Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
Public Member Functions | Static Public Member Functions | Static Public Attributes | Protected Member Functions | Protected Attributes | Private Attributes | Friends | List of all members
Nektar::UnsteadyAdvectionDiffusion Class Reference

#include <UnsteadyAdvectionDiffusion.h>

Inheritance diagram for Nektar::UnsteadyAdvectionDiffusion:
Inheritance graph
[legend]
Collaboration diagram for Nektar::UnsteadyAdvectionDiffusion:
Collaboration graph
[legend]

Public Member Functions

virtual ~UnsteadyAdvectionDiffusion ()
 Destructor. More...
 
- Public Member Functions inherited from Nektar::SolverUtils::AdvectionSystem
SOLVER_UTILS_EXPORT AdvectionSystem (const LibUtilities::SessionReaderSharedPtr &pSession)
 
virtual SOLVER_UTILS_EXPORT ~AdvectionSystem ()
 
AdvectionSharedPtr GetAdvObject ()
 Returns the advection object held by this instance. More...
 
- Public Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
virtual SOLVER_UTILS_EXPORT ~UnsteadySystem ()
 Destructor. More...
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Calculate the larger time-step mantaining the problem stable. More...
 
- Public Member Functions inherited from Nektar::SolverUtils::EquationSystem
virtual SOLVER_UTILS_EXPORT ~EquationSystem ()
 Destructor. More...
 
SOLVER_UTILS_EXPORT void SetUpTraceNormals (void)
 
SOLVER_UTILS_EXPORT void InitObject ()
 Initialises the members of this object. More...
 
SOLVER_UTILS_EXPORT void DoInitialise ()
 Perform any initialisation necessary before solving the problem. More...
 
SOLVER_UTILS_EXPORT void DoSolve ()
 Solve the problem. More...
 
SOLVER_UTILS_EXPORT void TransCoeffToPhys ()
 Transform from coefficient to physical space. More...
 
SOLVER_UTILS_EXPORT void TransPhysToCoeff ()
 Transform from physical to coefficient space. More...
 
SOLVER_UTILS_EXPORT void Output ()
 Perform output operations after solve. More...
 
SOLVER_UTILS_EXPORT NekDouble LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Linf error computation. More...
 
SOLVER_UTILS_EXPORT std::string GetSessionName ()
 Get Session name. More...
 
template<class T >
boost::shared_ptr< T > as ()
 
SOLVER_UTILS_EXPORT void ResetSessionName (std::string newname)
 Reset Session name. More...
 
SOLVER_UTILS_EXPORT
LibUtilities::SessionReaderSharedPtr 
GetSession ()
 Get Session name. More...
 
SOLVER_UTILS_EXPORT
MultiRegions::ExpListSharedPtr 
GetPressure ()
 Get pressure field if available. More...
 
SOLVER_UTILS_EXPORT void PrintSummary (std::ostream &out)
 Print a summary of parameters and solver characteristics. More...
 
SOLVER_UTILS_EXPORT void SetLambda (NekDouble lambda)
 Set parameter m_lambda. More...
 
SOLVER_UTILS_EXPORT void EvaluateFunction (Array< OneD, Array< OneD, NekDouble > > &pArray, std::string pFunctionName, const NekDouble pTime=0.0, const int domain=0)
 Evaluates a function as specified in the session file. More...
 
SOLVER_UTILS_EXPORT void EvaluateFunction (std::vector< std::string > pFieldNames, Array< OneD, Array< OneD, NekDouble > > &pFields, const std::string &pName, const NekDouble &pTime=0.0, const int domain=0)
 Populate given fields with the function from session. More...
 
SOLVER_UTILS_EXPORT void EvaluateFunction (std::vector< std::string > pFieldNames, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const std::string &pName, const NekDouble &pTime=0.0, const int domain=0)
 Populate given fields with the function from session. More...
 
SOLVER_UTILS_EXPORT void EvaluateFunction (std::string pFieldName, Array< OneD, NekDouble > &pArray, const std::string &pFunctionName, const NekDouble &pTime=0.0, const int domain=0)
 
SOLVER_UTILS_EXPORT std::string DescribeFunction (std::string pFieldName, const std::string &pFunctionName, const int domain)
 Provide a description of a function for a given field name. More...
 
SOLVER_UTILS_EXPORT void InitialiseBaseFlow (Array< OneD, Array< OneD, NekDouble > > &base)
 Perform initialisation of the base flow. More...
 
SOLVER_UTILS_EXPORT void SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 Initialise the data in the dependent fields. More...
 
SOLVER_UTILS_EXPORT void EvaluateExactSolution (int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 Evaluates an exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln, bool Normalised=false)
 Compute the L2 error between fields and a given exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, bool Normalised=false)
 Compute the L2 error of the fields. More...
 
SOLVER_UTILS_EXPORT Array
< OneD, NekDouble
ErrorExtraPoints (unsigned int field)
 Compute error (L2 and L_inf) over an larger set of quadrature points return [L2 Linf]. More...
 
SOLVER_UTILS_EXPORT void WeakAdvectionGreensDivergenceForm (const Array< OneD, Array< OneD, NekDouble > > &F, Array< OneD, NekDouble > &outarray)
 Compute the inner product $ (\nabla \phi \cdot F) $. More...
 
SOLVER_UTILS_EXPORT void WeakAdvectionDivergenceForm (const Array< OneD, Array< OneD, NekDouble > > &F, Array< OneD, NekDouble > &outarray)
 Compute the inner product $ (\phi, \nabla \cdot F) $. More...
 
SOLVER_UTILS_EXPORT void WeakAdvectionNonConservativeForm (const Array< OneD, Array< OneD, NekDouble > > &V, const Array< OneD, const NekDouble > &u, Array< OneD, NekDouble > &outarray, bool UseContCoeffs=false)
 Compute the inner product $ (\phi, V\cdot \nabla u) $. More...
 
f SOLVER_UTILS_EXPORT void AdvectionNonConservativeForm (const Array< OneD, Array< OneD, NekDouble > > &V, const Array< OneD, const NekDouble > &u, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wk=NullNekDouble1DArray)
 Compute the non-conservative advection. More...
 
SOLVER_UTILS_EXPORT void WeakDGAdvection (const Array< OneD, Array< OneD, NekDouble > > &InField, Array< OneD, Array< OneD, NekDouble > > &OutField, bool NumericalFluxIncludesNormal=true, bool InFieldIsInPhysSpace=false, int nvariables=0)
 Calculate the weak discontinuous Galerkin advection. More...
 
SOLVER_UTILS_EXPORT void WeakDGDiffusion (const Array< OneD, Array< OneD, NekDouble > > &InField, Array< OneD, Array< OneD, NekDouble > > &OutField, bool NumericalFluxIncludesNormal=true, bool InFieldIsInPhysSpace=false)
 Calculate weak DG Diffusion in the LDG form. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n)
 Write checkpoint file of m_fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write checkpoint file of custom data fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_BaseFlow (const int n)
 Write base flow file of m_fields. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname)
 Write field data to the given filename. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write input fields to the given filename. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields)
 Input field data from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFldToMultiDomains (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const int ndomains)
 Input field data from the given file to multiple domains. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, std::vector< std::string > &fieldStr, Array< OneD, Array< OneD, NekDouble > > &coeffs)
 Output a field. Input field data into array from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, MultiRegions::ExpListSharedPtr &pField, std::string &pFieldName)
 Output a field. Input field data into ExpList from the given file. More...
 
SOLVER_UTILS_EXPORT void ScanForHistoryPoints ()
 Builds map of which element holds each history point. More...
 
SOLVER_UTILS_EXPORT void WriteHistoryData (std::ostream &out)
 Probe each history point and write to file. More...
 
SOLVER_UTILS_EXPORT void SessionSummary (SummaryList &vSummary)
 Write out a session summary. More...
 
SOLVER_UTILS_EXPORT Array
< OneD,
MultiRegions::ExpListSharedPtr > & 
UpdateFields ()
 
SOLVER_UTILS_EXPORT
LibUtilities::FieldMetaDataMap
UpdateFieldMetaDataMap ()
 Get hold of FieldInfoMap so it can be updated. More...
 
SOLVER_UTILS_EXPORT NekDouble GetFinalTime ()
 Return final time. More...
 
