Nektar++
Public Member Functions | Static Public Member Functions | Static Public Attributes | Protected Member Functions | Private Member Functions | Friends | List of all members
Nektar::LEE Class Reference

#include <LEE.h>

Inheritance diagram for Nektar::LEE:
[legend]

Public Member Functions

virtual ~LEE ()
 Destructor. More...
 
- Public Member Functions inherited from Nektar::AcousticSystem
virtual ~AcousticSystem ()
 Destructor. More...
 
- Public Member Functions inherited from Nektar::SolverUtils::AdvectionSystem
SOLVER_UTILS_EXPORT AdvectionSystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 
virtual SOLVER_UTILS_EXPORT ~AdvectionSystem ()
 
SOLVER_UTILS_EXPORT AdvectionSharedPtr GetAdvObject ()
 Returns the advection object held by this instance. More...
 
SOLVER_UTILS_EXPORT Array< OneD, NekDoubleGetElmtCFLVals (void)
 
SOLVER_UTILS_EXPORT NekDouble GetCFLEstimate (int &elmtid)
 
- Public Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
virtual SOLVER_UTILS_EXPORT ~UnsteadySystem ()
 Destructor. More...
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep (const Array< OneD, const Array< OneD, NekDouble >> &inarray)
 Calculate the larger time-step mantaining the problem stable. More...
 
- Public Member Functions inherited from Nektar::SolverUtils::EquationSystem
virtual SOLVER_UTILS_EXPORT ~EquationSystem ()
 Destructor. More...
 
SOLVER_UTILS_EXPORT void SetUpTraceNormals (void)
 
SOLVER_UTILS_EXPORT void InitObject ()
 Initialises the members of this object. More...
 
SOLVER_UTILS_EXPORT void DoInitialise ()
 Perform any initialisation necessary before solving the problem. More...
 
SOLVER_UTILS_EXPORT void DoSolve ()
 Solve the problem. More...
 
SOLVER_UTILS_EXPORT void TransCoeffToPhys ()
 Transform from coefficient to physical space. More...
 
SOLVER_UTILS_EXPORT void TransPhysToCoeff ()
 Transform from physical to coefficient space. More...
 
SOLVER_UTILS_EXPORT void Output ()
 Perform output operations after solve. More...
 
SOLVER_UTILS_EXPORT NekDouble LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Linf error computation. More...
 
SOLVER_UTILS_EXPORT std::string GetSessionName ()
 Get Session name. More...
 
template<class T >
std::shared_ptr< T > as ()
 
SOLVER_UTILS_EXPORT void ResetSessionName (std::string newname)
 Reset Session name. More...
 
SOLVER_UTILS_EXPORT LibUtilities::SessionReaderSharedPtr GetSession ()
 Get Session name. More...
 
SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr GetPressure ()
 Get pressure field if available. More...
 
SOLVER_UTILS_EXPORT void ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 
SOLVER_UTILS_EXPORT void PrintSummary (std::ostream &out)
 Print a summary of parameters and solver characteristics. More...
 
SOLVER_UTILS_EXPORT void SetLambda (NekDouble lambda)
 Set parameter m_lambda. More...
 
SOLVER_UTILS_EXPORT SessionFunctionSharedPtr GetFunction (std::string name, const MultiRegions::ExpListSharedPtr &field=MultiRegions::NullExpListSharedPtr, bool cache=false)
 Get a SessionFunction by name. More...
 
SOLVER_UTILS_EXPORT void SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 Initialise the data in the dependent fields. More...
 
SOLVER_UTILS_EXPORT void EvaluateExactSolution (int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 Evaluates an exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln, bool Normalised=false)
 Compute the L2 error between fields and a given exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, bool Normalised=false)
 Compute the L2 error of the fields. More...
 
