Nektar++
MMFDiffusion.cpp
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // File MMFDiffusion.cpp
4 //
5 // For more information, please see: http://www.nektar.info
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining a
14 // copy of this software and associated documentation files (the "Software"),
15 // to deal in the Software without restriction, including without limitation
16 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
17 // and/or sell copies of the Software, and to permit persons to whom the
18 // Software is furnished to do so, subject to the following conditions:
19 //
20 // The above copyright notice and this permission notice shall be included
21 // in all copies or substantial portions of the Software.
22 //
23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 // DEALINGS IN THE SOFTWARE.
30 //
31 // Description: MMFDiffusion.
32 //
33 ///////////////////////////////////////////////////////////////////////////////
34 
35 #include <iostream>
36 #include <iomanip>
37 
38 #include <boost/core/ignore_unused.hpp>
39 #include <boost/algorithm/string.hpp>
40 
41 #include <SolverUtils/Driver.h>
45 
46 #include <boost/math/special_functions/spherical_harmonic.hpp>
47 using namespace std;
48 using namespace Nektar::SolverUtils;
49 using namespace Nektar;
50 
51 namespace Nektar
52 {
53  string MMFDiffusion::className = SolverUtils::GetEquationSystemFactory().
54  RegisterCreatorFunction("MMFDiffusion",
55  MMFDiffusion::create,
56  "MMFDiffusion equation.");
57 
58  MMFDiffusion::MMFDiffusion(
61  : UnsteadySystem(pSession, pGraph),
62  MMFSystem(pSession, pGraph)
63  {
64  }
65 
67  {
69 
70  int nq = m_fields[0]->GetNpoints();
71  int nvar = m_fields.num_elements();
72  int MFdim = 3;
73 
74  // Diffusivity coefficient for e^j
76  m_session->LoadParameter("epsilon0", m_epsilon[0], 1.0);
77  m_session->LoadParameter("epsilon1", m_epsilon[1], 1.0);
78  m_session->LoadParameter("epsilon2", m_epsilon[2], 1.0);
79 
80  // Diffusivity coefficient for u^j
82  m_session->LoadParameter("epsu0", m_epsu[0], 1.0);
83  m_session->LoadParameter("epsu1", m_epsu[1], 1.0);
84 
85  m_session->LoadParameter("InitPtx", m_InitPtx, 0.0);
86  m_session->LoadParameter("InitPty", m_InitPty, 0.0);
87  m_session->LoadParameter("InitPtz", m_InitPtz, 0.0);
88 
89  int shapedim = m_fields[0]->GetShapeDimension();
90  Array<OneD, Array<OneD, NekDouble> > Anisotropy(shapedim);
91  for(int j=0; j<shapedim; ++j)
92  {
93  Anisotropy[j] = Array<OneD, NekDouble>(nq,1.0);
94  Vmath::Fill(nq, sqrt(m_epsilon[j]), &Anisotropy[j][0], 1);
95 
96  }
97 
98  MMFSystem::MMFInitObject(Anisotropy);
99 
100  // Define ProblemType
101  if(m_session->DefinesSolverInfo("TESTTYPE"))
102  {
103  std::string TestTypeStr = m_session->GetSolverInfo("TESTTYPE");
104  int i;
105  for(i = 0; i < (int) SIZE_TestType; ++i)
106  {
107  if(boost::iequals(TestTypeMap[i],TestTypeStr))
108  {
109  m_TestType = (TestType)i;
110  break;
111  }
112  }
113  }
114  else
115  {
116  m_TestType = (TestType)0;
117  }
118 
119  if(m_session->DefinesSolverInfo("INITWAVETYPE"))
120  {
121  std::string InitWaveTypeStr = m_session->GetSolverInfo("INITWAVETYPE");
122  for(int i = 0; i < (int) SIZE_TestType; ++i)
123  {
124  if(boost::iequals(InitWaveTypeMap[i],InitWaveTypeStr))
125  {
127  break;
128  }
129  }
130  }
131  else
132  {
134  }
135 
136 
152 
153  int indx;
154  Array<OneD, NekDouble> tmp(nq);
155  for (int k=0; k<MFdim; ++k)
156  {
157  // For Moving Frames
158  indx = 5*k;
159 
160  for (int j=0; j<m_spacedim; ++j)
161  {
162  m_varcoeff[MMFCoeffs[indx+j]] = Array<OneD, NekDouble>(nq, 0.0);
163  Vmath::Vcopy(nq, &m_movingframes[k][j*nq], 1, &m_varcoeff[MMFCoeffs[indx+j]][0], 1);
164  }
165 
166  // m_DivMF
167  m_varcoeff[MMFCoeffs[indx+3]] = Array<OneD, NekDouble>(nq, 0.0);
168  Vmath::Vcopy(nq, &m_DivMF[k][0], 1, &m_varcoeff[MMFCoeffs[indx+3]][0], 1);
169 
170  // \| e^k \|
171  m_varcoeff[MMFCoeffs[indx+4]] = Array<OneD, NekDouble>(nq,0.0);
172  tmp = Array<OneD, NekDouble>(nq,0.0);
173  for (int i=0; i<m_spacedim; ++i)
174  {
175  Vmath::Vvtvp(nq, &m_movingframes[k][i*nq], 1, &m_movingframes[k][i*nq], 1, &tmp[0], 1, &tmp[0], 1);
176  }
177 
178  Vmath::Vcopy(nq, &tmp[0], 1, &m_varcoeff[MMFCoeffs[indx+4]][0], 1);
179 
180 
181  }
182 
183 
184  if (!m_explicitDiffusion)
185  {
187  }
188 
190  }
191 
192  /**
193  *
194  */
196  {
197  }
198 
199 
200  /**OdeRhs
201  * @param inarray Input array.