SOLVER_UTILS_EXPORT int GetNcoeffs ()
 
SOLVER_UTILS_EXPORT int GetNcoeffs (const int eid)
 
SOLVER_UTILS_EXPORT int GetNumExpModes ()
 
SOLVER_UTILS_EXPORT const
Array< OneD, int > 
GetNumExpModesPerExp ()
 
SOLVER_UTILS_EXPORT int GetNvariables ()
 
SOLVER_UTILS_EXPORT const
std::string 
GetVariable (unsigned int i)
 
SOLVER_UTILS_EXPORT int GetTraceTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTraceNpoints ()
 
SOLVER_UTILS_EXPORT int GetExpSize ()
 
SOLVER_UTILS_EXPORT int GetPhys_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetCoeff_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTotPoints (int n)
 
SOLVER_UTILS_EXPORT int GetNpoints ()
 
SOLVER_UTILS_EXPORT int GetNumElmVelocity ()
 
SOLVER_UTILS_EXPORT int GetSteps ()
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep ()
 
SOLVER_UTILS_EXPORT void CopyFromPhysField (const int i, Array< OneD, NekDouble > &output)
 
SOLVER_UTILS_EXPORT void CopyToPhysField (const int i, Array< OneD, NekDouble > &output)
 
SOLVER_UTILS_EXPORT void SetSteps (const int steps)
 
SOLVER_UTILS_EXPORT void ZeroPhysFields ()
 
SOLVER_UTILS_EXPORT void FwdTransFields ()
 
SOLVER_UTILS_EXPORT void GetFluxVector (const int i, Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &flux)
 
SOLVER_UTILS_EXPORT void GetFluxVector (const int i, Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &fluxX, Array< OneD, Array< OneD, NekDouble > > &fluxY)
 
SOLVER_UTILS_EXPORT void GetFluxVector (const int i, const int j, Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &flux)
 
SOLVER_UTILS_EXPORT void NumericalFlux (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numflux)
 
SOLVER_UTILS_EXPORT void NumericalFlux (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numfluxX, Array< OneD, Array< OneD, NekDouble > > &numfluxY)
 
SOLVER_UTILS_EXPORT void NumFluxforScalar (const Array< OneD, Array< OneD, NekDouble > > &ufield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &uflux)
 
SOLVER_UTILS_EXPORT void NumFluxforVector (const Array< OneD, Array< OneD, NekDouble > > &ufield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &qfield, Array< OneD, Array< OneD, NekDouble > > &qflux)
 
SOLVER_UTILS_EXPORT void SetModifiedBasis (const bool modbasis)
 
SOLVER_UTILS_EXPORT int NoCaseStringCompare (const std::string &s1, const std::string &s2)
 Perform a case-insensitive string comparison. More...
 
SOLVER_UTILS_EXPORT int GetCheckpointNumber ()
 
SOLVER_UTILS_EXPORT void SetCheckpointNumber (int num)
 
SOLVER_UTILS_EXPORT int GetCheckpointSteps ()
 
SOLVER_UTILS_EXPORT void SetCheckpointSteps (int num)
 
SOLVER_UTILS_EXPORT void SetTime (const NekDouble time)
 
SOLVER_UTILS_EXPORT void SetInitialStep (const int step)
 
SOLVER_UTILS_EXPORT void SetBoundaryConditions (NekDouble time)
 Evaluates the boundary conditions at the given time. More...
 
virtual SOLVER_UTILS_EXPORT bool v_NegatedOp ()
 Virtual function to identify if operator is negated in DoSolve. More...
 

Static Public Member Functions

static
SolverUtils::EquationSystemSharedPtr 
create (const LibUtilities::SessionReaderSharedPtr &pSession)
 Creates an instance of this class. More...
 

Static Public Attributes

static std::string className
 Name of class. More...
 

Protected Member Functions

 UnsteadyAdvectionDiffusion (const LibUtilities::SessionReaderSharedPtr &pSession)
 Session reader. More...
 
void GetFluxVectorAdv (const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &flux)
 Evaluate the flux at each solution point for the advection part. More...
 
void GetFluxVectorDiff (const int i, const int j, const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &derivatives, Array< OneD, Array< OneD, NekDouble > > &flux)
 Evaluate the flux at each solution point for the diffusion part. More...
 
virtual void DoOdeRhs (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 Compute the RHS. More...
 
void DoOdeProjection (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 Perform the projection. More...
 
virtual void DoImplicitSolve (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, NekDouble time, NekDouble lambda)
 Solve implicitly the diffusion term. More...
 
Array< OneD, NekDouble > & GetNormalVelocity ()
 Get the normal velocity based on m_velocity. More...
 
Array< OneD, NekDouble > & GetNormalVel (const Array< OneD, const Array< OneD, NekDouble > > &velfield)
 Get the normal velocity based on input velfield. More...
 
virtual void v_InitObject ()
 Initialise the object. More...
 
virtual void v_GenerateSummary (SolverUtils::SummaryList &s)
 Print Summary. More...
 
virtual bool v_PreIntegrate (int step)
 PreIntegration step for substepping. More...
 
void SubStepAdvance (const LibUtilities::TimeIntegrationSolutionSharedPtr &integrationSoln, int nstep, NekDouble time)
 
NekDouble GetSubstepTimeStep ()
 
void SetUpSubSteppingTimeIntegration (int intMethod, const LibUtilities::TimeIntegrationWrapperSharedPtr &IntegrationScheme)
 
void SubStepAdvection (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 
void SubStepProjection (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 
void AddAdvectionPenaltyFlux (const Array< OneD, const Array< OneD, NekDouble > > &velfield, const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &Outarray)
 
Array< OneD, NekDoubleGetMaxStdVelocity (const Array< OneD, Array< OneD, NekDouble > > inarray)
 
- Protected Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
SOLVER_UTILS_EXPORT UnsteadySystem (const LibUtilities::SessionReaderSharedPtr &pSession)
 Initialises UnsteadySystem class members. More...
 
SOLVER_UTILS_EXPORT NekDouble MaxTimeStepEstimator ()
 Get the maximum timestep estimator for cfl control. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoSolve ()
 Solves an unsteady problem. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoInitialise ()
 Sets up initial conditions. More...
 
virtual SOLVER_UTILS_EXPORT void v_AppendOutput1D (Array< OneD, Array< OneD, NekDouble > > &solution1D)
 Print the solution at each solution point in a txt file. More...
 
virtual SOLVER_UTILS_EXPORT void v_NumericalFlux (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numflux)
 
virtual SOLVER_UTILS_EXPORT void v_NumericalFlux (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numfluxX, Array< OneD, Array< OneD, NekDouble > > &numfluxY)
 
virtual SOLVER_UTILS_EXPORT void v_NumFluxforScalar (const Array< OneD, Array< OneD, NekDouble > > &ufield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &uflux)
 
virtual SOLVER_UTILS_EXPORT void v_NumFluxforVector (const Array< OneD, Array< OneD, NekDouble > > &ufield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &qfield, Array< OneD, Array< OneD, NekDouble > > &qflux)
 
virtual SOLVER_UTILS_EXPORT
NekDouble 
v_GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Return the timestep to be used for the next step in the time-marching loop. More...
 
virtual SOLVER_UTILS_EXPORT bool v_PostIntegrate (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_SteadyStateCheck (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_RequireFwdTrans ()
 
SOLVER_UTILS_EXPORT void CheckForRestartTime (NekDouble &time, int &nchk)
 
SOLVER_UTILS_EXPORT void SVVVarDiffCoeff (const Array< OneD, Array< OneD, NekDouble > > vel, StdRegions::VarCoeffMap &varCoeffMap)
 Evaluate the SVV diffusion coefficient according to Moura's paper where it should proportional to h time velocity. More...
 
- Protected Member Functions inherited from Nektar::SolverUtils::EquationSystem
SOLVER_UTILS_EXPORT EquationSystem (const LibUtilities::SessionReaderSharedPtr &pSession)
 Initialises EquationSystem class members. More...
 
int nocase_cmp (const std::string &s1, const std::string &s2)
 
virtual SOLVER_UTILS_EXPORT
NekDouble 
v_LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Virtual function for the L_inf error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT
NekDouble 
v_L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray, bool Normalised=false)
 Virtual function for the L_2 error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransCoeffToPhys ()
 Virtual function for transformation to physical space. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransPhysToCoeff ()
 Virtual function for transformation to coefficient space. More...
 
virtual SOLVER_UTILS_EXPORT void v_SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 
virtual SOLVER_UTILS_EXPORT void v_EvaluateExactSolution (unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 
SOLVER_UTILS_EXPORT void EvaluateFunctionExp (std::string pFieldName, Array< OneD, NekDouble > &pArray, const std::string &pFunctionName, const NekDouble &pTime=0.0, const int domain=0)
 
SOLVER_UTILS_EXPORT void EvaluateFunctionFld (std::string pFieldName, Array< OneD, NekDouble > &pArray, const std::string &pFunctionName, const NekDouble &pTime=0.0, const int domain=0)
 
SOLVER_UTILS_EXPORT void EvaluateFunctionPts (std::string pFieldName, Array< OneD, NekDouble > &pArray, const std::string &pFunctionName, const NekDouble &pTime=0.0, const int domain=0)
 
SOLVER_UTILS_EXPORT void LoadPts (std::string funcFilename, std::string filename, Nektar::LibUtilities::PtsFieldSharedPtr &outPts)
 
SOLVER_UTILS_EXPORT void SetUpBaseFields (SpatialDomains::MeshGraphSharedPtr &mesh)
 
SOLVER_UTILS_EXPORT void ImportFldBase (std::string pInfile, SpatialDomains::MeshGraphSharedPtr pGraph)
 
virtual SOLVER_UTILS_EXPORT void v_Output (void)
 
virtual SOLVER_UTILS_EXPORT
MultiRegions::ExpListSharedPtr 
v_GetPressure (void)
 
virtual SOLVER_UTILS_EXPORT void v_ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 

Protected Attributes

bool m_subSteppingScheme
 
bool m_useSpecVanVisc
 
NekDouble m_sVVCutoffRatio
 
NekDouble m_sVVDiffCoeff
 
SolverUtils::RiemannSolverSharedPtr m_riemannSolver
 
SolverUtils::DiffusionSharedPtr m_diffusion
 
Array< OneD, Array< OneD,
NekDouble > > 
m_velocity
 
Array< OneD, NekDoublem_traceVn
 
int m_planeNumber
 
LibUtilities::TimeIntegrationWrapperSharedPtr m_subStepIntegrationScheme
 
LibUtilities::TimeIntegrationSchemeOperators m_subStepIntegrationOps
 
int m_intSteps
 
NekDouble m_cflSafetyFactor
 
int m_infosteps
 
int m_minsubsteps
 
- Protected Attributes inherited from Nektar::SolverUtils::AdvectionSystem
SolverUtils::AdvectionSharedPtr m_advObject
 Advection term. More...
 
