Nektar++
Public Member Functions | Protected Attributes | Private Member Functions | List of all members
Nektar::Collections::PhysDeriv_SumFac_Hex Class Reference

Phys deriv operator using sum-factorisation (Hex) More...

Inheritance diagram for Nektar::Collections::PhysDeriv_SumFac_Hex:
[legend]

Public Member Functions

virtual ~PhysDeriv_SumFac_Hex ()
 
virtual void operator() (const Array< OneD, const NekDouble > &input, Array< OneD, NekDouble > &output0, Array< OneD, NekDouble > &output1, Array< OneD, NekDouble > &output2, Array< OneD, NekDouble > &wsp)
 Perform operation. More...
 
virtual void operator() (int dir, const Array< OneD, const NekDouble > &input, Array< OneD, NekDouble > &output, Array< OneD, NekDouble > &wsp)
 
- Public Member Functions inherited from Nektar::Collections::Operator
 Operator (std::vector< StdRegions::StdExpansionSharedPtr > pCollExp, std::shared_ptr< CoalescedGeomData > GeomData)
 Constructor. More...
 
virtual COLLECTIONS_EXPORT ~Operator ()
 
int GetWspSize ()
 Get the size of the required workspace. More...
 

Protected Attributes

Array< TwoD, const NekDoublem_derivFac
 
int m_coordim
 
const int m_nquad0
 
const int m_nquad1
 
const int m_nquad2
 
NekDoublem_Deriv0
 
NekDoublem_Deriv1
 
NekDoublem_Deriv2
 
- Protected Attributes inherited from Nektar::Collections::Operator
StdRegions::StdExpansionSharedPtr m_stdExp
 
unsigned int m_numElmt
 
unsigned int m_wspSize
 

Private Member Functions

 PhysDeriv_SumFac_Hex (vector< StdRegions::StdExpansionSharedPtr > pCollExp, CoalescedGeomDataSharedPtr pGeomData)
 

Detailed Description

Phys deriv operator using sum-factorisation (Hex)

Definition at line 922 of file PhysDeriv.cpp.

Constructor & Destructor Documentation

◆ ~PhysDeriv_SumFac_Hex()

virtual Nektar::Collections::PhysDeriv_SumFac_Hex::~PhysDeriv_SumFac_Hex ( )
inlinevirtual

Definition at line 927 of file PhysDeriv.cpp.

928  {
929  }

◆ PhysDeriv_SumFac_Hex()

Nektar::Collections::PhysDeriv_SumFac_Hex::PhysDeriv_SumFac_Hex ( vector< StdRegions::StdExpansionSharedPtr pCollExp,
CoalescedGeomDataSharedPtr  pGeomData 
)
inlineprivate

Definition at line 1044 of file PhysDeriv.cpp.

References Nektar::LibUtilities::eHexahedron, Nektar::Collections::ePhysDeriv, Nektar::Collections::eSumFac, Nektar::Collections::GetOperatorFactory(), and Nektar::LibUtilities::NekFactory< tKey, tBase, tParam >::RegisterCreatorFunction().

1047  : Operator(pCollExp, pGeomData),
1048  m_nquad0 (m_stdExp->GetNumPoints(0)),
1049  m_nquad1 (m_stdExp->GetNumPoints(1)),
1050  m_nquad2 (m_stdExp->GetNumPoints(2))
1051  {
1052  LibUtilities::PointsKeyVector PtsKey = m_stdExp->GetPointsKeys();
1053 
1054  m_coordim = pCollExp[0]->GetCoordim();
1055 
1056  m_derivFac = pGeomData->GetDerivFactors(pCollExp);
1057 
1058  m_Deriv0 = &((m_stdExp->GetBasis(0)->GetD())->GetPtr())[0];
1059  m_Deriv1 = &((m_stdExp->GetBasis(1)->GetD())->GetPtr())[0];
1060  m_Deriv2 = &((m_stdExp->GetBasis(2)->GetD())->GetPtr())[0];
1061 
1063  }
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:246
Array< TwoD, const NekDouble > m_derivFac
Definition: PhysDeriv.cpp:1034
Operator(std::vector< StdRegions::StdExpansionSharedPtr > pCollExp, std::shared_ptr< CoalescedGeomData > GeomData)
Constructor.
Definition: Operator.h:113
StdRegions::StdExpansionSharedPtr m_stdExp
Definition: Operator.h:148