202  * @param outarray Output array.
203  * @param time Current simulation time.
204  * @param lambda Timestep.
205  */
207  const Array<OneD, const Array<OneD, NekDouble> >&inarray,
208  Array<OneD, Array<OneD, NekDouble> >&outarray,
209  const NekDouble time,
210  const NekDouble lambda)
211  {
212  int nvariables = inarray.num_elements();
213  int nq = m_fields[0]->GetNpoints();
214 
215 
217  factors[StdRegions::eFactorTau] = 1.0;
218 
219  Array<OneD, Array< OneD, NekDouble> > F(nvariables);
220  factors[StdRegions::eFactorLambda] = 1.0/lambda;
221  F[0] = Array<OneD, NekDouble> (nq*nvariables);
222 
223  for (int n = 1; n < nvariables; ++n)
224  {
225  F[n] = F[n-1] + nq;
226  //cout << "F["<< n<<"=" << F[n][1] <<endl;
227  }
228 
229  // We solve ( \nabla^2 - HHlambda ) Y[i] = rhs [i]
230  // inarray = input: \hat{rhs} -> output: \hat{Y}
231  // outarray = output: nabla^2 \hat{Y}
232  // where \hat = modal coeffs
233  SetBoundaryConditions(time);
234 
235  for (int i = 0; i < nvariables; ++i)
236  {
237  factors[StdRegions::eFactorLambda] = 1.0/lambda/m_epsu[i];
238 
239  // Multiply 1.0/timestep
240  Vmath::Smul(nq, -factors[StdRegions::eFactorLambda],inarray[i], 1, F[i], 1);
241 
242  /* for (int k = 0; k < 15; ++k)
243  cout << "inarray["<<i << "]"<< k<<"=" << inarray[i][k]<<endl;*/
244  // Solve a system of equations with Helmholtz solver and transform
245  // back into physical space.
246  m_fields[i]->HelmSolve(F[i], m_fields[i]->UpdateCoeffs(),NullFlagList, factors, m_varcoeff);
247 
248  m_fields[i]->BwdTrans(m_fields[i]->GetCoeffs(), outarray[i]);
249  /* Array<OneD, NekDouble> coefarray = m_fields[i]->GetCoeffs();
250  for (int k = 0; k < 15; ++k)
251  cout << "inarray["<< k<<"=" << coefarray[k]<<endl;*/
252  }
253  /* for (int kk = 0; kk < 15; ++kk)
254  cout << "inarray["<< kk<<"=" << m_varcoeff[StdRegions::eVarCoeffMF3Mag][kk]<<endl;*/
255 
256 
257  }
258 
259 
260  /**
261  *
262  */
264  const Array<OneD, const Array<OneD, NekDouble> >&inarray,
265  Array<OneD, Array<OneD, NekDouble> >&outarray,
266  const NekDouble time)
267  {
268  int nq = GetTotPoints();
269 
270  switch(m_TestType)
271  {
272  case eTestPlane:
273  {
274 
278 
279  m_fields[0]->GetCoords(x,y,z);
280 
281  for(int k=0; k<nq; k++)
282  {
283  outarray[0][k] = (m_epsilon[0]+m_epsilon[1]-1.0)*m_pi*m_pi*exp(-1.0*m_pi*m_pi*time)*sin(m_pi*x[k])*cos(m_pi*y[k]);
284  }
285  }
286  break;
287 
288  case eTestCube:
289  {
290 
294 
295  m_fields[0]->GetCoords(x,y,z);
296 
297  for(int k=0; k<nq; k++)
298  {
299  outarray[0][k] = (m_epsilon[0]+m_epsilon[1]+m_epsilon[2]-1.0)*m_pi*m_pi*exp(-1.0*m_pi*m_pi*time)*sin(m_pi*x[k])*sin(m_pi*y[k])*sin(m_pi*z[k]);
300 
301  }
302 
303  }
304  break;
305 
306  case eTestLinearSphere:
307  {
308  Array<OneD, NekDouble> temp(nq);
309 
310  NekDouble A = 2.0;
311  NekDouble B = 5.0;
312 
313  NekDouble m_a, m_b, m_c, m_d;
314  m_a = B-1.0;
315  m_b = A*A;