- Protected Attributes inherited from Nektar::SolverUtils::UnsteadySystem
int m_infosteps
 Number of time steps between outputting status information. More...
 
int m_nanSteps
 
LibUtilities::TimeIntegrationWrapperSharedPtr m_intScheme
 Wrapper to the time integration scheme. More...
 
LibUtilities::TimeIntegrationSchemeOperators m_ode
 The time integration scheme operators to use. More...
 
LibUtilities::TimeIntegrationSolutionSharedPtr m_intSoln
 
NekDouble m_epsilon
 
bool m_explicitDiffusion
 Indicates if explicit or implicit treatment of diffusion is used. More...
 
bool m_explicitAdvection
 Indicates if explicit or implicit treatment of advection is used. More...
 
bool m_explicitReaction
 Indicates if explicit or implicit treatment of reaction is used. More...
 
bool m_homoInitialFwd
 Flag to determine if simulation should start in homogeneous forward transformed state. More...
 
std::vector< int > m_intVariables
 
std::vector< FilterSharedPtrm_filters
 
- Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
LibUtilities::CommSharedPtr m_comm
 Communicator. More...
 
LibUtilities::SessionReaderSharedPtr m_session
 The session reader. More...
 
LibUtilities::FieldIOSharedPtr m_fld
 Field input/output. More...
 
std::map< std::string,
FieldUtils::Interpolator
m_interpolators
 Map of interpolator objects. More...
 
std::map< std::string,
std::pair< std::string,
LibUtilities::PtsFieldSharedPtr > > 
m_loadedPtsFields
 pts fields we already read from disk: {funcFilename: (filename, ptsfield)} More...
 
std::map< std::string,
std::pair< std::string,
loadedFldField > > 
m_loadedFldFields
 
Array< OneD,
MultiRegions::ExpListSharedPtr
m_fields
 Array holding all dependent variables. More...
 
Array< OneD,
MultiRegions::ExpListSharedPtr
m_base
 Base fields. More...
 
Array< OneD,
MultiRegions::ExpListSharedPtr
m_derivedfields
 Array holding all dependent variables. More...
 
SpatialDomains::BoundaryConditionsSharedPtr m_boundaryConditions
 Pointer to boundary conditions object. More...
 
SpatialDomains::MeshGraphSharedPtr m_graph
 Pointer to graph defining mesh. More...
 
std::string m_sessionName
 Name of the session. More...
 
NekDouble m_time
 Current time of simulation. More...
 
int m_initialStep
 Number of the step where the simulation should begin. More...
 
NekDouble m_fintime
 Finish time of the simulation. More...
 
NekDouble m_timestep
 Time step size. More...
 
NekDouble m_lambda
 Lambda constant in real system if one required. More...
 
NekDouble m_checktime
 Time between checkpoints. More...
 
int m_nchk
 Number of checkpoints written so far. More...
 
int m_steps
 Number of steps to take. More...
 
int m_checksteps
 Number of steps between checkpoints. More...
 
int m_spacedim
 Spatial dimension (>= expansion dim). More...
 
int m_expdim
 Expansion dimension. More...
 
bool m_singleMode
 Flag to determine if single homogeneous mode is used. More...
 
bool m_halfMode
 Flag to determine if half homogeneous mode is used. More...
 
bool m_multipleModes
 Flag to determine if use multiple homogenenous modes are used. More...
 
bool m_useFFT
 Flag to determine if FFT is used for homogeneous transform. More...
 
bool m_homogen_dealiasing
 Flag to determine if dealiasing is used for homogeneous simulations. More...
 
bool m_specHP_dealiasing
 Flag to determine if dealisising is usde for the Spectral/hp element discretisation. More...
 
enum MultiRegions::ProjectionType m_projectionType
 Type of projection; e.g continuous or discontinuous. More...
 
Array< OneD, Array< OneD,
NekDouble > > 
m_traceNormals
 Array holding trace normals for DG simulations in the forwards direction. More...
 
Array< OneD, Array< OneD,
Array< OneD, NekDouble > > > 
m_gradtan
 1 x nvariable x nq More...
 
Array< OneD, Array< OneD,
Array< OneD, NekDouble > > > 
m_tanbasis
 2 x m_spacedim x nq More...
 
Array< OneD, bool > m_checkIfSystemSingular
 Flag to indicate if the fields should be checked for singularity. More...
 
LibUtilities::FieldMetaDataMap m_fieldMetaDataMap
 Map to identify relevant solver info to dump in output fields. More...
 
int m_NumQuadPointsError
 Number of Quadrature points used to work out the error. More...
 
enum HomogeneousType m_HomogeneousType
 
NekDouble m_LhomX
 physical length in X direction (if homogeneous) More...
 
NekDouble m_LhomY
 physical length in Y direction (if homogeneous) More...
 
NekDouble m_LhomZ
 physical length in Z direction (if homogeneous) More...
 
int m_npointsX
 number of points in X direction (if homogeneous) More...
 
int m_npointsY
 number of points in Y direction (if homogeneous) More...
 
int m_npointsZ
 number of points in Z direction (if homogeneous) More...
 
int m_HomoDirec
 number of homogenous directions More...
 

Private Attributes

NekDouble m_waveFreq
 
NekDouble m_epsilon
 

Friends

class MemoryManager< UnsteadyAdvectionDiffusion >
 

Additional Inherited Members

- Public Attributes inherited from Nektar::SolverUtils::UnsteadySystem
NekDouble m_cflSafetyFactor
 CFL safety factor (comprise between 0 to 1). More...
 
- Protected Types inherited from Nektar::SolverUtils::EquationSystem
enum  HomogeneousType { eHomogeneous1D, eHomogeneous2D, eHomogeneous3D, eNotHomogeneous }
 Parameter for homogeneous expansions. More...
 

Detailed Description

Definition at line 46 of file UnsteadyAdvectionDiffusion.h.

Constructor & Destructor Documentation

Nektar::UnsteadyAdvectionDiffusion::~UnsteadyAdvectionDiffusion ( )
virtual

Destructor.

Unsteady linear advection diffusion equation destructor.

Definition at line 191 of file UnsteadyAdvectionDiffusion.cpp.

192  {
193  }
Nektar::UnsteadyAdvectionDiffusion::UnsteadyAdvectionDiffusion ( const LibUtilities::SessionReaderSharedPtr pSession)
protected

Session reader.

Definition at line 49 of file UnsteadyAdvectionDiffusion.cpp.

References m_planeNumber.

51  : UnsteadySystem(pSession),
52  AdvectionSystem(pSession)
53  {
54  m_planeNumber = 0;
55  }
SOLVER_UTILS_EXPORT AdvectionSystem(const LibUtilities::SessionReaderSharedPtr &pSession)
SOLVER_UTILS_EXPORT UnsteadySystem(const LibUtilities::SessionReaderSharedPtr &pSession)
Initialises UnsteadySystem class members.

Member Function Documentation

void Nektar::UnsteadyAdvectionDiffusion::AddAdvectionPenaltyFlux ( const Array< OneD, const Array< OneD, NekDouble > > &  velfield,
const Array< OneD, const Array< OneD, NekDouble > > &  physfield,
Array< OneD, Array< OneD, NekDouble > > &  Outarray 
)
protected

Number of trace points

Forward state array

Backward state array

upwind numerical flux state array

Normal velocity array

Extract forwards/backwards trace spaces Note: Needs to have correct i value to get boundary conditions

Upwind between elements

Construct difference between numflux and Fwd,Bwd

Calculate the numerical fluxes multipling Fwd, Bwd and numflux by the normal advection velocity

Definition at line 650 of file UnsteadyAdvectionDiffusion.cpp.

References ASSERTL1, GetNormalVel(), Nektar::SolverUtils::EquationSystem::m_fields, Vmath::Vmul(), and Vmath::Vsub().

Referenced by SubStepAdvection().

