Nektar++
ProcessC0Projection.cpp
Go to the documentation of this file.
1 ////////////////////////////////////////////////////////////////////////////////
2 //
3 // File: ProcessC0Projection.cpp
4 //
5 // For more information, please see: http://www.nektar.info/
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining a
14 // copy of this software and associated documentation files (the "Software"),
15 // to deal in the Software without restriction, including without limitation
16 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
17 // and/or sell copies of the Software, and to permit persons to whom the
18 // Software is furnished to do so, subject to the following conditions:
19 //
20 // The above copyright notice and this permission notice shall be included
21 // in all copies or substantial portions of the Software.
22 //
23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 // DEALINGS IN THE SOFTWARE.
30 //
31 // Description: Computes C0 projection.
32 //
33 ////////////////////////////////////////////////////////////////////////////////
34 
35 #include <iostream>
36 #include <string>
37 using namespace std;
38 
39 #include <boost/core/ignore_unused.hpp>
40 
43 
44 #include "ProcessC0Projection.h"
45 
46 namespace Nektar
47 {
48 namespace FieldUtils
49 {
50 
51 ModuleKey ProcessC0Projection::className =
53  ModuleKey(eProcessModule, "C0Projection"),
54  ProcessC0Projection::create,
55  "Computes C0 projection.");
56 
57 ProcessC0Projection::ProcessC0Projection(FieldSharedPtr f) : ProcessModule(f)
58 {
59  m_config["fields"] = ConfigOption(false, "All", "Start field to project");
60  m_config["localtoglobalmap"] = ConfigOption(
61  true, "0", "Just perform a local to global mapping and back");
62  m_config["usexmlbcs"] = ConfigOption(
63  true, "0", "Use boundary conditions given in xml file. Requires all "
64  "projected fields to be defined in xml file");
65  m_config["helmsmoothing"] = ConfigOption(
66  false, "Not Set", "Use a Helmholtz smoother to remove high frequency "
67  "components above specified L");
68 
69  f->m_declareExpansionAsContField = true;
70 }
71 
73 {
74 }
75 
76 void ProcessC0Projection::Process(po::variables_map &vm)
77 {
78  boost::ignore_unused(vm);
79 
80  // Skip in case of empty partition
81  if (m_f->m_exp[0]->GetNumElmts() == 0)
82  {
83  return;
84  }
85 
86  // ensure not using diagonal preconditioner since tends not to converge fo
87  // mass matrix
88  if (m_f->m_graph->GetMeshDimension() == 3)
89  {
90  if (boost::iequals(m_f->m_session->GetSolverInfo("GLOBALSYSSOLN"),
91  "IterativeStaticCond"))
92  {
93  if (boost::iequals(m_f->m_session->GetSolverInfo("PRECONDITIONER"),
94  "Diagonal"))
95  {
96  m_f->m_session->SetSolverInfo("PRECONDITIONER",
97  "LowEnergyBlock");
98  }
99  if (boost::iequals(m_f->m_session->GetSolverInfo("PRECONDITIONER"),
100  "FullLinearSpaceWithDiagonal"))
101  {
102  m_f->m_session->SetSolverInfo(
103  "PRECONDITIONER", "FullLinearSpaceWithLowEnergyBlock");
104  }
105 
106  if (m_f->m_verbose)
107  {
108  if (m_f->m_comm->GetRank() == 0)
109  {
110  cout << "Resetting diagonal precondition to low energy "
111  "block "
112  << endl;
113  }
114  }
115  }
116  }
117  bool JustPerformLocToGloMap = m_config["localtoglobalmap"].as<bool>();
118  bool HelmSmoother =
119  (boost::iequals(m_config["helmsmoothing"].as<string>(), "Not Set"))
120  ? false
121  : true;
122  int nfields = m_f->m_exp.size();
123  Array<OneD, MultiRegions::ExpListSharedPtr> C0ProjectExp(nfields);
124  if (m_config["usexmlbcs"].as<bool>())
125  {
126  for (int i = 0; i < nfields; ++i)
127  {
128  C0ProjectExp[i] = m_f->m_exp[i];
129  }
130  }
131  else
132  {
133  // generate a C0 expansion field with no boundary conditions.