316  m_c = -1.0*B;
317  m_d = -1.0*A*A;
318 
319  temp = Array<OneD, NekDouble>(nq,0.0);
320  Vmath::Svtvp(nq,m_a,&inarray[0][0],1,&temp[0],1,&temp[0],1);
321  Vmath::Svtvp(nq,m_b,&inarray[1][0],1,&temp[0],1,&outarray[0][0],1);
322 
323  temp = Array<OneD, NekDouble>(nq,0.0);
324  Vmath::Svtvp(nq,m_c,&inarray[0][0],1,&temp[0],1,&temp[0],1);
325  Vmath::Svtvp(nq,m_d,&inarray[1][0],1,&temp[0],1,&outarray[1][0],1);
326  }
327  break;
328 
330  {
331  NekDouble A = 2.0;
332  NekDouble B = 5.0;
333 
334  Array<OneD, NekDouble> Aonevec(nq,A);
335 
336  // cube = phys0*phys0*phy1
337  Array<OneD, NekDouble> cube(nq);
338  Vmath::Vmul(nq,&inarray[0][0],1,&inarray[0][0],1,&cube[0],1);
339  Vmath::Vmul(nq,&inarray[1][0],1,&cube[0],1,&cube[0],1);
340 
341  // outarray[0] = A - B*phy0 + phy0*phy0*phy1 - phy0
342  NekDouble coeff = -1.0*B - 1.0;
343  Array<OneD, NekDouble> tmp(nq);
344  Vmath::Svtvp(nq,coeff,&inarray[0][0],1,&cube[0],1,&tmp[0],1);
345  Vmath::Vadd(nq,&Aonevec[0],1,&tmp[0],1,&outarray[0][0],1);
346 
347  // outarray[1] = B*phys0 - phy0*phy0*phy1
348  Vmath::Svtvm(nq,B,&inarray[0][0],1,&cube[0],1,&outarray[1][0],1);
349 
350  }
351  break;
352 
353  case eFHNStandard:
354  {
355  // \phi - \phi^3/3 - \psi
356  NekDouble a = 0.12;
357  NekDouble b = 0.011;
358  NekDouble c1 = 0.175;
359  NekDouble c2 = 0.03;
360  NekDouble d = 0.55;
361 
362  Array<OneD, NekDouble> tmp(nq);
363 
364  // Reaction for \phi = c1 \phi ( \phi - a)*(1 - \phi) - c2 v
365  Vmath::Smul(nq, -1.0*c1, inarray[0], 1, outarray[0], 1);
366  Vmath::Sadd(nq, -1.0*a, inarray[0], 1, tmp, 1);
367  Vmath::Vmul(nq, tmp, 1, inarray[0], 1, outarray[0], 1);
368  Vmath::Sadd(nq, -1.0, inarray[0], 1, tmp, 1);
369  Vmath::Vmul(nq, tmp, 1, outarray[0], 1, outarray[0], 1);
370 
371  Vmath::Smul(nq, -1.0*c2, inarray[1], 1, tmp, 1);
372  Vmath::Vadd(nq, tmp, 1, outarray[0], 1, outarray[0], 1);
373 
374 
375  // Reaction for \psi = b (\phi - d \psi )
376  Vmath::Svtvp(nq, -1.0*d, inarray[1], 1, inarray[0], 1, outarray[1], 1);
377  Vmath::Smul(nq, b, outarray[1], 1, outarray[1], 1);
378  }
379  break;
380 
381  case eFHNRogers:
382  {
383  NekDouble a = 0.13;
384  NekDouble b = 0.013;
385  NekDouble c1 = 0.26;
386  NekDouble c2 = 0.1;
387  NekDouble d = 1.0;
388 
389  Array<OneD, NekDouble> tmp(nq);
390 
391  // Reaction for \phi = c1 \phi ( \phi - a)*(1 - \phi) - c2 u v
392  Vmath::Smul(nq, -1.0*c1, inarray[0], 1, outarray[0], 1);
393  Vmath::Sadd(nq, -1.0*a, inarray[0], 1, tmp, 1);
394  Vmath::Vmul(nq, tmp, 1, outarray[0], 1, outarray[0], 1);
395  Vmath::Sadd(nq, -1.0, inarray[0], 1, tmp, 1);
396  Vmath::Vmul(nq, tmp, 1, outarray[0], 1, outarray[0], 1);
397 
398  Vmath::Vmul(nq, inarray[0], 1, inarray[1], 1, tmp, 1);
399  Vmath::Smul(nq, -1.0*c2, tmp, 1, tmp, 1);
400  Vmath::Vadd(nq, tmp, 1, outarray[0], 1, outarray[0], 1);
401 
402  // Reaction for \psi = b (\phi - d \psi )
403  Vmath::Svtvp(nq, -1.0*d, inarray[1], 1, inarray[0], 1, outarray[1], 1);