654  {
655  ASSERTL1(physfield.num_elements() == Outarray.num_elements(),
656  "Physfield and outarray are of different dimensions");
657 
658  int i;
659 
660  /// Number of trace points
661  int nTracePts = m_fields[0]->GetTrace()->GetNpoints();
662 
663  /// Forward state array
664  Array<OneD, NekDouble> Fwd(3*nTracePts);
665 
666  /// Backward state array
667  Array<OneD, NekDouble> Bwd = Fwd + nTracePts;
668 
669  /// upwind numerical flux state array
670  Array<OneD, NekDouble> numflux = Bwd + nTracePts;
671 
672  /// Normal velocity array
673  Array<OneD, NekDouble> Vn = GetNormalVel(velfield);
674 
675  for(i = 0; i < physfield.num_elements(); ++i)
676  {
677  /// Extract forwards/backwards trace spaces
678  /// Note: Needs to have correct i value to get boundary conditions
679  m_fields[i]->GetFwdBwdTracePhys(physfield[i], Fwd, Bwd);
680 
681  /// Upwind between elements
682  m_fields[0]->GetTrace()->Upwind(Vn, Fwd, Bwd, numflux);
683 
684  /// Construct difference between numflux and Fwd,Bwd
685  Vmath::Vsub(nTracePts, numflux, 1, Fwd, 1, Fwd, 1);
686  Vmath::Vsub(nTracePts, numflux, 1, Bwd, 1, Bwd, 1);
687 
688  /// Calculate the numerical fluxes multipling Fwd, Bwd and
689  /// numflux by the normal advection velocity
690  Vmath::Vmul(nTracePts, Fwd, 1, Vn, 1, Fwd, 1);
691  Vmath::Vmul(nTracePts, Bwd, 1, Vn, 1, Bwd, 1);
692 
693  m_fields[0]->AddFwdBwdTraceIntegral(Fwd,Bwd,Outarray[i]);
694  }
695  }
Array< OneD, NekDouble > & GetNormalVel(const Array< OneD, const Array< OneD, NekDouble > > &velfield)
Get the normal velocity based on input velfield.
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.cpp:343
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:228
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:183
static SolverUtils::EquationSystemSharedPtr Nektar::UnsteadyAdvectionDiffusion::create ( const LibUtilities::SessionReaderSharedPtr pSession)
inlinestatic

Creates an instance of this class.

Definition at line 52 of file UnsteadyAdvectionDiffusion.h.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and CellMLToNektar.cellml_metadata::p.

53  {
56  AllocateSharedPtr(pSession);
57  p->InitObject();
58  return p;
59  }
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
boost::shared_ptr< EquationSystem > EquationSystemSharedPtr
A shared pointer to an EquationSystem object.
void Nektar::UnsteadyAdvectionDiffusion::DoImplicitSolve ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
NekDouble  time,
NekDouble  lambda 
)
protectedvirtual

Solve implicitly the diffusion term.

Definition at line 338 of file UnsteadyAdvectionDiffusion.cpp.

References Nektar::MultiRegions::eDiscontinuous, Nektar::StdRegions::eFactorLambda, Nektar::StdRegions::eFactorSVVCutoffRatio, Nektar::StdRegions::eFactorSVVDiffCoeff, Nektar::StdRegions::eFactorTau, m_epsilon, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_projectionType, m_sVVCutoffRatio, m_sVVDiffCoeff, m_useSpecVanVisc, Nektar::NullFlagList, Nektar::SolverUtils::EquationSystem::SetBoundaryConditions(), and Vmath::Smul().

Referenced by v_InitObject().

343  {
344  int nvariables = inarray.num_elements();
345  int nq = m_fields[0]->GetNpoints();
346 
348  factors[StdRegions::eFactorLambda] = 1.0/lambda/m_epsilon;
349 
350  if(m_useSpecVanVisc)
351  {
354  }
356  {
357  factors[StdRegions::eFactorTau] = 1.0;
358  }
359 
360  Array<OneD, Array< OneD, NekDouble> > F(nvariables);
361  for (int n = 0; n < nvariables; ++n)
362  {
363  F[n] = Array<OneD, NekDouble> (nq);
364  }
365 
366  // We solve ( \nabla^2 - HHlambda ) Y[i] = rhs [i]
367  // inarray = input: \hat{rhs} -> output: \hat{Y}
368  // outarray = output: nabla^2 \hat{Y}
369  // where \hat = modal coeffs
370  for (int i = 0; i < nvariables; ++i)
371  {
372  // Multiply 1.0/timestep/lambda
373  Vmath::Smul(nq, -factors[StdRegions::eFactorLambda],
374  inarray[i], 1, F[i], 1);
375  }
376 
377  //Setting boundary conditions
378  SetBoundaryConditions(time);
379 
380  for (int i = 0; i < nvariables; ++i)
381  {
382  // Solve a system of equations with Helmholtz solver
383  m_fields[i]->HelmSolve(F[i], m_fields[i]->UpdateCoeffs(),
384  NullFlagList, factors);
385 
386  m_fields[i]->BwdTrans(m_fields[i]->GetCoeffs(), outarray[i]);
387  }
388  }
enum MultiRegions::ProjectionType m_projectionType
Type of projection; e.g continuous or discontinuous.
std::map< ConstFactorType, NekDouble > ConstFactorMap
Definition: StdRegions.hpp:252
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:213
SOLVER_UTILS_EXPORT void SetBoundaryConditions(NekDouble time)
Evaluates the boundary conditions at the given time.
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
static FlagList NullFlagList
An empty flag list.
void Nektar::UnsteadyAdvectionDiffusion::DoOdeProjection ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time 
)
protected

Perform the projection.

Compute the projection for the unsteady advection diffusion problem.

Parameters
inarrayGiven fields.
outarrayCalculated solution.
timeTime.

Definition at line 289 of file UnsteadyAdvectionDiffusion.cpp.

References ASSERTL0, Nektar::MultiRegions::eDiscontinuous, Nektar::MultiRegions::eGalerkin, Nektar::MultiRegions::eMixed_CG_Discontinuous, Nektar::SolverUtils::EquationSystem::GetNcoeffs(), Nektar::SolverUtils::EquationSystem::GetNpoints(), Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_projectionType, Nektar::SolverUtils::EquationSystem::SetBoundaryConditions(), and Vmath::Vcopy().

Referenced by v_InitObject().

293  {
294  int i;
295  int nvariables = inarray.num_elements();
296  SetBoundaryConditions(time);
297  switch(m_projectionType)
298  {
300  {
301  // Just copy over array
302  int npoints = GetNpoints();
303 
304  for(i = 0; i < nvariables; ++i)
305  {
306  Vmath::Vcopy(npoints, inarray[i], 1, outarray[i], 1);
307  }
308  break;
309  }
312  {
313  Array<OneD, NekDouble> coeffs(m_fields[0]->GetNcoeffs());
314 
315  for(i = 0; i < nvariables; ++i)
316  {
317  m_fields[i]->FwdTrans(inarray[i], coeffs);
318  m_fields[i]->BwdTrans_IterPerExp(coeffs, outarray[i]);
319  }
320  break;
321  }
322  default:
323  {
324  ASSERTL0(false, "Unknown projection scheme");
325  break;
326  }
327  }
328  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:198
enum MultiRegions::ProjectionType m_projectionType
Type of projection; e.g continuous or discontinuous.
SOLVER_UTILS_EXPORT void SetBoundaryConditions(NekDouble time)
Evaluates the boundary conditions at the given time.
SOLVER_UTILS_EXPORT int GetNpoints()
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
SOLVER_UTILS_EXPORT int GetNcoeffs()
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1061
void Nektar::UnsteadyAdvectionDiffusion::DoOdeRhs ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time 
)
protectedvirtual

Compute the RHS.

Compute the right-hand side for the unsteady linear advection diffusion problem.

Parameters
inarrayGiven fields.
outarrayCalculated solution.
timeTime.

Definition at line 241 of file UnsteadyAdvectionDiffusion.cpp.

References Nektar::SolverUtils::EquationSystem::GetNpoints(), Nektar::SolverUtils::AdvectionSystem::m_advObject, m_diffusion, Nektar::SolverUtils::UnsteadySystem::m_explicitDiffusion, Nektar::SolverUtils::EquationSystem::m_fields, m_velocity, Vmath::Neg(), and Vmath::Vadd().

Referenced by v_InitObject().