SOLVER_UTILS_EXPORT Array< OneD, NekDoubleErrorExtraPoints (unsigned int field)
 Compute error (L2 and L_inf) over an larger set of quadrature points return [L2 Linf]. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n)
 Write checkpoint file of m_fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write checkpoint file of custom data fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_BaseFlow (const int n)
 Write base flow file of m_fields. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname)
 Write field data to the given filename. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write input fields to the given filename. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields)
 Input field data from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFldToMultiDomains (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const int ndomains)
 Input field data from the given file to multiple domains. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, std::vector< std::string > &fieldStr, Array< OneD, Array< OneD, NekDouble > > &coeffs)
 Output a field. Input field data into array from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, MultiRegions::ExpListSharedPtr &pField, std::string &pFieldName)
 Output a field. Input field data into ExpList from the given file. More...
 
SOLVER_UTILS_EXPORT void SessionSummary (SummaryList &vSummary)
 Write out a session summary. More...
 
SOLVER_UTILS_EXPORT Array< OneD, MultiRegions::ExpListSharedPtr > & UpdateFields ()
 
SOLVER_UTILS_EXPORT LibUtilities::FieldMetaDataMapUpdateFieldMetaDataMap ()
 Get hold of FieldInfoMap so it can be updated. More...
 
SOLVER_UTILS_EXPORT NekDouble GetFinalTime ()
 Return final time. More...
 
SOLVER_UTILS_EXPORT int GetNcoeffs ()
 
SOLVER_UTILS_EXPORT int GetNcoeffs (const int eid)
 
SOLVER_UTILS_EXPORT int GetNumExpModes ()
 
SOLVER_UTILS_EXPORT const Array< OneD, int > GetNumExpModesPerExp ()
 
SOLVER_UTILS_EXPORT int GetNvariables ()
 
SOLVER_UTILS_EXPORT const std::string GetVariable (unsigned int i)
 
SOLVER_UTILS_EXPORT int GetTraceTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTraceNpoints ()
 
SOLVER_UTILS_EXPORT int GetExpSize ()
 
SOLVER_UTILS_EXPORT int GetPhys_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetCoeff_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTotPoints (int n)
 
SOLVER_UTILS_EXPORT int GetNpoints ()
 
SOLVER_UTILS_EXPORT int GetSteps ()
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep ()
 
SOLVER_UTILS_EXPORT void CopyFromPhysField (const int i, Array< OneD, NekDouble > &output)
 
SOLVER_UTILS_EXPORT void CopyToPhysField (const int i, Array< OneD, NekDouble > &output)
 
SOLVER_UTILS_EXPORT void SetSteps (const int steps)
 
SOLVER_UTILS_EXPORT void ZeroPhysFields ()
 
SOLVER_UTILS_EXPORT void FwdTransFields ()
 
SOLVER_UTILS_EXPORT void SetModifiedBasis (const bool modbasis)
 
SOLVER_UTILS_EXPORT int GetCheckpointNumber ()
 
SOLVER_UTILS_EXPORT void SetCheckpointNumber (int num)
 
SOLVER_UTILS_EXPORT int GetCheckpointSteps ()
 
SOLVER_UTILS_EXPORT void SetCheckpointSteps (int num)
 
SOLVER_UTILS_EXPORT void SetTime (const NekDouble time)
 
SOLVER_UTILS_EXPORT void SetInitialStep (const int step)
 
SOLVER_UTILS_EXPORT void SetBoundaryConditions (NekDouble time)
 Evaluates the boundary conditions at the given time. More...
 
virtual SOLVER_UTILS_EXPORT bool v_NegatedOp ()
 Virtual function to identify if operator is negated in DoSolve. More...
 

Static Public Member Functions

static EquationSystemSharedPtr create (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Creates an instance of this class. More...
 

Static Public Attributes

static std::string className
 Name of class. More...
 

Protected Member Functions

 LEE (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Initialises UnsteadySystem class members. More...
 
virtual void v_AddLinTerm (const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray)
 
virtual void v_InitObject ()
 Initialization object for the LEE class. More...
 
virtual void v_GetFluxVector (const Array< OneD, Array< OneD, NekDouble >> &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble >>> &flux)
 Return the flux vector for the LEE equations. More...
 