404  Vmath::Smul(nq, b, outarray[1], 1, outarray[1], 1);
405  }
406  break;
407 
408  case eFHNAlievPanf:
409  {
410 
411  NekDouble a = 0.15;
412  NekDouble c1 = 8.0;
413  NekDouble c2 = 1.0;
414  NekDouble c0 = 0.002;
415  NekDouble mu1 = 0.2;
416  NekDouble mu2 = 0.3;
417 
418  Array<OneD, NekDouble> tmp(nq);
419 
420  // Reaction for \phi = c1 \phi ( \phi - a)*(1 - \phi) - c2 u v
421  Vmath::Smul(nq, -1.0*c1, inarray[0], 1, outarray[0], 1);
422  Vmath::Sadd(nq, -1.0*a, inarray[0], 1, tmp, 1);
423  Vmath::Vmul(nq, tmp, 1, outarray[0], 1, outarray[0], 1);
424  Vmath::Sadd(nq, -1.0, inarray[0], 1, tmp, 1);
425  Vmath::Vmul(nq, tmp, 1, outarray[0], 1, outarray[0], 1);
426 
427  Vmath::Vmul(nq, inarray[0], 1, inarray[1], 1, tmp, 1);
428  Vmath::Smul(nq, -1.0*c2, tmp, 1, tmp, 1);
429  Vmath::Vadd(nq, tmp, 1, outarray[0], 1, outarray[0], 1);
430 
431  // Reaction for \psi = (c0 + (\mu1 \psi/(\mu2+\phi) ) )*(-\psi - c1 * \phi*(\phi - a - 1) )
432 
433  Vmath::Smul(nq, mu1, inarray[1], 1, outarray[1], 1);
434  Vmath::Sadd(nq, mu2, inarray[0], 1, tmp, 1);
435  Vmath::Vdiv(nq, outarray[1], 1, tmp, 1, outarray[1], 1);
436  Vmath::Sadd(nq, c0, outarray[1], 1, outarray[1], 1);
437 
438  Vmath::Sadd(nq, (-a-1.0), inarray[0], 1, tmp, 1);
439  Vmath::Vmul(nq, inarray[0], 1, tmp, 1, tmp, 1);
440  Vmath::Smul(nq, c1, tmp, 1, tmp, 1);
441  Vmath::Vadd(nq, inarray[1], 1, tmp, 1, tmp, 1);
442  Vmath::Neg(nq, tmp, 1);
443 
444  Vmath::Vmul(nq, tmp, 1, outarray[1], 1, outarray[1], 1);
445  }
446  break;
447 
448  default:
449  break;
450  }
451  }
452 
453 
454  /**
455  *
456  */
458  bool dumpInitialConditions,
459  const int domain)
460  {
461  boost::ignore_unused(domain);
462 
463  int nq = GetTotPoints();
464 
465  switch(m_TestType)
466  {
467  case eTestPlane:
468  {
470 
471  TestPlaneProblem(initialtime,u);
472  m_fields[0]->SetPhys(u);
473 
474  }
475  break;
476 
477  case eTestCube:
478  {
480 
481  TestCubeProblem(initialtime,u);
482  m_fields[0]->SetPhys(u);
483  /*for (int k=0; k<nq; ++k)
484  {
485  //for (int j=0; j<m_spacedim; ++j)
486  //{
487  cout << "_varcoeff" << u[k] <<endl;
488  // }
489  }*/
490 
491  }
492  break;
493 
494  case eTestLinearSphere:
496  {
499 
500  Morphogenesis(initialtime,0,u);
501  Morphogenesis(initialtime,1,v);
502 
503  m_fields[0]->SetPhys(u);
504  m_fields[1]->SetPhys(v);
505  }
506  break;
507 
508  case eFHNStandard:
509  case eFHNRogers:
510  case eFHNAlievPanf:
511  {
513  m_fields[0]->SetPhys(PlanePhiWave());
514  m_fields[1]->SetPhys(Zero);
515  }
516  break;
517 
518  default:
519  {
520  EquationSystem::v_SetInitialConditions(initialtime,false);
521  }
522  break;
523  }
524 
525  // forward transform to fill the modal coeffs
526  for(int i = 0; i < m_fields.num_elements(); ++i)
527  {
528  m_fields[i]->SetPhysState(true);
529  m_fields[i]->FwdTrans(m_fields[i]->GetPhys(),m_fields[i]->UpdateCoeffs());
530  }
531 