Member Function Documentation

◆ operator()() [1/2]

virtual void Nektar::Collections::PhysDeriv_SumFac_Hex::operator() ( const Array< OneD, const NekDouble > &  input,
Array< OneD, NekDouble > &  output0,
Array< OneD, NekDouble > &  output1,
Array< OneD, NekDouble > &  output2,
Array< OneD, NekDouble > &  wsp 
)
inlinevirtual

Perform operation.

Implements Nektar::Collections::Operator.

Definition at line 931 of file PhysDeriv.cpp.

References Blas::Dgemm(), Vmath::Vmul(), and Vmath::Vvtvp().

937  {
938  int nPhys = m_stdExp->GetTotPoints();
939  int ntot = m_numElmt*nPhys;
940  Array<OneD, NekDouble> tmp0,tmp1,tmp2;
941  Array<OneD, Array<OneD, NekDouble> > Diff(3);
942  Array<OneD, Array<OneD, NekDouble> > out(3);
943  out[0] = output0; out[1] = output1; out[2] = output2;
944 
945  for(int i = 0; i < 3; ++i)
946  {
947  Diff[i] = wsp + i*ntot;
948  }
949 
951  m_nquad0,1.0, m_Deriv0,m_nquad0,&input[0],
952  m_nquad0,0.0,&Diff[0][0],m_nquad0);
953 
954  for(int i = 0; i < m_numElmt; ++i)
955  {
956  for (int j = 0; j < m_nquad2; ++j)
957  {
959  1.0, &input[i*nPhys+j*m_nquad0*m_nquad1],
960  m_nquad0, m_Deriv1, m_nquad1, 0.0,
961  &Diff[1][i*nPhys+j*m_nquad0*m_nquad1],
962  m_nquad0);
963  }
964 
965  Blas::Dgemm('N','T',m_nquad0*m_nquad1,m_nquad2,m_nquad2,
966  1.0, &input[i*nPhys],m_nquad0*m_nquad1,
967  m_Deriv2,m_nquad2, 0.0,&Diff[2][i*nPhys],
968  m_nquad0*m_nquad1);
969  }
970 
971  // calculate full derivative
972  for(int i = 0; i < m_coordim; ++i)
973  {
974  Vmath::Vmul(ntot,m_derivFac[i*3],1,Diff[0],1,out[i],1);
975  for(int j = 1; j < 3; ++j)
976  {
977  Vmath::Vvtvp (ntot, m_derivFac[i*3+j], 1,
978  Diff[j], 1,
979  out[i], 1,
980  out[i], 1);
981  }
982  }
983  }
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:445
Array< TwoD, const NekDouble > m_derivFac
Definition: PhysDeriv.cpp:1034
static void Dgemm(const char &transa, const char &transb, const int &m, const int &n, const int &k, const double &alpha, const double *a, const int &lda, const double *b, const int &ldb, const double &beta, double *c, const int &ldc)
BLAS level 3: Matrix-matrix multiply C = A x B where A[m x n], B[n x k], C[m x k].
Definition: Blas.hpp:213
StdRegions::StdExpansionSharedPtr m_stdExp
Definition: Operator.h:148
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:186

◆ operator()() [2/2]

virtual void Nektar::Collections::PhysDeriv_SumFac_Hex::operator() ( int  dir,
const Array< OneD, const NekDouble > &  input,
Array< OneD, NekDouble > &  output,
Array< OneD, NekDouble > &  wsp 
)
inlinevirtual

Implements Nektar::Collections::Operator.

Definition at line 985 of file PhysDeriv.cpp.

References Blas::Dgemm(), Vmath::Vmul(), and Vmath::Vvtvp().