- Protected Member Functions inherited from Nektar::AcousticSystem
 AcousticSystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Initialises UnsteadySystem class members. More...
 
void DoOdeRhs (const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble time)
 Compute the right-hand side. More...
 
void DoOdeProjection (const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble time)
 Compute the projection and call the method for imposing the boundary conditions in case of discontinuous projection. More...
 
virtual bool v_PreIntegrate (int step)
 v_PreIntegrate More...
 
virtual void v_Output ()
 
virtual Array< OneD, NekDoublev_GetMaxStdVelocity ()
 Compute the advection velocity in the standard space for each element of the expansion. More...
 
virtual void v_ExtraFldOutput (std::vector< Array< OneD, NekDouble >> &fieldcoeffs, std::vector< std::string > &variables)
 
const Array< OneD, const Array< OneD, NekDouble > > & GetNormals ()
 Get the normal vectors. More...
 
const Array< OneD, const Array< OneD, NekDouble > > & GetVecLocs ()
 Get the locations of the components of the directed fields within the fields array. More...
 
const Array< OneD, const Array< OneD, NekDouble > > & GetBasefieldFwdBwd ()
 Get the baseflow field. More...
 
- Protected Member Functions inherited from Nektar::SolverUtils::AdvectionSystem
virtual SOLVER_UTILS_EXPORT bool v_PostIntegrate (int step)
 
- Protected Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
SOLVER_UTILS_EXPORT UnsteadySystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Initialises UnsteadySystem class members. More...
 
SOLVER_UTILS_EXPORT NekDouble MaxTimeStepEstimator ()
 Get the maximum timestep estimator for cfl control. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoSolve ()
 Solves an unsteady problem. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoInitialise ()
 Sets up initial conditions. More...
 
virtual SOLVER_UTILS_EXPORT void v_GenerateSummary (SummaryList &s)
 Print a summary of time stepping parameters. More...
 
virtual SOLVER_UTILS_EXPORT void v_AppendOutput1D (Array< OneD, Array< OneD, NekDouble >> &solution1D)
 Print the solution at each solution point in a txt file. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_GetTimeStep (const Array< OneD, const Array< OneD, NekDouble >> &inarray)
 Return the timestep to be used for the next step in the time-marching loop. More...
 
virtual SOLVER_UTILS_EXPORT bool v_RequireFwdTrans ()
 
SOLVER_UTILS_EXPORT void CheckForRestartTime (NekDouble &time, int &nchk)
 
SOLVER_UTILS_EXPORT void SVVVarDiffCoeff (const Array< OneD, Array< OneD, NekDouble >> vel, StdRegions::VarCoeffMap &varCoeffMap)
 Evaluate the SVV diffusion coefficient according to Moura's paper where it should proportional to h time velocity. More...
 
- Protected Member Functions inherited from Nektar::SolverUtils::EquationSystem
SOLVER_UTILS_EXPORT EquationSystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Initialises EquationSystem class members. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Virtual function for the L_inf error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray, bool Normalised=false)
 Virtual function for the L_2 error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransCoeffToPhys ()
 Virtual function for transformation to physical space. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransPhysToCoeff ()
 Virtual function for transformation to coefficient space. More...
 
virtual SOLVER_UTILS_EXPORT void v_SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 
virtual SOLVER_UTILS_EXPORT void v_EvaluateExactSolution (unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 
virtual SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr v_GetPressure (void)
 
virtual SOLVER_UTILS_EXPORT void v_ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 

Private Member Functions

virtual void v_RiemannInvariantBC (int bcRegion, int cnt, Array< OneD, Array< OneD, NekDouble >> &Fwd, Array< OneD, Array< OneD, NekDouble >> &BfFwd, Array< OneD, Array< OneD, NekDouble >> &physarray)
 Outflow characteristic boundary conditions for compressible flow problems. More...
 

Friends

class MemoryManager< LEE >
 

Additional Inherited Members

- Public Attributes inherited from Nektar::SolverUtils::UnsteadySystem
NekDouble m_cflSafetyFactor
 CFL safety factor (comprise between 0 to 1). More...
 
- Protected Types inherited from Nektar::SolverUtils::EquationSystem
enum  HomogeneousType { eHomogeneous1D, eHomogeneous2D, eHomogeneous3D, eNotHomogeneous }
 Parameter for homogeneous expansions. More...
 
