

$ \begin{array}{rcl} I_{pqr} = (\phi_{pqr}, u)_{\delta} & = & \sum_{i=0}^{nq_0} \sum_{j=0}^{nq_1} \sum_{k=0}^{nq_2} \psi_{p}^{a} (\xi_{1i}) \psi_{q}^{a} (\xi_{2j}) \psi_{r}^{a} (\xi_{3k}) w_i w_j w_k u(\xi_{1,i} \xi_{2,j} \xi_{3,k}) J_{i,j,k}\\ & = & \sum_{i=0}^{nq_0} \psi_p^a(\xi_{1,i}) \sum_{j=0}^{nq_1} \psi_{q}^a(\xi_{2,j}) \sum_{k=0}^{nq_2} \psi_{r}^a u(\xi_{1i},\xi_{2j},\xi_{3k}) J_{i,j,k} \end{array} $
where $ \phi_{pqr} (\xi_1 , \xi_2 , \xi_3) = \psi_p^a ( \xi_1) \psi_{q}^a (\xi_2) \psi_{r}^a (\xi_3) $
which can be implemented as
$f_{r} (\xi_{3k}) = \sum_{k=0}^{nq_3} \psi_{r}^a u(\xi_{1i},\xi_{2j},\xi_{3k}) J_{i,j,k} = {\bf B_3 U} $
$ g_{q} (\xi_{3k}) = \sum_{j=0}^{nq_1} \psi_{q}^a (\xi_{2j}) f_{r} (\xi_{3k}) = {\bf B_2 F} $
$ (\phi_{pqr}, u)_{\delta} = \sum_{k=0}^{nq_0} \psi_{p}^a (\xi_{3k}) g_{q} (\xi_{3k}) = {\bf B_1 G} $

Parameters
base0Basis to integrate wrt in first dimension.
base1Basis to integrate wrt in second dimension.
base2Basis to integrate wrt in third dimension.
inarrayInput array.
outarrayOutput array.
coll_check(not used)

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 365 of file HexExp.cpp.

References Nektar::StdRegions::StdExpansion3D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, and Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric().

Referenced by v_IProductWRTBase().

369  {
370  int nquad0 = m_base[0]->GetNumPoints();
371  int nquad1 = m_base[1]->GetNumPoints();
372  int nquad2 = m_base[2]->GetNumPoints();
373  int order0 = m_base[0]->GetNumModes();
374  int order1 = m_base[1]->GetNumModes();
375 
376  Array<OneD, NekDouble> wsp(nquad0*nquad1*(nquad2+order0) +
377  order0*order1*nquad2);
378 
379  if(multiplybyweights)
380  {
381  Array<OneD, NekDouble> tmp(inarray.num_elements());
382 
383  MultiplyByQuadratureMetric(inarray, tmp);
384  IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(),
385  m_base[1]->GetBdata(),
386  m_base[2]->GetBdata(),
387  tmp,outarray,wsp,
388  true,true,true);
389  }
390  else
391  {
392  IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(),
393  m_base[1]->GetBdata(),
394  m_base[2]->GetBdata(),
395  inarray,outarray,wsp,
396  true,true,true);
397 
398  }
399  }
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:947
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Nektar::LocalRegions::HexExp::v_IProductWRTDerivBase ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 401 of file HexExp.cpp.

References IProductWRTDerivBase_SumFac().

405  {
406  HexExp::IProductWRTDerivBase_SumFac(dir,inarray,outarray);
407  }
void IProductWRTDerivBase_SumFac(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Calculates the inner product .
Definition: HexExp.cpp:430
void Nektar::LocalRegions::HexExp::v_LaplacianMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 1101 of file HexExp.cpp.

References Nektar::StdRegions::StdExpansion3D::v_LaplacianMatrixOp_MatFree().

1105  {
1106  HexExp::v_LaplacianMatrixOp_MatFree(inarray,outarray,mkey);
1107  }
virtual void v_LaplacianMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
void Nektar::LocalRegions::HexExp::v_LaplacianMatrixOp ( const int  k1,
const int  k2,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 1109 of file HexExp.cpp.