245  {
246  // Number of fields (variables of the problem)
247  int nVariables = inarray.num_elements();
248 
249  // Number of solution points
250  int nSolutionPts = GetNpoints();
251 
252  // RHS computation using the new advection base class
253  m_advObject->Advect(nVariables, m_fields, m_velocity,
254  inarray, outarray, time);
255 
256  // Negate the RHS
257  for (int i = 0; i < nVariables; ++i)
258  {
259  Vmath::Neg(nSolutionPts, outarray[i], 1);
260  }
261 
263  {
264  Array<OneD, Array<OneD, NekDouble> > outarrayDiff(nVariables);
265  for (int i = 0; i < nVariables; ++i)
266  {
267  outarrayDiff[i] = Array<OneD, NekDouble>(nSolutionPts, 0.0);
268  }
269 
270  m_diffusion->Diffuse(nVariables, m_fields, inarray, outarrayDiff);
271 
272  for (int i = 0; i < nVariables; ++i)
273  {
274  Vmath::Vadd(nSolutionPts, &outarray[i][0], 1,
275  &outarrayDiff[i][0], 1, &outarray[i][0], 1);
276  }
277  }
278 
279  }
SolverUtils::AdvectionSharedPtr m_advObject
Advection term.
bool m_explicitDiffusion
Indicates if explicit or implicit treatment of diffusion is used.
Array< OneD, Array< OneD, NekDouble > > m_velocity
SolverUtils::DiffusionSharedPtr m_diffusion
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:396
SOLVER_UTILS_EXPORT int GetNpoints()
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:299
void Nektar::UnsteadyAdvectionDiffusion::GetFluxVectorAdv ( const Array< OneD, Array< OneD, NekDouble > > &  physfield,
Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &  flux 
)
protected

Evaluate the flux at each solution point for the advection part.

Return the flux vector for the advection part.

Parameters
physfieldFields.
fluxResulting flux.

Definition at line 396 of file UnsteadyAdvectionDiffusion.cpp.

References ASSERTL1, Nektar::SolverUtils::EquationSystem::m_fields, m_velocity, and Vmath::Vmul().

Referenced by v_InitObject().

399  {
400  ASSERTL1(flux[0].num_elements() == m_velocity.num_elements(),
401  "Dimension of flux array and velocity array do not match");
402 
403  const int nq = m_fields[0]->GetNpoints();
404 
405  for (int i = 0; i < flux.num_elements(); ++i)
406  {
407  for (int j = 0; j < flux[0].num_elements(); ++j)
408  {
409  Vmath::Vmul(nq, physfield[i], 1, m_velocity[j], 1,
410  flux[i][j], 1);
411  }
412  }
413  }
Array< OneD, Array< OneD, NekDouble > > m_velocity
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:228
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:183
void Nektar::UnsteadyAdvectionDiffusion::GetFluxVectorDiff ( const int  i,
const int  j,
const Array< OneD, Array< OneD, NekDouble > > &  physfield,
Array< OneD, Array< OneD, NekDouble > > &  derivatives,
Array< OneD, Array< OneD, NekDouble > > &  flux 
)
protected

Evaluate the flux at each solution point for the diffusion part.

Return the flux vector for the diffusion part.

Parameters
iEquation number.
jSpatial direction.
physfieldFields.
derivativesFirst order derivatives.
fluxResulting flux.

Definition at line 424 of file UnsteadyAdvectionDiffusion.cpp.

References Nektar::SolverUtils::EquationSystem::GetNpoints(), Vmath::Vcopy(), and Vmath::Zero().

Referenced by v_InitObject().

430  {
431  for (int k = 0; k < flux.num_elements(); ++k)
432  {
433  Vmath::Zero(GetNpoints(), flux[k], 1);
434  }
435  Vmath::Vcopy(GetNpoints(), physfield[i], 1, flux[j], 1);
436  }
SOLVER_UTILS_EXPORT int GetNpoints()
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:373
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1061
Array< OneD, NekDouble > Nektar::UnsteadyAdvectionDiffusion::GetMaxStdVelocity ( const Array< OneD, Array< OneD, NekDouble > >  inarray)
protected

Definition at line 698 of file UnsteadyAdvectionDiffusion.cpp.

References ASSERTL0, Nektar::SpatialDomains::eDeformed, and Nektar::SolverUtils::EquationSystem::m_fields.

Referenced by GetSubstepTimeStep().

700  {
701 
702  int n_points_0 = m_fields[0]->GetExp(0)->GetTotPoints();
703  int n_element = m_fields[0]->GetExpSize();
704  int nvel = inarray.num_elements();
705  int cnt;
706 
707  ASSERTL0(nvel >= 2, "Method not implemented for 1D");
708 
709  NekDouble pntVelocity;
710 
711  // Getting the standard velocity vector on the 2D normal space
712  Array<OneD, Array<OneD, NekDouble> > stdVelocity(nvel);
713  Array<OneD, NekDouble> maxV(n_element, 0.0);
715 
716  for (int i = 0; i < nvel; ++i)
717  {
718  stdVelocity[i] = Array<OneD, NekDouble>(n_points_0);
719  }
720 
721  if (nvel == 2)
722  {
723  cnt = 0.0;
724  for (int el = 0; el < n_element; ++el)
725  {
726  int n_points = m_fields[0]->GetExp(el)->GetTotPoints();
727  ptsKeys = m_fields[0]->GetExp(el)->GetPointsKeys();
728 
729  // reset local space if necessary
730  if(n_points != n_points_0)
731  {
732  for (int j = 0; j < nvel; ++j)
733  {
734  stdVelocity[j] = Array<OneD, NekDouble>(n_points);
735  }
736  n_points_0 = n_points;
737  }
738 
739  Array<TwoD, const NekDouble> gmat =
740  m_fields[0]->GetExp(el)->GetGeom()->GetMetricInfo()->GetDerivFactors(ptsKeys);
741 
742  if (m_fields[0]->GetExp(el)->GetGeom()->GetMetricInfo()->GetGtype()
744  {
745  for (int i = 0; i < n_points; i++)
746  {
747  stdVelocity[0][i] = gmat[0][i]*inarray[0][i+cnt]
748  + gmat[2][i]*inarray[1][i+cnt];
749 
750  stdVelocity[1][i] = gmat[1][i]*inarray[0][i+cnt]
751  + gmat[3][i]*inarray[1][i+cnt];
752  }
753  }
754  else
755  {
756  for (int i = 0; i < n_points; i++)
757  {
758  stdVelocity[0][i] = gmat[0][0]*inarray[0][i+cnt]
759  + gmat[2][0]*inarray[1][i+cnt];
760 
761  stdVelocity[1][i] = gmat[1][0]*inarray[0][i+cnt]
762  + gmat[3][0]*inarray[1][i+cnt];
763  }
764  }
765 
766  cnt += n_points;
767 
768 
769  for (int i = 0; i < n_points; i++)
770  {
771  pntVelocity = stdVelocity[0][i]*stdVelocity[0][i]
772  + stdVelocity[1][i]*stdVelocity[1][i];
773 
774  if (pntVelocity>maxV[el])
775  {
776  maxV[el] = pntVelocity;
777  }
778  }
779  maxV[el] = sqrt(maxV[el]);
780  }
781  }
782  else
783  {
784  cnt = 0;
785  for (int el = 0; el < n_element; ++el)
786  {
787 
788  int n_points = m_fields[0]->GetExp(el)->GetTotPoints();
789  ptsKeys = m_fields[0]->GetExp(el)->GetPointsKeys();
790 
791  // reset local space if necessary
792  if(n_points != n_points_0)
793  {
794  for (int j = 0; j < nvel; ++j)
795  {
796  stdVelocity[j] = Array<OneD, NekDouble>(n_points);
797  }
798  n_points_0 = n_points;
799  }
800 
801  Array<TwoD, const NekDouble> gmat =
802  m_fields[0]->GetExp(el)->GetGeom()->GetMetricInfo()->GetDerivFactors(ptsKeys);
803 
804  if (m_fields[0]->GetExp(el)->GetGeom()->GetMetricInfo()->GetGtype()
806  {
807  for (int i = 0; i < n_points; i++)
808  {
809  stdVelocity[0][i] = gmat[0][i]*inarray[0][i+cnt]
810  + gmat[3][i]*inarray[1][i+cnt]
811  + gmat[6][i]*inarray[2][i+cnt];
812 
813  stdVelocity[1][i] = gmat[1][i]*inarray[0][i+cnt]
814  + gmat[4][i]*inarray[1][i+cnt]
815  + gmat[7][i]*inarray[2][i+cnt];
816 
817  stdVelocity[2][i] = gmat[2][i]*inarray[0][i+cnt]
818  + gmat[5][i]*inarray[1][i+cnt]
819  + gmat[8][i]*inarray[2][i+cnt];
820  }
821  }
822  else
823  {
824  for (int i = 0; i < n_points; i++)
825  {
826  stdVelocity[0][i] = gmat[0][0]*inarray[0][i+cnt]
827  + gmat[3][0]*inarray[1][i+cnt]
828  + gmat[6][0]*inarray[2][i+cnt];
829 
830  stdVelocity[1][i] = gmat[1][0]*inarray[0][i+cnt]
831  + gmat[4][0]*inarray[1][i+cnt]
832  + gmat[7][0]*inarray[2][i+cnt];
833 
834  stdVelocity[2][i] = gmat[2][0]*inarray[0][i+cnt]
835  + gmat[5][0]*inarray[1][i+cnt]
836  + gmat[8][0]*inarray[2][i+cnt];
837  }
838  }
839 
840  cnt += n_points;
841 
842  for (int i = 0; i < n_points; i++)
843  {
844  pntVelocity = stdVelocity[0][i]*stdVelocity[0][i]
845  + stdVelocity[1][i]*stdVelocity[1][i]
846  + stdVelocity[2][i]*stdVelocity[2][i];
847 
848  if (pntVelocity > maxV[el])
849  {
850  maxV[el] = pntVelocity;
851  }
852  }
853 
854  maxV[el] = sqrt(maxV[el]);
855  //cout << maxV[el]*maxV[el] << endl;
856  }
857  }
858 
859  return maxV;
860  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:198
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:242
double NekDouble
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
Geometry is curved or has non-constant factors.
Array< OneD, NekDouble > & Nektar::UnsteadyAdvectionDiffusion::GetNormalVel ( const Array< OneD, const Array< OneD, NekDouble > > &  velfield)
protected

Get the normal velocity based on input velfield.