532  if(dumpInitialConditions)
533  {
534  std::string outname = m_sessionName + "_initial.chk";
535  WriteFld(outname);
536  }
537  }
538 
539 
541  Array<OneD, NekDouble> &outfield)
542 
543  {
544  int nq = GetTotPoints();
545 
549 
550  m_fields[0]->GetCoords(x,y,z);
551 
552  outfield = Array<OneD, NekDouble> (nq);
553  for (int k=0; k<nq; k++)
554  {
555  outfield[k] = exp(-1.0*m_pi*m_pi*time)*sin(m_pi*x[k])*cos(m_pi*y[k]);
556 
557  }
558  }
559 
561  Array<OneD, NekDouble> &outfield)
562 
563  {
564  int nq = GetTotPoints();
565 
569 
570  m_fields[0]->GetCoords(x,y,z);
571 
572  outfield = Array<OneD, NekDouble> (nq);
573  for (int k=0; k<nq; k++)
574  {
575  outfield[k] = exp(-1.0*m_pi*m_pi*time)*sin(m_pi*x[k])*sin(m_pi*y[k])*sin(m_pi*z[k]);
576  }
577  }
578 
579 
581  unsigned int field,
582  Array<OneD, NekDouble> &outfield)
583  {
584  int nq = GetTotPoints();
585 
586  int i, m, n, ind;
587  NekDouble a_n, d_n, gamma_n;
588  NekDouble A_mn, C_mn, theta, phi,radius;
589 
590  std::complex<double> Spericharmonic, delta_n, temp;
591  std::complex<double> varphi0, varphi1;
592  std::complex<double> B_mn, D_mn;
593 
594  // Set some parameter values
595  int Maxn = 6;
596  int Maxm = 2*Maxn-1;
597 
598  NekDouble A = 2.0;
599  NekDouble B = 5.0;
600 
601  NekDouble m_mu = 0.001;
602  NekDouble m_nu = 0.002;
603 
604  NekDouble m_a, m_b, m_c, m_d;
605 
606  m_a = B-1.0;
607  m_b = A*A;
608  m_c = -1.0*B;
609  m_d = -1.0*A*A;
610 
613 
614  for (i = 0; i < Maxn; ++i)
615  {
616  Ainit[i] = Array<OneD, NekDouble>(Maxm, 0.0);
617  Binit[i] = Array<OneD, NekDouble>(Maxm, 0.0);
618  }
619 
620  Ainit[5][0] = -0.5839;
621  Ainit[5][1] = -0.8436;
622  Ainit[5][2] = -0.4764;
623  Ainit[5][3] = 0.6475;
624  Ainit[5][4] = 0.1886;
625  Ainit[5][5] = 0.8709;
626  Ainit[5][6] = -0.8338;
627  Ainit[5][7] = 0.1795;
628  Ainit[5][8] = -0.7873;
629  Ainit[5][9] = 0.8842;
630  Ainit[5][10] = 0.2943;
631 
632  Binit[5][0] = -0.6263;
633  Binit[5][1] = 0.9803;
634  Binit[5][2] = 0.7222;
635  Binit[5][3] = 0.5945;
636  Binit[5][4] = 0.6026;
637  Binit[5][5] = -0.2076;
638  Binit[5][6] = 0.4556;
639  Binit[5][7] = 0.6024;
640  Binit[5][8] = 0.9695;
641  Binit[5][9] = -0.4936;
642  Binit[5][10] = 0.1098;
643 
649 
650  m_fields[0]->GetCoords(x,y,z);
651  for (int i = 0; i < nq; ++i)
652  {
653  radius = sqrt(x[i]*x[i] + y[i]*y[i] + z[i]*z[i]) ;
654 
655  // theta is in [0, pi]
656  theta = asin( z[i]/radius ) + 0.5*m_pi;
657 
658  // phi is in [0, 2*pi]
659  phi = atan2( y[i], x[i] ) + m_pi;
660 
661  varphi0 = 0.0*varphi0;
662  varphi1 = 0.0*varphi1;
663  for (n = 0; n < Maxn; ++n)
664  {
665  // Set up parameters
666  a_n = m_a - m_mu*( n*(n+1)/radius/radius );
667  d_n = m_d - m_nu*( n*(n+1)/radius/radius );
668 
669  gamma_n = 0.5*( a_n + d_n );
670 
671  temp = ( a_n + d_n )*( a_n + d_n ) - 4.0*( a_n*d_n - m_b*m_c );
672  delta_n = 0.5*sqrt( temp );
673 
674  for (m = -n; m <=n; ++m)
675  {
676  ind = m + n;