1115  {
1116  StdExpansion::LaplacianMatrixOp_MatFree(k1,k2,inarray,outarray,
1117  mkey);
1118  }
void Nektar::LocalRegions::HexExp::v_LaplacianMatrixOp_MatFree_Kernel ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp 
)
privatevirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1810 of file HexExp.cpp.

References ASSERTL1, Nektar::LocalRegions::Expansion::ComputeLaplacianMetric(), Nektar::LocalRegions::eMetricLaplacian00, Nektar::LocalRegions::eMetricLaplacian01, Nektar::LocalRegions::eMetricLaplacian02, Nektar::LocalRegions::eMetricLaplacian11, Nektar::LocalRegions::eMetricLaplacian12, Nektar::LocalRegions::eMetricLaplacian22, Nektar::StdRegions::StdExpansion3D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metrics, Nektar::StdRegions::StdExpansion::m_ncoeffs, Vmath::Vadd(), Vmath::Vvtvp(), and Vmath::Vvtvvtp().

1814  {
1815  // This implementation is only valid when there are no
1816  // coefficients associated to the Laplacian operator
1817  if (m_metrics.count(eMetricLaplacian00) == 0)
1818  {
1820  }
1821 
1822  int nquad0 = m_base[0]->GetNumPoints();
1823  int nquad1 = m_base[1]->GetNumPoints();
1824  int nquad2 = m_base[2]->GetNumPoints();
1825  int nqtot = nquad0*nquad1*nquad2;
1826 
1827  ASSERTL1(wsp.num_elements() >= 6*nqtot,
1828  "Insufficient workspace size.");
1829 
1830  const Array<OneD, const NekDouble>& base0 = m_base[0]->GetBdata();
1831  const Array<OneD, const NekDouble>& base1 = m_base[1]->GetBdata();
1832  const Array<OneD, const NekDouble>& base2 = m_base[2]->GetBdata();
1833  const Array<OneD, const NekDouble>& dbase0 = m_base[0]->GetDbdata();
1834  const Array<OneD, const NekDouble>& dbase1 = m_base[1]->GetDbdata();
1835  const Array<OneD, const NekDouble>& dbase2 = m_base[2]->GetDbdata();
1836  const Array<OneD, const NekDouble>& metric00 = m_metrics[eMetricLaplacian00];
1837  const Array<OneD, const NekDouble>& metric01 = m_metrics[eMetricLaplacian01];
1838  const Array<OneD, const NekDouble>& metric02 = m_metrics[eMetricLaplacian02];
1839  const Array<OneD, const NekDouble>& metric11 = m_metrics[eMetricLaplacian11];
1840  const Array<OneD, const NekDouble>& metric12 = m_metrics[eMetricLaplacian12];
1841  const Array<OneD, const NekDouble>& metric22 = m_metrics[eMetricLaplacian22];