134  bool savedef = m_f->m_declareExpansionAsContField;
135  bool savedef2 = m_f->m_requireBoundaryExpansion;
136  m_f->m_declareExpansionAsContField = true;
137  m_f->m_requireBoundaryExpansion = false;
138  C0ProjectExp[0] = m_f->AppendExpList(
139  m_f->m_numHomogeneousDir, "DefaultVar", true);
140  m_f->m_declareExpansionAsContField = savedef;
141  m_f->m_requireBoundaryExpansion = savedef2;
142  for (int i = 1; i < nfields; ++i)
143  {
144  C0ProjectExp[i] = C0ProjectExp[0];
145  }
146  }
147 
148  string fields = m_config["fields"].as<string>();
149  vector<unsigned int> processFields;
150 
151  if (fields.compare("All") == 0)
152  {
153  for (int i = 0; i < nfields; ++i)
154  {
155  processFields.push_back(i);
156  }
157  }
158  else
159  {
160  ASSERTL0(
161  ParseUtils::GenerateVector(fields, processFields),
162  "Failed to interpret field string in C0Projection");
163  }
164 
165  for (int i = 0; i < processFields.size(); ++i)
166  {
167  ASSERTL0(processFields[i] < nfields,
168  "Attempt to process field that is larger than then number of "
169  "fields available");
170 
171  if (m_f->m_verbose)
172  {
173  if (m_f->m_comm->GetRank() == 0)
174  {
175  cout << "\t Processing field: " << processFields[i] << endl;
176  }
177  }
178 
179  if (JustPerformLocToGloMap)
180  {
181  int ncoeffs = m_f->m_exp[0]->GetNcoeffs();
182  Vmath::Vcopy(ncoeffs, m_f->m_exp[processFields[i]]->GetCoeffs(), 1,
183  C0ProjectExp[processFields[i]]->UpdateCoeffs(), 1);
184  C0ProjectExp[processFields[i]]->LocalToGlobal();
185  C0ProjectExp[processFields[i]]->GlobalToLocal();
186  Vmath::Vcopy(ncoeffs, C0ProjectExp[processFields[i]]->GetCoeffs(),
187  1, m_f->m_exp[processFields[i]]->UpdateCoeffs(), 1);
188  }
189  else
190  {
191  if (HelmSmoother)
192  {
193  int dim = m_f->m_graph->GetSpaceDimension();
194  int npoints = m_f->m_exp[0]->GetNpoints();
195  NekDouble lambda = m_config["helmsmoothing"].as<NekDouble>();
196  lambda = 2 * M_PI / lambda;
197  lambda = lambda * lambda;
198 
199  if (m_f->m_verbose)
200  {
201  cout << "Setting up Helmholtz smoother with lambda = "
202  << lambda << endl;
203  }
204 
206  Array<OneD, NekDouble> forcing(npoints);
207  factors[StdRegions::eFactorLambda] = -lambda;
208 
209  Array<OneD, Array<OneD, NekDouble> > Velocity(dim);
210  for (int j = 0; j < dim; ++j)
211  {
212  Velocity[j] = Array<OneD, NekDouble>(npoints, 0.0);
213  }
214 
215  Vmath::Smul(npoints, -lambda,
216  m_f->m_exp[processFields[i]]->GetPhys(), 1, forcing,
217  1);
218 
219  // Note we are using the
220  // LinearAdvectionDiffusionReaction solver here
221  // instead of HelmSolve since lambda is negative and
222  // so matrices are not positive definite. Ideally
223  // should allow for negative lambda coefficient in
224  // HelmSolve
225  C0ProjectExp[processFields[i]]
226  ->LinearAdvectionDiffusionReactionSolve(
227  Velocity, forcing,
228  m_f->m_exp[processFields[i]]->UpdateCoeffs(), -lambda);
229  }
230  else
231  {
232  C0ProjectExp[processFields[i]]->FwdTrans(
233  m_f->m_exp[processFields[i]]->GetPhys(),
234  m_f->m_exp[processFields[i]]->UpdateCoeffs());
235  }
236  }
237  C0ProjectExp[processFields[i]]->BwdTrans(
238  m_f->m_exp[processFields[i]]->GetCoeffs(),
239  m_f->m_exp[processFields[i]]->UpdatePhys());
240  }
241 
242 }
243 }
244 }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:216
std::map< std::string, ConfigOption > m_config
List of configuration values.
Represents a command-line configuration option.
STL namespace.
std::map< ConstFactorType, NekDouble > ConstFactorMap
Definition: StdRegions.hpp:294
std::shared_ptr< Field > FieldSharedPtr
Definition: Field.hpp:762
std::pair< ModuleType, std::string > ModuleKey
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:216
double NekDouble
static bool GenerateVector(const std::string &str, std::vector< T > &out)
Takes a comma-separated string and converts it to entries in a vector.
Definition: ParseUtils.cpp:135
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:199
Abstract base class for processing modules.
virtual void Process(po::variables_map &vm)
Write mesh to output file.
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1064
ModuleFactory & GetModuleFactory()
FieldSharedPtr m_f
Field object.