677  A_mn = Ainit[n][ind];
678  C_mn = Binit[n][ind];
679 
680  B_mn = ( (a_n - gamma_n)*Ainit[n][ind] + m_b*Binit[n][ind])/delta_n;
681  D_mn = ( m_c*Ainit[n][ind] + (d_n - gamma_n)*Binit[n][ind])/delta_n;
682 
683  Spericharmonic = boost::math::spherical_harmonic(n, m, theta, phi);
684  varphi0 += exp(gamma_n*time)*(A_mn*cosh(delta_n*time) + B_mn*sinh(delta_n*time))*Spericharmonic;
685  varphi1 += exp(gamma_n*time)*(C_mn*cosh(delta_n*time) + D_mn*sinh(delta_n*time))*Spericharmonic;
686  }
687  }
688 
689  u[i] = varphi0.real();
690  v[i] = varphi1.real();
691  }
692 
693  switch (field)
694  {
695  case 0:
696  {
697  outfield = u;
698  }
699  break;
700 
701  case 1:
702  {
703  outfield = v;
704  }
705  break;
706  }
707  }
708 
709 
711  {
712  int nq = GetTotPoints();
713  Array<OneD, NekDouble> outarray(nq,0.0);
714 
718 
719  m_fields[0]->GetCoords(x,y,z);
720 
721  NekDouble xmin, ymin, xmax;
722 
723  xmin = Vmath::Vmin(nq, x, 1);
724  xmax = Vmath::Vmax(nq, x, 1);
725  ymin = Vmath::Vmin(nq, y, 1);
726 
727  NekDouble xp, yp, xp2;
728  for (int i=0; i<nq; i++)
729  {
730  switch(m_InitWaveType)
731  {
732  case eLeft:
733  {
734  NekDouble radiusofinit = 4.0;
735  NekDouble frontstiff = 0.1;
736 
737  xp = x[i] - xmin;
738  outarray[i] = 1.0/( 1.0 + exp( ( xp - radiusofinit)/frontstiff ) );
739  }
740  break;
741 
742  case eBothEnds:
743  {
744  NekDouble radiusofinit = 3.0;
745  NekDouble frontstiff = 0.1;
746 
747  xp = x[i] - xmin;
748  xp2 = x[i] - xmax;
749 
750  outarray[i] = 1.0/( 1.0 + exp( ( sqrt(xp*xp) - radiusofinit)/frontstiff ) ) + 1.0/( 1.0 + exp( ( sqrt(xp2*xp2) - radiusofinit)/frontstiff ) );
751  }
752  break;
753 
754  case eCenter:
755  {
756  NekDouble radiusofinit = 6.0;
757  NekDouble frontstiff = 0.1;
758 
759  // NekDouble xc = 0.5*(Vmath::Vmax(nq, x, 1) + Vmath::Vmin(nq, x, 1));
760 
761  xp = x[i] - xmin;
762  outarray[i] =1.0/( 1.0 + exp( ( xp - radiusofinit)/frontstiff ) );
763  }
764  break;
765 
766  case eLeftBottomCorner:
767  {
768  NekDouble radiusofinit = 6.0;
769  NekDouble frontstiff = 0.1;
770  NekDouble bs = 2.0;
771 
772  xp = x[i] - xmin;
773  yp = y[i] - ymin;
774  outarray[i] = 1.0/( 1.0 + exp( ( sqrt(xp*xp+yp*yp)/bs - radiusofinit)/frontstiff ) );
775  }
776  break;
777 
778  case ePoint:
779  {
780  NekDouble xloc, yloc, zloc, rad;
781  NekDouble radiusofinit = 10.0;
782 
783  xloc = x[i]-m_InitPtx;
784  yloc = y[i]-m_InitPty;
785  zloc = z[i]-m_InitPtz;
786 
787  rad = sqrt(xloc*xloc + yloc*yloc + zloc*zloc);
788 
789  xloc = xloc/radiusofinit;
790  yloc = yloc/radiusofinit;
791  zloc = zloc/radiusofinit;
792 
793  if(rad<radiusofinit)
794  {
795  outarray[i] = exp( -(1.0/2.0)*( xloc*xloc + yloc*yloc + zloc*zloc) ) ;
796  }
797 
798  else
799  {
800  outarray[i] = 0.0;
801  }
802  }
803  break;
804 
805  case eSpiralDock:
806  {
807  NekDouble radiusofinit = 3.0;
808  NekDouble frontstiff = 0.1;
809  xp = x[i] - 4.0;