1842 
1843  // Allocate temporary storage
1844  Array<OneD,NekDouble> wsp0(wsp);
1845  Array<OneD,NekDouble> wsp1(wsp+1*nqtot);
1846  Array<OneD,NekDouble> wsp2(wsp+2*nqtot);
1847  Array<OneD,NekDouble> wsp3(wsp+3*nqtot);
1848  Array<OneD,NekDouble> wsp4(wsp+4*nqtot);
1849  Array<OneD,NekDouble> wsp5(wsp+5*nqtot);
1850 
1851  StdExpansion3D::PhysTensorDeriv(inarray,wsp0,wsp1,wsp2);
1852 
1853  // wsp0 = k = g0 * wsp1 + g1 * wsp2 = g0 * du_dxi1 + g1 * du_dxi2
1854  // wsp2 = l = g1 * wsp1 + g2 * wsp2 = g0 * du_dxi1 + g1 * du_dxi2
1855  // where g0, g1 and g2 are the metric terms set up in the GeomFactors class
1856  // especially for this purpose
1857  Vmath::Vvtvvtp(nqtot,&metric00[0],1,&wsp0[0],1,&metric01[0],1,&wsp1[0],1,&wsp3[0],1);
1858  Vmath::Vvtvp (nqtot,&metric02[0],1,&wsp2[0],1,&wsp3[0],1,&wsp3[0],1);
1859  Vmath::Vvtvvtp(nqtot,&metric01[0],1,&wsp0[0],1,&metric11[0],1,&wsp1[0],1,&wsp4[0],1);
1860  Vmath::Vvtvp (nqtot,&metric12[0],1,&wsp2[0],1,&wsp4[0],1,&wsp4[0],1);
1861  Vmath::Vvtvvtp(nqtot,&metric02[0],1,&wsp0[0],1,&metric12[0],1,&wsp1[0],1,&wsp5[0],1);
1862  Vmath::Vvtvp (nqtot,&metric22[0],1,&wsp2[0],1,&wsp5[0],1,&wsp5[0],1);
1863 
1864  // outarray = m = (D_xi1 * B)^T * k
1865  // wsp1 = n = (D_xi2 * B)^T * l
1866  IProductWRTBase_SumFacKernel(dbase0,base1,base2,wsp3,outarray,wsp0,false,true,true);
1867  IProductWRTBase_SumFacKernel(base0,dbase1,base2,wsp4,wsp2, wsp0,true,false,true);
1868  Vmath::Vadd(m_ncoeffs,wsp2.get(),1,outarray.get(),1,outarray.get(),1);
1869  IProductWRTBase_SumFacKernel(base0,base1,dbase2,wsp5,wsp2, wsp0,true,true,false);
1870  Vmath::Vadd(m_ncoeffs,wsp2.get(),1,outarray.get(),1,outarray.get(),1);
1871  }
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:442
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
void Vvtvvtp(int n, const T *v, int incv, const T *w, int incw, const T *x, int incx, const T *y, int incy, T *z, int incz)
vvtvvtp (vector times vector plus vector times vector):
Definition: Vmath.cpp:537
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:228
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:299
void Nektar::LocalRegions::HexExp::v_MassLevelCurvatureMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1138 of file HexExp.cpp.

