Nektar++
BasisType.h
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // File BasisType.h
4 //
5 // For more information, please see: http://www.nektar.info
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining a
14 // copy of this software and associated documentation files (the "Software"),
15 // to deal in the Software without restriction, including without limitation
16 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
17 // and/or sell copies of the Software, and to permit persons to whom the
18 // Software is furnished to do so, subject to the following conditions:
19 //
20 // The above copyright notice and this permission notice shall be included
21 // in all copies or substantial portions of the Software.
22 //
23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 // DEALINGS IN THE SOFTWARE.
30 //
31 //
32 ///////////////////////////////////////////////////////////////////////////////
33 
34 #ifndef NEKTAR_LIB_UTILITIES_BASIS_TYPE_H
35 #define NEKTAR_LIB_UTILITIES_BASIS_TYPE_H
36 
37 
38 namespace Nektar
39 {
40  namespace LibUtilities
41  {
42  enum BasisType
43  {
45  eOrtho_A, //!< Principle Orthogonal Functions \f$\widetilde{\psi}^a_p(z_i)\f$
46  eOrtho_B, //!< Principle Orthogonal Functions \f$\widetilde{\psi}^b_{pq}(z_i)\f$
47  eOrtho_C, //!< Principle Orthogonal Functions \f$\widetilde{\psi}^c_{pqr}(z_i)\f$
48  eModified_A, //!< Principle Modified Functions \f$ \phi^a_p(z_i) \f$
49  eModified_B, //!< Principle Modified Functions \f$ \phi^b_{pq}(z_i) \f$
50  eModified_C, //!< Principle Modified Functions \f$ \phi^c_{pqr}(z_i) \f$
51  eOrthoPyr_C, //!< Principle Orthogonal Functions \f$\widetilde{\psi}^c_{pqr}(z_i) for Pyramids\f$
52  eModifiedPyr_C, //!< Principle Modified Functions \f$ \phi^c_{pqr}(z_i) for Pyramids\f$
53  eFourier, //!< Fourier Expansion \f$ \exp(i p\pi z_i)\f$
54  eGLL_Lagrange, //!< Lagrange for SEM basis \f$ h_p(z_i) \f$
55  eGauss_Lagrange, //!< Lagrange Polynomials using the Gauss points \f$ h_p(z_i) \f$
56  eLegendre, //!< Legendre Polynomials \f$ L_p(z_i) = P^{0,0}_p(z_i)\f$. Same as Ortho_A
57  eChebyshev, //!< Chebyshev Polynomials \f$ T_p(z_i) = P^{-1/2,-1/2}_p(z_i)\f$
58  eMonomial, //!< Monomial polynomials \f$ L_p(z_i) = z_i^{p}\f$
59  eFourierSingleMode, //!< Fourier ModifiedExpansion with just the first mode \f$ \exp(i \pi z_i)\f$
60  eFourierHalfModeRe, //!< Fourier Modified expansions with just the real part of the first mode \f$ Re[\exp(i \pi z_i)]\f$
61  eFourierHalfModeIm, //!< Fourier Modified expansions with just the imaginary part of the first mode \f$ Im[\exp(i \pi z_i)]\f$
62  SIZE_BasisType //!< Length of enum list
63  };
64  }
65 }
66 
67 #endif
Principle Modified Functions .
Definition: BasisType.h:50
Principle Modified Functions .
Definition: BasisType.h:52
Principle Modified Functions .
Definition: BasisType.h:48
Lagrange Polynomials using the Gauss points .
Definition: BasisType.h:55
Fourier Expansion .
Definition: BasisType.h:53
Chebyshev Polynomials .
Definition: BasisType.h:57
Principle Orthogonal Functions .
Definition: BasisType.h:46
Fourier Modified expansions with just the real part of the first mode .
Definition: BasisType.h:60
Principle Modified Functions .
Definition: BasisType.h:49
Principle Orthogonal Functions .
Definition: BasisType.h:47
Principle Orthogonal Functions .
Definition: BasisType.h:45
Fourier Modified expansions with just the imaginary part of the first mode .
Definition: BasisType.h:61
Principle Orthogonal Functions .
Definition: BasisType.h:51
Fourier ModifiedExpansion with just the first mode .
Definition: BasisType.h:59
Legendre Polynomials . Same as Ortho_A.
Definition: BasisType.h:56
Lagrange for SEM basis .
Definition: BasisType.h:54
Monomial polynomials .
Definition: BasisType.h:58