Definition at line 205 of file UnsteadyAdvectionDiffusion.cpp.

References Nektar::SolverUtils::EquationSystem::GetTraceNpoints(), Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_traceNormals, m_traceVn, Vmath::Vvtvp(), and Vmath::Zero().

Referenced by AddAdvectionPenaltyFlux(), and GetNormalVelocity().

207  {
208  // Number of trace (interface) points
209  int i;
210  int nTracePts = GetTraceNpoints();
211 
212  // Auxiliary variable to compute the normal velocity
213  Array<OneD, NekDouble> tmp(nTracePts);
214  m_traceVn = Array<OneD, NekDouble>(nTracePts, 0.0);
215 
216  // Reset the normal velocity
217  Vmath::Zero(nTracePts, m_traceVn, 1);
218 
219  for (i = 0; i < velfield.num_elements(); ++i)
220  {
221  m_fields[0]->ExtractTracePhys(velfield[i], tmp);
222 
223  Vmath::Vvtvp(nTracePts,
224  m_traceNormals[i], 1,
225  tmp, 1,
226  m_traceVn, 1,
227  m_traceVn, 1);
228  }
229 
230  return m_traceVn;
231  }
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:442
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
Array holding trace normals for DG simulations in the forwards direction.
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
SOLVER_UTILS_EXPORT int GetTraceNpoints()
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:373
Array< OneD, NekDouble > & Nektar::UnsteadyAdvectionDiffusion::GetNormalVelocity ( )
protected

Get the normal velocity based on m_velocity.

Get the normal velocity for the unsteady linear advection diffusion equation.

Definition at line 199 of file UnsteadyAdvectionDiffusion.cpp.

References GetNormalVel(), and m_velocity.

Referenced by v_InitObject().

200  {
201  return GetNormalVel(m_velocity);
202  }
Array< OneD, Array< OneD, NekDouble > > m_velocity
Array< OneD, NekDouble > & GetNormalVel(const Array< OneD, const Array< OneD, NekDouble > > &velfield)
Get the normal velocity based on input velfield.
NekDouble Nektar::UnsteadyAdvectionDiffusion::GetSubstepTimeStep ( )
protected

Definition at line 524 of file UnsteadyAdvectionDiffusion.cpp.

References GetMaxStdVelocity(), m_cflSafetyFactor, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_session, m_velocity, Nektar::LibUtilities::ReduceMin, and Vmath::Vmin().

Referenced by SubStepAdvance().

525  {
526  int n_element = m_fields[0]->GetExpSize();
527 
528  const Array<OneD, int> ExpOrder=m_fields[0]->EvalBasisNumModesMaxPerExp();
529  Array<OneD, int> ExpOrderList (n_element, ExpOrder);
530 
531  const NekDouble cLambda = 0.2; // Spencer book pag. 317
532 
533  Array<OneD, NekDouble> tstep (n_element, 0.0);
534  Array<OneD, NekDouble> stdVelocity(n_element, 0.0);
535 
536  stdVelocity = GetMaxStdVelocity(m_velocity);
537 
538  for(int el = 0; el < n_element; ++el)
539  {
540  tstep[el] = m_cflSafetyFactor /
541  (stdVelocity[el] * cLambda *
542  (ExpOrder[el]-1) * (ExpOrder[el]-1));
543  }
544 
545  NekDouble TimeStep = Vmath::Vmin(n_element, tstep, 1);
546  m_session->GetComm()->AllReduce(TimeStep,LibUtilities::ReduceMin);
547 
548  return TimeStep;
549  }
Array< OneD, NekDouble > GetMaxStdVelocity(const Array< OneD, Array< OneD, NekDouble > > inarray)
T Vmin(int n, const T *x, const int incx)
Return the minimum element in x - called vmin to avoid conflict with min.
Definition: Vmath.cpp:871
Array< OneD, Array< OneD, NekDouble > > m_velocity
double NekDouble
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
void Nektar::UnsteadyAdvectionDiffusion::SetUpSubSteppingTimeIntegration ( int  intMethod,
const LibUtilities::TimeIntegrationWrapperSharedPtr IntegrationScheme 
)
protected

Definition at line 551 of file UnsteadyAdvectionDiffusion.cpp.

References ASSERTL0, Nektar::LibUtilities::NekFactory< tKey, tBase, >::CreateInstance(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineOdeRhs(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineProjection(), Nektar::LibUtilities::eBackwardEuler, Nektar::LibUtilities::eBDFImplicitOrder1, Nektar::LibUtilities::eBDFImplicitOrder2, Nektar::LibUtilities::GetTimeIntegrationWrapperFactory(), m_intSteps, m_subStepIntegrationOps, m_subStepIntegrationScheme, SubStepAdvection(), and SubStepProjection().

Referenced by v_InitObject().

554  {
555  // Set to 1 for first step and it will then be increased in
556  // time advance routines
557  switch(intMethod)
558  {
561  {
563 
564  }
565  break;
567  {
569  }
570  break;
571  default:
572  ASSERTL0(0,"Integration method not suitable: Options include BackwardEuler or BDFImplicitOrder1");
573  break;
574  }
575  m_intSteps = IntegrationScheme->GetIntegrationSteps();
576 
577  // set explicit time-integration class operators
580  }
void SubStepProjection(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:198
BDF multi-step scheme of order 1 (implicit)
tBaseSharedPtr CreateInstance(tKey idKey BOOST_PP_COMMA_IF(MAX_PARAM) BOOST_PP_ENUM_BINARY_PARAMS(MAX_PARAM, tParam, x))
Create an instance of the class referred to by idKey.
Definition: NekFactory.hpp:162
LibUtilities::TimeIntegrationWrapperSharedPtr m_subStepIntegrationScheme
void SubStepAdvection(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
void DefineProjection(FuncPointerT func, ObjectPointerT obj)
void DefineOdeRhs(FuncPointerT func, ObjectPointerT obj)
TimeIntegrationWrapperFactory & GetTimeIntegrationWrapperFactory()
BDF multi-step scheme of order 2 (implicit)
LibUtilities::TimeIntegrationSchemeOperators m_subStepIntegrationOps
void Nektar::UnsteadyAdvectionDiffusion::SubStepAdvance ( const LibUtilities::TimeIntegrationSolutionSharedPtr integrationSoln,
int  nstep,
NekDouble  time 
)
protected

Definition at line 462 of file UnsteadyAdvectionDiffusion.cpp.

References Nektar::SolverUtils::EquationSystem::GetExpSize(), GetSubstepTimeStep(), m_cflSafetyFactor, Nektar::SolverUtils::EquationSystem::m_fields, m_infosteps, m_intSteps, m_minsubsteps, Nektar::SolverUtils::EquationSystem::m_session, m_subStepIntegrationOps, m_subStepIntegrationScheme, and Nektar::SolverUtils::EquationSystem::m_timestep.

Referenced by v_PreIntegrate().

466  {
467  int n;
468  int nsubsteps;
469 
470  NekDouble dt;
471 
472  Array<OneD, Array<OneD, NekDouble> > fields, velfields;
473 
474  static int ncalls = 1;
475  int nint = min(ncalls++, m_intSteps);
476 
477  Array<OneD, NekDouble> CFL(m_fields[0]->GetExpSize(),
479 
480  LibUtilities::CommSharedPtr comm = m_session->GetComm();
481 
482  // Get the proper time step with CFL control
483  dt = GetSubstepTimeStep();
484 
485  nsubsteps = (m_timestep > dt)? ((int)(m_timestep/dt)+1):1;
486  nsubsteps = max(m_minsubsteps, nsubsteps);
487 
488  dt = m_timestep/nsubsteps;
489 
490  if (m_infosteps && !((nstep+1)%m_infosteps) && comm->GetRank() == 0)
491  {
492  cout << "Sub-integrating using "<< nsubsteps
493  << " steps over Dt = " << m_timestep
494  << " (SubStep CFL=" << m_cflSafetyFactor << ")"<< endl;
495  }
496 
497  for (int m = 0; m < nint; ++m)
498  {
499  // We need to update the fields held by the m_integrationSoln
500  fields = integrationSoln->UpdateSolutionVector()[m];
501 
502  // Initialise NS solver which is set up to use a GLM method
503  // with calls to EvaluateAdvection_SetPressureBCs and
504  // SolveUnsteadyStokesSystem
506  SubIntegrationSoln = m_subStepIntegrationScheme->
507  InitializeScheme(dt, fields, time, m_subStepIntegrationOps);
508 
509  for(n = 0; n < nsubsteps; ++n)
510  {
511  fields = m_subStepIntegrationScheme->TimeIntegrate(n, dt, SubIntegrationSoln,
513  }
514 
515  // Reset time integrated solution in m_integrationSoln
516  integrationSoln->SetSolVector(m,fields);
517  }
518  }
LibUtilities::TimeIntegrationWrapperSharedPtr m_subStepIntegrationScheme
NekDouble m_timestep
Time step size.
boost::shared_ptr< Comm > CommSharedPtr
Pointer to a Communicator object.
Definition: Comm.h:55
double NekDouble
LibUtilities::TimeIntegrationSchemeOperators m_subStepIntegrationOps
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
SOLVER_UTILS_EXPORT int GetExpSize()
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
boost::shared_ptr< TimeIntegrationSolution > TimeIntegrationSolutionSharedPtr
void Nektar::UnsteadyAdvectionDiffusion::SubStepAdvection ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time 
)
protected