1142  {
1143  StdExpansion::MassLevelCurvatureMatrixOp_MatFree(inarray,
1144  outarray,mkey);
1145  }
void Nektar::LocalRegions::HexExp::v_MassMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 1093 of file HexExp.cpp.

1097  {
1098  StdExpansion::MassMatrixOp_MatFree(inarray,outarray,mkey);
1099  }
void Nektar::LocalRegions::HexExp::v_PhysDeriv ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out_d0,
Array< OneD, NekDouble > &  out_d1,
Array< OneD, NekDouble > &  out_d2 
)
protectedvirtual

Calculate the derivative of the physical points.

For Hexahedral region can use the Tensor_Deriv function defined under StdExpansion.

Parameters
inarrayInput array
out_d0Derivative of inarray in first direction.
out_d1Derivative of inarray in second direction.
out_d2Derivative of inarray in third direction.

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 159 of file HexExp.cpp.

References Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Smul(), Vmath::Vmul(), and Vmath::Vvtvp().

164  {
165  int nquad0 = m_base[0]->GetNumPoints();
166  int nquad1 = m_base[1]->GetNumPoints();
167  int nquad2 = m_base[2]->GetNumPoints();
168  int ntot = nquad0 * nquad1 * nquad2;
169 
170  Array<TwoD, const NekDouble> df =
171  m_metricinfo->GetDerivFactors(GetPointsKeys());
172  Array<OneD,NekDouble> Diff0 = Array<OneD,NekDouble>(ntot);
173  Array<OneD,NekDouble> Diff1 = Array<OneD,NekDouble>(ntot);
174  Array<OneD,NekDouble> Diff2 = Array<OneD,NekDouble>(ntot);
175 
176  StdHexExp::v_PhysDeriv(inarray, Diff0, Diff1, Diff2);
177 
178  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
179  {
180  if(out_d0.num_elements())
181  {
182  Vmath::Vmul (ntot,&df[0][0],1,&Diff0[0],1, &out_d0[0], 1);
183  Vmath::Vvtvp(ntot,&df[1][0],1,&Diff1[0],1, &out_d0[0], 1,
184  &out_d0[0],1);
185  Vmath::Vvtvp(ntot,&df[2][0],1,&Diff2[0],1, &out_d0[0], 1,
186  &out_d0[0],1);
187  }
188 
189  if(out_d1.num_elements())
190  {
191  Vmath::Vmul (ntot,&df[3][0],1,&Diff0[0],1, &out_d1[0], 1);
192  Vmath::Vvtvp(ntot,&df[4][0],1,&Diff1[0],1, &out_d1[0], 1,
193  &out_d1[0],1);
194  Vmath::Vvtvp(ntot,&df[5][0],1,&Diff2[0],1, &out_d1[0], 1,
195  &out_d1[0],1);
196  }
197 
198  if(out_d2.num_elements())
199  {
200  Vmath::Vmul (ntot,&df[6][0],1,&Diff0[0],1, &out_d2[0], 1);
201  Vmath::Vvtvp(ntot,&df[7][0],1,&Diff1[0],1, &out_d2[0], 1,
202  &out_d2[0],1);
203  Vmath::Vvtvp(ntot,&df[8][0],1,&Diff2[0],1, &out_d2[0], 1,
204  &out_d2[0],1);
205  }
206  }
207  else // regular geometry
208  {
209  if(out_d0.num_elements())
210  {
211  Vmath::Smul (ntot,df[0][0],&Diff0[0],1, &out_d0[0], 1);
212  Blas::Daxpy (ntot,df[1][0],&Diff1[0],1, &out_d0[0], 1);
213  Blas::Daxpy (ntot,df[2][0],&Diff2[0],1, &out_d0[0], 1);
214  }
215 
216  if(out_d1.num_elements())
217  {
218  Vmath::Smul (ntot,df[3][0],&Diff0[0],1, &out_d1[0], 1);
219  Blas::Daxpy (ntot,df[4][0],&Diff1[0],1, &out_d1[0], 1);
220  Blas::Daxpy (ntot,df[5][0],&Diff2[0],1, &out_d1[0], 1);
221  }
222 
223  if(out_d2.num_elements())
224  {
225  Vmath::Smul (ntot,df[6][0],&Diff0[0],1, &out_d2[0], 1);
226  Blas::Daxpy (ntot,df[7][0],&Diff1[0],1, &out_d2[0], 1);
227  Blas::Daxpy (ntot,df[8][0],&Diff2[0],1, &out_d2[0], 1);
228  }
229  }
230  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:442
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:131
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:213
Array< OneD, LibUtilities::BasisSharedPtr > m_base
Geometry is curved or has non-constant factors.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:183
void Nektar::LocalRegions::HexExp::v_PhysDeriv ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Calculate the derivative of the physical points in a single direction.

Parameters
dirDirection in which to compute derivative. Valid values are 0, 1, 2.
inarrayInput array.
outarrayOutput array.

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 242 of file HexExp.cpp.

References ASSERTL1, Nektar::NullNekDouble1DArray, and Nektar::StdRegions::StdExpansion::PhysDeriv().

246  {
247  switch(dir)
248  {
249  case 0:
250  {
251  PhysDeriv(inarray, outarray, NullNekDouble1DArray,
253  }
254  break;
255  case 1:
256  {
257  PhysDeriv(inarray, NullNekDouble1DArray, outarray,
259  }
260  break;
261  case 2:
262  {
264  NullNekDouble1DArray, outarray);
265  }
266  break;
267  default:
268  {
269  ASSERTL1(false,"input dir is out of range");
270  }
271  break;
272  }
273  }
static Array< OneD, NekDouble > NullNekDouble1DArray
void PhysDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:228
NekDouble Nektar::LocalRegions::HexExp::v_PhysEvaluate ( const Array< OneD, const NekDouble > &  coords,
const Array< OneD, const NekDouble > &  physvals 
)
protectedvirtual

This function evaluates the expansion at a single (arbitrary) point of the domain.