810  yp = y[i];
811  outarray[i] = (1.0/(1.0+exp(2.0*yp)))*(1.0/(1.0+exp(-2.0*xp)))*( 1.0/( 1.0 + exp( ( xp - radiusofinit)/frontstiff ) ) );
812  }
813  break;
814 
815  default:
816  break;
817  }
818 
819  }
820 
821  return outarray;
822  }
823 
824  void MMFDiffusion::v_EvaluateExactSolution(unsigned int field,
825  Array<OneD, NekDouble> &outfield,
826  const NekDouble time)
827  {
828  switch(m_TestType)
829  {
830  case eTestPlane:
831  {
832  TestPlaneProblem(time,outfield);
833  }
834  break;
835 
836  case eTestCube:
837  {
838  TestCubeProblem(time,outfield);
839  }
840  break;
841 
842  case eTestLinearSphere:
844  {
845  Morphogenesis(time, field, outfield);
846  }
847  break;
848 
849  case eFHNStandard:
850  case eFHNRogers:
851  case eFHNAlievPanf:
852  {
853  int nq = GetTotPoints();
854  outfield = Array<OneD, NekDouble>(nq, 0.0);
855  }
856  /* Falls through. */
857  default:
858  {
859  EquationSystem::v_EvaluateExactSolution(field,outfield,time);
860  }
861  break;
862  }
863  }
864 
866  {
869  SolverUtils::AddSummaryItem(s, "epsilon0", m_epsilon[0]);
870  SolverUtils::AddSummaryItem(s, "epsilon1", m_epsilon[1]);
871  SolverUtils::AddSummaryItem(s, "epsilon2", m_epsilon[2]);
872  if(m_TestType==eTestLinearSphere)
873  {
874  SolverUtils::AddSummaryItem(s, "epsilon for u", m_epsu[0]);
875  SolverUtils::AddSummaryItem(s, "epsilon for v", m_epsu[1]);
876  }
877  }
878 }
879 int main(int argc, char *argv[])
880 {
883  std::string vDriverModule;
884  DriverSharedPtr drv;
885 
886  try
887  {
888  // Create session reader.
889  session = LibUtilities::SessionReader::CreateInstance(argc, argv);
890 
891  // Create MeshGraph
892  graph = SpatialDomains::MeshGraph::Read(session);
893 
894  // Create driver
895  session->LoadSolverInfo("Driver", vDriverModule, "Standard");
896  drv = GetDriverFactory().CreateInstance(vDriverModule, session, graph);
897 
898  // Execute driver
899  drv->Execute();
900 
901  // Finalise session
902  session->Finalise();
903  }
904  catch (const std::runtime_error& e)
905  {
906  return 1;
907  }
908  catch (const std::string& eStr)
909  {
910  std::cout << "Error: " << eStr << std::endl;
911  }
912 
913  return 0;
914 }
std::shared_ptr< MeshGraph > MeshGraphSharedPtr
Definition: MeshGraph.h:163
void Morphogenesis(const NekDouble time, unsigned int field, Array< OneD, NekDouble > &outfield)
const char *const TestTypeMap[]
Definition: MMFDiffusion.h:58
Array< OneD, NekDouble > m_epsu
Definition: MMFDiffusion.h:169
bool m_explicitDiffusion
Indicates if explicit or implicit treatment of diffusion is used.
void DefineImplicitSolve(FuncPointerT func, ObjectPointerT obj)
A base class for PDEs which include an advection component.
Definition: MMFSystem.h:140
void TestCubeProblem(const NekDouble time, Array< OneD, NekDouble > &outfield)
T Vmax(int n, const T *x, const int incx)
Return the maximum element in x – called vmax to avoid conflict with max.