Explicit Advection terms used by SubStepAdvance time integration

Get the number of coefficients

Define an auxiliary variable to compute the RHS

Operations to compute the RHS

Multiply the flux by the inverse of the mass matrix

Store in outarray the physical values of the RHS

Definition at line 585 of file UnsteadyAdvectionDiffusion.cpp.

References AddAdvectionPenaltyFlux(), Nektar::SolverUtils::AdvectionSystem::m_advObject, Nektar::SolverUtils::EquationSystem::m_fields, m_velocity, and Vmath::Neg().

Referenced by SetUpSubSteppingTimeIntegration().

589  {
590  int i;
591  int nVariables = inarray.num_elements();
592 
593  /// Get the number of coefficients
594  int ncoeffs = m_fields[0]->GetNcoeffs();
595 
596  /// Define an auxiliary variable to compute the RHS
597  Array<OneD, Array<OneD, NekDouble> > WeakAdv(nVariables);
598  WeakAdv[0] = Array<OneD, NekDouble> (ncoeffs*nVariables);
599  for(i = 1; i < nVariables; ++i)
600  {
601  WeakAdv[i] = WeakAdv[i-1] + ncoeffs;
602  }
603 
604  // Currently assume velocity field is time independent and does not therefore
605  // need extrapolating.
606  // RHS computation using the advection base class
607  m_advObject->Advect(nVariables, m_fields, m_velocity,
608  inarray, outarray, time);
609 
610  for(i = 0; i < nVariables; ++i)
611  {
612  m_fields[i]->IProductWRTBase(outarray[i],WeakAdv[i]);
613  // negation requried due to sign of DoAdvection term to be consistent
614  Vmath::Neg(ncoeffs, WeakAdv[i], 1);
615  }
616 
617  AddAdvectionPenaltyFlux(m_velocity, inarray, WeakAdv);
618 
619 
620  /// Operations to compute the RHS
621  for(i = 0; i < nVariables; ++i)
622  {
623  // Negate the RHS
624  Vmath::Neg(ncoeffs, WeakAdv[i], 1);
625 
626  /// Multiply the flux by the inverse of the mass matrix
627  m_fields[i]->MultiplyByElmtInvMass(WeakAdv[i], WeakAdv[i]);
628 
629  /// Store in outarray the physical values of the RHS
630  m_fields[i]->BwdTrans(WeakAdv[i], outarray[i]);
631  }
632  }
SolverUtils::AdvectionSharedPtr m_advObject
Advection term.
Array< OneD, Array< OneD, NekDouble > > m_velocity
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:396
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
void AddAdvectionPenaltyFlux(const Array< OneD, const Array< OneD, NekDouble > > &velfield, const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &Outarray)
void Nektar::UnsteadyAdvectionDiffusion::SubStepProjection ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time 
)
protected

Projection used by SubStepAdvance time integration

Definition at line 637 of file UnsteadyAdvectionDiffusion.cpp.

References ASSERTL1, and Vmath::Vcopy().

Referenced by SetUpSubSteppingTimeIntegration().

641  {
642  ASSERTL1(inarray.num_elements() == outarray.num_elements(),"Inarray and outarray of different sizes ");
643 
644  for(int i = 0; i < inarray.num_elements(); ++i)
645  {
646  Vmath::Vcopy(inarray[i].num_elements(),inarray[i],1,outarray[i],1);
647  }
648  }
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:228
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1061
void Nektar::UnsteadyAdvectionDiffusion::v_GenerateSummary ( SolverUtils::SummaryList s)
protectedvirtual

Print Summary.

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Definition at line 438 of file UnsteadyAdvectionDiffusion.cpp.

References Nektar::SolverUtils::UnsteadySystem::v_GenerateSummary().

440  {
442  }
virtual SOLVER_UTILS_EXPORT void v_GenerateSummary(SummaryList &s)
Print a summary of time stepping parameters.
void Nektar::UnsteadyAdvectionDiffusion::v_InitObject ( )
protectedvirtual

Initialise the object.

Initialisation object for the unsteady linear advection diffusion equation.

Reimplemented from Nektar::SolverUtils::AdvectionSystem.

Definition at line 61 of file UnsteadyAdvectionDiffusion.cpp.

References ASSERTL0, Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineImplicitSolve(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineOdeRhs(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineProjection(), DoImplicitSolve(), DoOdeProjection(), DoOdeRhs(), Nektar::MultiRegions::eDiscontinuous, Nektar::MultiRegions::eGalerkin, Nektar::MultiRegions::eMixed_CG_Discontinuous, Nektar::SolverUtils::EquationSystem::EvaluateFunction(), Nektar::SolverUtils::GetAdvectionFactory(), Nektar::SolverUtils::GetDiffusionFactory(), GetFluxVectorAdv(), GetFluxVectorDiff(), GetNormalVelocity(), Nektar::SolverUtils::GetRiemannSolverFactory(), Nektar::SolverUtils::AdvectionSystem::m_advObject, m_diffusion, m_epsilon, Nektar::SolverUtils::UnsteadySystem::m_explicitDiffusion, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::UnsteadySystem::m_homoInitialFwd, Nektar::SolverUtils::UnsteadySystem::m_intScheme, Nektar::SolverUtils::UnsteadySystem::m_ode, Nektar::SolverUtils::EquationSystem::m_projectionType, m_riemannSolver, Nektar::SolverUtils::EquationSystem::m_session, Nektar::SolverUtils::EquationSystem::m_spacedim, m_subSteppingScheme, m_sVVCutoffRatio, m_sVVDiffCoeff, m_useSpecVanVisc, m_velocity, m_waveFreq, SetUpSubSteppingTimeIntegration(), and Nektar::SolverUtils::AdvectionSystem::v_InitObject().