Based on the value of the expansion at the quadrature points, this function calculates the value of the expansion at an arbitrary single points (with coordinates $ \mathbf{x_c}$ given by the pointer coords). This operation, equivalent to

\[ u(\mathbf{x_c}) = \sum_p \phi_p(\mathbf{x_c}) \hat{u}_p \]

is evaluated using Lagrangian interpolants through the quadrature points:

\[ u(\mathbf{x_c}) = \sum_p h_p(\mathbf{x_c}) u_p\]

This function requires that the physical value array $\mathbf{u}$ (implemented as the attribute #phys) is set.

Parameters
coordsthe coordinates of the single point
Returns
returns the value of the expansion at the single point

Reimplemented from Nektar::StdRegions::StdExpansion3D.

Definition at line 550 of file HexExp.cpp.

References ASSERTL0, and Nektar::LocalRegions::Expansion::m_geom.

553  {
554  Array<OneD,NekDouble> Lcoord = Array<OneD,NekDouble>(3);
555 
556  ASSERTL0(m_geom,"m_geom not defined");
557  m_geom->GetLocCoords(coord,Lcoord);
558  return StdHexExp::v_PhysEvaluate(Lcoord, physvals);
559  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:198
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:130
void Nektar::LocalRegions::HexExp::v_ReduceOrderCoeffs ( int  numMin,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

This function is used to compute exactly the advective numerical flux on the interface of two elements with different expansions, hence an appropriate number of Gauss points has to be used. The number of Gauss points has to be equal to the number used by the highest polynomial degree of the two adjacent elements

Parameters
numMinIs the reduced polynomial order
inarrayInput array of coefficients
dumpVarOutput array of reduced coefficients.

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1215 of file HexExp.cpp.

References Nektar::LibUtilities::eGaussLobattoLegendre, Nektar::LibUtilities::eOrtho_A, Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::LibUtilities::InterpCoeff3D(), Nektar::StdRegions::StdExpansion::m_base, Vmath::Vcopy(), and Vmath::Zero().

1219  {
1220  int n_coeffs = inarray.num_elements();
1221  int nmodes0 = m_base[0]->GetNumModes();
1222  int nmodes1 = m_base[1]->GetNumModes();
1223  int nmodes2 = m_base[2]->GetNumModes();
1224  int numMax = nmodes0;
1225 
1226  Array<OneD, NekDouble> coeff (n_coeffs);
1227  Array<OneD, NekDouble> coeff_tmp1(nmodes0*nmodes1, 0.0);
1228  Array<OneD, NekDouble> coeff_tmp2(n_coeffs, 0.0);
1229  Array<OneD, NekDouble> tmp, tmp2, tmp3, tmp4;
1230 
1231  Vmath::Vcopy(n_coeffs,inarray,1,coeff_tmp2,1);
1232 
1233  const LibUtilities::PointsKey Pkey0(
1235  const LibUtilities::PointsKey Pkey1(
1237  const LibUtilities::PointsKey Pkey2(
1239 
1240  LibUtilities::BasisKey b0(
1241  m_base[0]->GetBasisType(), nmodes0, Pkey0);
1242  LibUtilities::BasisKey b1(
1243  m_base[1]->GetBasisType(), nmodes1, Pkey1);
1244  LibUtilities::BasisKey b2(
1245  m_base[2]->GetBasisType(), nmodes2, Pkey2);
1246  LibUtilities::BasisKey bortho0(
1247  LibUtilities::eOrtho_A, nmodes0, Pkey0);
1248  LibUtilities::BasisKey bortho1(
1249  LibUtilities::eOrtho_A, nmodes1, Pkey1);
1250  LibUtilities::BasisKey bortho2(
1251  LibUtilities::eOrtho_A, nmodes2, Pkey2);
1252 
1254  b0, b1, b2, coeff_tmp2,
1255  bortho0, bortho1, bortho2, coeff);
1256 
1257  Vmath::Zero(n_coeffs, coeff_tmp2, 1);
1258 
1259  int cnt = 0, cnt2 = 0;
1260 
1261  for (int u = 0; u < numMin+1; ++u)
1262  {
1263  for (int i = 0; i < numMin; ++i)
1264  {
1265  Vmath::Vcopy(numMin,
1266  tmp = coeff+cnt+cnt2,1,
1267  tmp2 = coeff_tmp1+cnt,1);
1268 
1269  cnt = i*numMax;
1270  }
1271 
1272  Vmath::Vcopy(nmodes0*nmodes1,
1273  tmp3 = coeff_tmp1,1,
1274  tmp4 = coeff_tmp2+cnt2,1);
1275 
1276  cnt2 = u*nmodes0*nmodes1;
1277  }
1278 
1280  bortho0, bortho1, bortho2, coeff_tmp2,
1281  b0, b1, b2, outarray);
1282  }
Principle Orthogonal Functions .
Definition: BasisType.h:46
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:165
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:373
void InterpCoeff3D(const BasisKey &fbasis0, const BasisKey &fbasis1, const BasisKey &fbasis2, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, const BasisKey &tbasis1, const BasisKey &tbasis2, Array< OneD, NekDouble > &to)
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1061
1D Gauss-Lobatto-Legendre quadrature points
Definition: PointsType.h:52
NekDouble Nektar::LocalRegions::HexExp::v_StdPhysEvaluate ( const Array< OneD, const NekDouble > &  Lcoord,
const Array< OneD, const NekDouble > &  physvals 
)
protectedvirtual