- Protected Attributes inherited from Nektar::AcousticSystem
int m_ip
 indices of the fields More...
 
int m_irho
 
int m_iu
 
bool m_conservative
 we are dealing with a conservative formualtion More...
 
SolverUtils::CouplingSharedPtr m_coupling
 
SolverUtils::AdvectionSharedPtr m_advection
 
std::vector< SolverUtils::ForcingSharedPtrm_forcing
 
SolverUtils::RiemannSolverSharedPtr m_riemannSolver
 
Array< OneD, Array< OneD, NekDouble > > m_bfFwdBwd
 
Array< OneD, Array< OneD, NekDouble > > m_vecLocs
 
Array< OneD, Array< OneD, NekDouble > > m_bf
 
std::vector< std::string > m_bfNames
 
- Protected Attributes inherited from Nektar::SolverUtils::AdvectionSystem
SolverUtils::AdvectionSharedPtr m_advObject
 Advection term. More...
 
- Protected Attributes inherited from Nektar::SolverUtils::UnsteadySystem
int m_infosteps
 Number of time steps between outputting status information. More...
 
int m_abortSteps
 Number of steps between checks for abort conditions. More...
 
int m_filtersInfosteps
 Number of time steps between outputting filters information. More...
 
int m_nanSteps
 
LibUtilities::TimeIntegrationWrapperSharedPtr m_intScheme
 Wrapper to the time integration scheme. More...
 
LibUtilities::TimeIntegrationSchemeOperators m_ode
 The time integration scheme operators to use. More...
 
LibUtilities::TimeIntegrationSolutionSharedPtr m_intSoln
 
NekDouble m_epsilon
 
bool m_explicitDiffusion
 Indicates if explicit or implicit treatment of diffusion is used. More...
 
bool m_explicitAdvection
 Indicates if explicit or implicit treatment of advection is used. More...
 
bool m_explicitReaction
 Indicates if explicit or implicit treatment of reaction is used. More...
 
bool m_homoInitialFwd
 Flag to determine if simulation should start in homogeneous forward transformed state. More...
 
NekDouble m_steadyStateTol
 Tolerance to which steady state should be evaluated at. More...
 
int m_steadyStateSteps
 Check for steady state at step interval. More...
 
Array< OneD, Array< OneD, NekDouble > > m_previousSolution
 Storage for previous solution for steady-state check. More...
 
std::ofstream m_errFile
 
std::vector< int > m_intVariables
 
std::vector< std::pair< std::string, FilterSharedPtr > > m_filters
 
NekDouble m_filterTimeWarning
 Number of time steps between outputting status information. More...
 
- Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
LibUtilities::CommSharedPtr m_comm
 Communicator. More...
 
LibUtilities::SessionReaderSharedPtr m_session
 The session reader. More...
 
std::map< std::string, SolverUtils::SessionFunctionSharedPtrm_sessionFunctions
 Map of known SessionFunctions. More...
 
LibUtilities::FieldIOSharedPtr m_fld
 Field input/output. More...
 
Array< OneD, MultiRegions::ExpListSharedPtrm_fields
 Array holding all dependent variables. More...
 
SpatialDomains::BoundaryConditionsSharedPtr m_boundaryConditions
 Pointer to boundary conditions object. More...
 
SpatialDomains::MeshGraphSharedPtr m_graph
 Pointer to graph defining mesh. More...
 
std::string m_sessionName
 Name of the session. More...
 
NekDouble m_time
 Current time of simulation. More...
 
int m_initialStep
 Number of the step where the simulation should begin. More...
 
NekDouble m_fintime
 Finish time of the simulation. More...
 
NekDouble m_timestep
 Time step size. More...
 
NekDouble m_lambda
 Lambda constant in real system if one required. More...
 