Definition: Vmath.cpp:782
LibUtilities::TimeIntegrationSchemeOperators m_ode
The time integration scheme operators to use.
virtual void v_InitObject()
Init object for UnsteadySystem class.
std::vector< std::pair< std::string, std::string > > SummaryList
Definition: Misc.h:46
T Vmin(int n, const T *x, const int incx)
Return the minimum element in x - called vmin to avoid conflict with min.
Definition: Vmath.cpp:874
const char *const InitWaveTypeMap[]
Definition: MMFDiffusion.h:80
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:45
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
Definition: Vmath.cpp:488
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:445
std::shared_ptr< Driver > DriverSharedPtr
A shared pointer to a Driver object.
Definition: Driver.h:51
STL namespace.
Array< OneD, NekDouble > m_epsilon
Definition: MMFDiffusion.h:168
std::map< ConstFactorType, NekDouble > ConstFactorMap
Definition: StdRegions.hpp:294
void DoImplicitSolve(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, NekDouble time, NekDouble lambda)
Solve for the diffusion term.
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:244
int main(int argc, char *argv[])
std::string m_sessionName
Name of the session.
NekDouble m_mu
SOLVER_UTILS_EXPORT int GetTotPoints()
Array< OneD, Array< OneD, NekDouble > > m_movingframes
Definition: MMFSystem.h:180
Array< OneD, Array< OneD, NekDouble > > m_DivMF
Definition: MMFSystem.h:189
virtual void v_EvaluateExactSolution(unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
InitWaveType m_InitWaveType
Definition: MMFDiffusion.h:119
static SessionReaderSharedPtr CreateInstance(int argc, char *argv[])
Creates an instance of the SessionReader class.
tBaseSharedPtr CreateInstance(tKey idKey, tParam... args)
Create an instance of the class referred to by idKey.
Definition: NekFactory.hpp:144
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:216
void DefineOdeRhs(FuncPointerT func, ObjectPointerT obj)
Base class for unsteady solvers.
void AddSummaryItem(SummaryList &l, const std::string &name, const std::string &value)
Adds a summary item to the summary info list.
Definition: Misc.cpp:49
void Svtvm(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x - y
Definition: Vmath.cpp:521
int m_spacedim
Spatial dimension (>= expansion dim).
StdRegions::VarCoeffMap m_varcoeff
Variable diffusivity.
Definition: MMFDiffusion.h:166
Length of enum list.
Definition: MMFDiffusion.h:55
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:399
double NekDouble
SOLVER_UTILS_EXPORT void MMFInitObject(const Array< OneD, const Array< OneD, NekDouble >> &Anisotropy, const int TangentXelem=-1)
Definition: MMFSystem.cpp:53
virtual SOLVER_UTILS_EXPORT void v_SetInitialConditions(NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
virtual SOLVER_UTILS_EXPORT void v_InitObject()
Init object for UnsteadySystem class.
void TestPlaneProblem(const NekDouble time, Array< OneD, NekDouble > &outfield)
void Sadd(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Add vector y = alpha + x.
Definition: Vmath.cpp:318
virtual void v_GenerateSummary(SolverUtils::SummaryList &s)
Prints a summary of the model parameters.
EquationSystemFactory & GetEquationSystemFactory()
SOLVER_UTILS_EXPORT void SetBoundaryConditions(NekDouble time)
Evaluates the boundary conditions at the given time.
void DoOdeRhs(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
Computes the reaction terms and .
static NekDouble rad(NekDouble x, NekDouble y)
Definition: Interpreter.cpp:86
SOLVER_UTILS_EXPORT void WriteFld(const std::string &outname)
Write field data to the given filename.
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
Array< OneD, NekDouble > PlanePhiWave()
DriverFactory & GetDriverFactory()
Definition: Driver.cpp:65
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:376
virtual SOLVER_UTILS_EXPORT void v_GenerateSummary(SummaryList &s)
Print a summary of time stepping parameters.
Definition: MMFSystem.cpp:2492
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1064
virtual SOLVER_UTILS_EXPORT void v_EvaluateExactSolution(unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
std::shared_ptr< SessionReader > SessionReaderSharedPtr
static MeshGraphSharedPtr Read(const LibUtilities::SessionReaderSharedPtr pSession, DomainRangeShPtr rng=NullDomainRangeShPtr, bool fillGraph=true)
Definition: MeshGraph.cpp:113
virtual void v_SetInitialConditions(NekDouble initialtime, bool dumpInitialConditions, const int domain)
Sets a custom initial condition.
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:302
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:186
static FlagList NullFlagList
An empty flag list.
virtual ~MMFDiffusion()
Desctructor.