990  {
991  int nPhys = m_stdExp->GetTotPoints();
992  int ntot = m_numElmt*nPhys;
993  Array<OneD, NekDouble> tmp0,tmp1,tmp2;
994  Array<OneD, Array<OneD, NekDouble> > Diff(3);
995 
996  for(int i = 0; i < 3; ++i)
997  {
998  Diff[i] = wsp + i*ntot;
999  }
1000 
1002  m_nquad0,1.0, m_Deriv0,m_nquad0,&input[0],
1003  m_nquad0,0.0,&Diff[0][0],m_nquad0);
1004 
1005  for(int i = 0; i < m_numElmt; ++i)
1006  {
1007  for (int j = 0; j < m_nquad2; ++j)
1008  {
1009  Blas::Dgemm('N', 'T', m_nquad0, m_nquad1, m_nquad1,
1010  1.0, &input[i*nPhys+j*m_nquad0*m_nquad1],
1011  m_nquad0, m_Deriv1, m_nquad1, 0.0,
1012  &Diff[1][i*nPhys+j*m_nquad0*m_nquad1],
1013  m_nquad0);
1014  }
1015 
1016  Blas::Dgemm('N','T',m_nquad0*m_nquad1,m_nquad2,m_nquad2,
1017  1.0, &input[i*nPhys],m_nquad0*m_nquad1,
1018  m_Deriv2,m_nquad2, 0.0,&Diff[2][i*nPhys],
1019  m_nquad0*m_nquad1);
1020  }
1021 
1022  // calculate full derivative
1023  Vmath::Vmul(ntot,m_derivFac[dir*3],1,Diff[0],1,output,1);
1024  for(int j = 1; j < 3; ++j)
1025  {
1026  Vmath::Vvtvp (ntot, m_derivFac[dir*3+j], 1,
1027  Diff[j], 1,
1028  output, 1,
1029  output, 1);
1030  }
1031  }
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:445
Array< TwoD, const NekDouble > m_derivFac
Definition: PhysDeriv.cpp:1034
static void Dgemm(const char &transa, const char &transb, const int &m, const int &n, const int &k, const double &alpha, const double *a, const int &lda, const double *b, const int &ldb, const double &beta, double *c, const int &ldc)
BLAS level 3: Matrix-matrix multiply C = A x B where A[m x n], B[n x k], C[m x k].
Definition: Blas.hpp:213
StdRegions::StdExpansionSharedPtr m_stdExp
Definition: Operator.h:148
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:186

Member Data Documentation

◆ m_coordim

int Nektar::Collections::PhysDeriv_SumFac_Hex::m_coordim
protected

Definition at line 1035 of file PhysDeriv.cpp.

◆ m_Deriv0

NekDouble* Nektar::Collections::PhysDeriv_SumFac_Hex::m_Deriv0
protected

Definition at line 1039 of file PhysDeriv.cpp.

◆ m_Deriv1

NekDouble* Nektar::Collections::PhysDeriv_SumFac_Hex::m_Deriv1
protected

Definition at line 1040 of file PhysDeriv.cpp.

◆ m_Deriv2

NekDouble* Nektar::Collections::PhysDeriv_SumFac_Hex::m_Deriv2
protected

Definition at line 1041 of file PhysDeriv.cpp.

◆ m_derivFac

Array<TwoD, const NekDouble> Nektar::Collections::PhysDeriv_SumFac_Hex::m_derivFac
protected

Definition at line 1034 of file PhysDeriv.cpp.

◆ m_nquad0

const int Nektar::Collections::PhysDeriv_SumFac_Hex::m_nquad0
protected

Definition at line 1036 of file PhysDeriv.cpp.

◆ m_nquad1

const int Nektar::Collections::PhysDeriv_SumFac_Hex::m_nquad1
protected

Definition at line 1037 of file PhysDeriv.cpp.

◆ m_nquad2

const int Nektar::Collections::PhysDeriv_SumFac_Hex::m_nquad2
protected

Definition at line 1038 of file PhysDeriv.cpp.