Given the local cartesian coordinate Lcoord evaluate the value of physvals at this point by calling through to the StdExpansion method

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 542 of file HexExp.cpp.

545  {
546  // Evaluate point in local coordinates.
547  return StdHexExp::v_PhysEvaluate(Lcoord,physvals);
548  }
void Nektar::LocalRegions::HexExp::v_SVVLaplacianFilter ( Array< OneD, NekDouble > &  array,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 1284 of file HexExp.cpp.

References Nektar::SpatialDomains::eDeformed, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::GetTotPoints(), Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Vdiv(), Vmath::Vmul(), and Vmath::Vsqrt().

1287  {
1288  int nq = GetTotPoints();
1289 
1290  // Calculate sqrt of the Jacobian
1291  Array<OneD, const NekDouble> jac =
1292  m_metricinfo->GetJac(GetPointsKeys());
1293  Array<OneD, NekDouble> sqrt_jac(nq);
1294  if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1295  {
1296  Vmath::Vsqrt(nq,jac,1,sqrt_jac,1);
1297  }
1298  else
1299  {
1300  Vmath::Fill(nq,sqrt(jac[0]),sqrt_jac,1);
1301  }
1302 
1303  // Multiply array by sqrt(Jac)
1304  Vmath::Vmul(nq,sqrt_jac,1,array,1,array,1);
1305 
1306  // Apply std region filter
1307  StdHexExp::v_SVVLaplacianFilter( array, mkey);
1308 
1309  // Divide by sqrt(Jac)
1310  Vmath::Vdiv(nq,array,1,sqrt_jac,1,array,1);
1311  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
Definition: Vmath.cpp:408
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:46
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:131
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:241
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:141
Geometry is curved or has non-constant factors.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:183
void Nektar::LocalRegions::HexExp::v_WeakDerivMatrixOp ( const int  i,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 1120 of file HexExp.cpp.

1125  {
1126  StdExpansion::WeakDerivMatrixOp_MatFree(i,inarray,outarray,mkey);
1127  }
void Nektar::LocalRegions::HexExp::v_WeakDirectionalDerivMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1129 of file HexExp.cpp.

1133  {
1134  StdExpansion::WeakDirectionalDerivMatrixOp_MatFree(inarray,
1135  outarray,mkey);
1136  }

Member Data Documentation

LibUtilities::NekManager<MatrixKey, DNekScalMat, MatrixKey::opLess> Nektar::LocalRegions::HexExp::m_matrixManager
private

Definition at line 266 of file HexExp.h.

Referenced by CreateMatrix(), IProductWRTDerivBase_MatOp(), v_FwdTrans(), and v_GetLocMatrix().

LibUtilities::NekManager<MatrixKey, DNekScalBlkMat, MatrixKey::opLess> Nektar::LocalRegions::HexExp::m_staticCondMatrixManager
private

Definition at line 267 of file HexExp.h.

Referenced by v_DropLocStaticCondMatrix(), and v_GetLocStaticCondMatrix().