62  {
64 
65  m_session->LoadParameter("wavefreq", m_waveFreq, 0.0);
66  m_session->LoadParameter("epsilon", m_epsilon, 0.0);
67 
68  // turn on substepping
69  m_session->MatchSolverInfo("Extrapolation", "SubStepping",
70  m_subSteppingScheme, false);
71 
72  // Define Velocity fields
73  m_velocity = Array<OneD, Array<OneD, NekDouble> >(m_spacedim);
74  std::vector<std::string> vel;
75  vel.push_back("Vx");
76  vel.push_back("Vy");
77  vel.push_back("Vz");
78  vel.resize(m_spacedim);
79 
80  EvaluateFunction(vel, m_velocity, "AdvectionVelocity");
81 
82  m_session->MatchSolverInfo(
83  "SpectralVanishingViscosity", "True", m_useSpecVanVisc, false);
84 
86  {
87  m_session->LoadParameter("SVVCutoffRatio",m_sVVCutoffRatio,0.75);
88  m_session->LoadParameter("SVVDiffCoeff",m_sVVDiffCoeff,0.1);
89  }
90 
91  // Type of advection and diffusion classes to be used
92  switch(m_projectionType)
93  {
94  // Discontinuous field
96  {
97  // Do not forwards transform initial condition
98  m_homoInitialFwd = false;
99 
100  // Advection term
101  string advName;
102  string riemName;
103  m_session->LoadSolverInfo("AdvectionType", advName, "WeakDG");
105  CreateInstance(advName, advName);
106  m_advObject->SetFluxVector(&UnsteadyAdvectionDiffusion::
107  GetFluxVectorAdv, this);
108  m_session->LoadSolverInfo("UpwindType", riemName, "Upwind");
110  CreateInstance(riemName);
111  m_riemannSolver->SetScalar("Vn", &UnsteadyAdvectionDiffusion::
112  GetNormalVelocity, this);
113  m_advObject->SetRiemannSolver(m_riemannSolver);
114  m_advObject->InitObject (m_session, m_fields);
115 
116  // Diffusion term
118  {
119  std::string diffName;
120  m_session->LoadSolverInfo("DiffusionType", diffName, "LDG");
122  CreateInstance(diffName, diffName);
123  m_diffusion->SetFluxVector(&UnsteadyAdvectionDiffusion::
124  GetFluxVectorDiff, this);
125  m_diffusion->InitObject(m_session, m_fields);
126  }
127 
128  ASSERTL0(m_subSteppingScheme == false,"SubSteppingScheme is not set up for DG projection");
129  break;
130  }
131  // Continuous field
134  {
135  // Advection term
136  std::string advName;
137  m_session->LoadSolverInfo("AdvectionType", advName,
138  "NonConservative");
140  CreateInstance(advName, advName);
141  m_advObject->SetFluxVector(&UnsteadyAdvectionDiffusion::
142  GetFluxVectorAdv, this);
143 
144  if(advName.compare("WeakDG") == 0)
145  {
146  string riemName;
147  m_session->LoadSolverInfo("UpwindType", riemName, "Upwind");
149  CreateInstance(riemName);
150  m_riemannSolver->SetScalar("Vn",
152  GetNormalVelocity, this);
153  m_advObject->SetRiemannSolver(m_riemannSolver);
154  m_advObject->InitObject (m_session, m_fields);
155  }
156 
157  // In case of Galerkin explicit diffusion gives an error
159  {
160  ASSERTL0(false, "Explicit Galerkin diffusion not set up.");
161  }
162  // In case of Galerkin implicit diffusion: do nothing
163  break;
164  }
165  default:
166  {
167  ASSERTL0(false, "Unsupported projection type.");
168  break;
169  }
170  }
171 
177 
178  if(m_subSteppingScheme) // Substepping
179  {
181  "Projection must be set to Mixed_CG_Discontinuous for "
182  "substepping");
184  m_intScheme->GetIntegrationMethod(), m_intScheme);
185  }
186  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:198
void GetFluxVectorAdv(const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &flux)
Evaluate the flux at each solution point for the advection part.
bool m_homoInitialFwd
Flag to determine if simulation should start in homogeneous forward transformed state.
SolverUtils::AdvectionSharedPtr m_advObject
Advection term.
bool m_explicitDiffusion
Indicates if explicit or implicit treatment of diffusion is used.
void DefineImplicitSolve(FuncPointerT func, ObjectPointerT obj)
LibUtilities::TimeIntegrationSchemeOperators m_ode
The time integration scheme operators to use.
Array< OneD, Array< OneD, NekDouble > > m_velocity
DiffusionFactory & GetDiffusionFactory()
Definition: Diffusion.cpp:42
enum MultiRegions::ProjectionType m_projectionType
Type of projection; e.g continuous or discontinuous.
Array< OneD, NekDouble > & GetNormalVelocity()
Get the normal velocity based on m_velocity.
SolverUtils::RiemannSolverSharedPtr m_riemannSolver
void DoOdeProjection(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
Perform the projection.
void DefineProjection(FuncPointerT func, ObjectPointerT obj)
virtual void DoOdeRhs(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
Compute the RHS.
void DefineOdeRhs(FuncPointerT func, ObjectPointerT obj)
RiemannSolverFactory & GetRiemannSolverFactory()
int m_spacedim
Spatial dimension (>= expansion dim).
void SetUpSubSteppingTimeIntegration(int intMethod, const LibUtilities::TimeIntegrationWrapperSharedPtr &IntegrationScheme)
SolverUtils::DiffusionSharedPtr m_diffusion
AdvectionFactory & GetAdvectionFactory()
Gets the factory for initialising advection objects.
Definition: Advection.cpp:46
SOLVER_UTILS_EXPORT void EvaluateFunction(Array< OneD, Array< OneD, NekDouble > > &pArray, std::string pFunctionName, const NekDouble pTime=0.0, const int domain=0)
Evaluates a function as specified in the session file.
UnsteadyAdvectionDiffusion(const LibUtilities::SessionReaderSharedPtr &pSession)
Session reader.
virtual void DoImplicitSolve(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, NekDouble time, NekDouble lambda)
Solve implicitly the diffusion term.
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
LibUtilities::TimeIntegrationWrapperSharedPtr m_intScheme
Wrapper to the time integration scheme.
virtual SOLVER_UTILS_EXPORT void v_InitObject()
Init object for UnsteadySystem class.
void GetFluxVectorDiff(const int i, const int j, const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &derivatives, Array< OneD, Array< OneD, NekDouble > > &flux)
Evaluate the flux at each solution point for the diffusion part.
bool Nektar::UnsteadyAdvectionDiffusion::v_PreIntegrate ( int  step)
protectedvirtual

PreIntegration step for substepping.

Perform the extrapolation.

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Definition at line 448 of file UnsteadyAdvectionDiffusion.cpp.

References Nektar::SolverUtils::UnsteadySystem::m_intSoln, m_subSteppingScheme, Nektar::SolverUtils::EquationSystem::m_time, and SubStepAdvance().

449  {
451  {
453  }
454 
455  return false;
456  }
NekDouble m_time
Current time of simulation.
void SubStepAdvance(const LibUtilities::TimeIntegrationSolutionSharedPtr &integrationSoln, int nstep, NekDouble time)
LibUtilities::TimeIntegrationSolutionSharedPtr m_intSoln

Friends And Related Function Documentation

friend class MemoryManager< UnsteadyAdvectionDiffusion >
friend

Definition at line 49 of file UnsteadyAdvectionDiffusion.h.

Member Data Documentation

string Nektar::UnsteadyAdvectionDiffusion::className
static
Initial value:

Name of class.

Definition at line 61 of file UnsteadyAdvectionDiffusion.h.

NekDouble Nektar::UnsteadyAdvectionDiffusion::m_cflSafetyFactor
protected

Definition at line 159 of file UnsteadyAdvectionDiffusion.h.

Referenced by GetSubstepTimeStep(), and SubStepAdvance().

SolverUtils::DiffusionSharedPtr Nektar::UnsteadyAdvectionDiffusion::m_diffusion
protected

Definition at line 72 of file UnsteadyAdvectionDiffusion.h.

Referenced by DoOdeRhs(), and v_InitObject().

NekDouble Nektar::UnsteadyAdvectionDiffusion::m_epsilon
private

Definition at line 165 of file UnsteadyAdvectionDiffusion.h.

Referenced by DoImplicitSolve(), and v_InitObject().

int Nektar::UnsteadyAdvectionDiffusion::m_infosteps
protected

Definition at line 160 of file UnsteadyAdvectionDiffusion.h.

Referenced by SubStepAdvance().

int Nektar::UnsteadyAdvectionDiffusion::m_intSteps
protected
int Nektar::UnsteadyAdvectionDiffusion::m_minsubsteps
protected

Definition at line 161 of file UnsteadyAdvectionDiffusion.h.

Referenced by SubStepAdvance().

int Nektar::UnsteadyAdvectionDiffusion::m_planeNumber
protected

Definition at line 78 of file UnsteadyAdvectionDiffusion.h.

Referenced by UnsteadyAdvectionDiffusion().

SolverUtils::RiemannSolverSharedPtr Nektar::UnsteadyAdvectionDiffusion::m_riemannSolver
protected

Definition at line 71 of file UnsteadyAdvectionDiffusion.h.

Referenced by v_InitObject().

LibUtilities::TimeIntegrationSchemeOperators Nektar::UnsteadyAdvectionDiffusion::m_subStepIntegrationOps
protected
LibUtilities::TimeIntegrationWrapperSharedPtr Nektar::UnsteadyAdvectionDiffusion::m_subStepIntegrationScheme
protected
bool Nektar::UnsteadyAdvectionDiffusion::m_subSteppingScheme
protected

Definition at line 67 of file UnsteadyAdvectionDiffusion.h.

Referenced by v_InitObject(), and v_PreIntegrate().

NekDouble Nektar::UnsteadyAdvectionDiffusion::m_sVVCutoffRatio
protected

Definition at line 69 of file UnsteadyAdvectionDiffusion.h.

Referenced by DoImplicitSolve(), and v_InitObject().

NekDouble Nektar::UnsteadyAdvectionDiffusion::m_sVVDiffCoeff
protected

Definition at line 70 of file UnsteadyAdvectionDiffusion.h.

Referenced by DoImplicitSolve(), and v_InitObject().

Array<OneD, NekDouble> Nektar::UnsteadyAdvectionDiffusion::m_traceVn
protected

Definition at line 74 of file UnsteadyAdvectionDiffusion.h.

Referenced by GetNormalVel().

bool Nektar::UnsteadyAdvectionDiffusion::m_useSpecVanVisc
protected

Definition at line 68 of file UnsteadyAdvectionDiffusion.h.

Referenced by DoImplicitSolve(), and v_InitObject().

Array<OneD, Array<OneD, NekDouble> > Nektar::UnsteadyAdvectionDiffusion::m_velocity
protected
NekDouble Nektar::UnsteadyAdvectionDiffusion::m_waveFreq
private

Definition at line 164 of file UnsteadyAdvectionDiffusion.h.

Referenced by v_InitObject().