NekDouble m_checktime
 Time between checkpoints. More...
 
int m_nchk
 Number of checkpoints written so far. More...
 
int m_steps
 Number of steps to take. More...
 
int m_checksteps
 Number of steps between checkpoints. More...
 
int m_spacedim
 Spatial dimension (>= expansion dim). More...
 
int m_expdim
 Expansion dimension. More...
 
bool m_singleMode
 Flag to determine if single homogeneous mode is used. More...
 
bool m_halfMode
 Flag to determine if half homogeneous mode is used. More...
 
bool m_multipleModes
 Flag to determine if use multiple homogenenous modes are used. More...
 
bool m_useFFT
 Flag to determine if FFT is used for homogeneous transform. More...
 
bool m_homogen_dealiasing
 Flag to determine if dealiasing is used for homogeneous simulations. More...
 
bool m_specHP_dealiasing
 Flag to determine if dealisising is usde for the Spectral/hp element discretisation. More...
 
enum MultiRegions::ProjectionType m_projectionType
 Type of projection; e.g continuous or discontinuous. More...
 
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
 Array holding trace normals for DG simulations in the forwards direction. More...
 
Array< OneD, bool > m_checkIfSystemSingular
 Flag to indicate if the fields should be checked for singularity. More...
 
LibUtilities::FieldMetaDataMap m_fieldMetaDataMap
 Map to identify relevant solver info to dump in output fields. More...
 
int m_NumQuadPointsError
 Number of Quadrature points used to work out the error. More...
 
enum HomogeneousType m_HomogeneousType
 
NekDouble m_LhomX
 physical length in X direction (if homogeneous) More...
 
NekDouble m_LhomY
 physical length in Y direction (if homogeneous) More...
 
NekDouble m_LhomZ
 physical length in Z direction (if homogeneous) More...
 
int m_npointsX
 number of points in X direction (if homogeneous) More...
 
int m_npointsY
 number of points in Y direction (if homogeneous) More...
 
int m_npointsZ
 number of points in Z direction (if homogeneous) More...
 
int m_HomoDirec
 number of homogenous directions More...
 
- Static Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
static std::string equationSystemTypeLookupIds []
 

Detailed Description

Definition at line 46 of file LEE.h.

Constructor & Destructor Documentation

◆ ~LEE()

Nektar::LEE::~LEE ( )
virtual

Destructor.

Destructor for LEE class.

Definition at line 125 of file LEE.cpp.

126 {
127 }

◆ LEE()

Nektar::LEE::LEE ( const LibUtilities::SessionReaderSharedPtr pSession,
const SpatialDomains::MeshGraphSharedPtr pGraph 
)
protected

Initialises UnsteadySystem class members.

Definition at line 47 of file LEE.cpp.

References Nektar::AcousticSystem::m_conservative, Nektar::AcousticSystem::m_ip, Nektar::AcousticSystem::m_irho, and Nektar::AcousticSystem::m_iu.

49  : UnsteadySystem(pSession, pGraph), AcousticSystem(pSession, pGraph)
50 {
51  m_ip = 0;
52  m_irho = 1;
53  m_iu = 2;
54 
55  m_conservative = true;
56 }
AcousticSystem(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Initialises UnsteadySystem class members.
bool m_conservative
we are dealing with a conservative formualtion
int m_ip
indices of the fields
SOLVER_UTILS_EXPORT UnsteadySystem(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Initialises UnsteadySystem class members.

Member Function Documentation

◆ create()

static EquationSystemSharedPtr Nektar::LEE::create ( const LibUtilities::SessionReaderSharedPtr pSession,
const SpatialDomains::MeshGraphSharedPtr pGraph 
)
inlinestatic

Creates an instance of this class.

Definition at line 52 of file LEE.h.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and CellMLToNektar.cellml_metadata::p.

55  {
57  MemoryManager<LEE>::AllocateSharedPtr(pSession, pGraph);
58  p->InitObject();
59  return p;
60  }
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
std::shared_ptr< EquationSystem > EquationSystemSharedPtr
A shared pointer to an EquationSystem object.

◆ v_AddLinTerm()

void Nektar::LEE::v_AddLinTerm ( const Array< OneD, const Array< OneD, NekDouble >> &  inarray,
Array< OneD, Array< OneD, NekDouble >> &  outarray 
)
protectedvirtual

Reimplemented from Nektar::AcousticSystem.

Definition at line 193 of file LEE.cpp.

References Nektar::MultiRegions::DirCartesianMap, Nektar::SolverUtils::EquationSystem::GetNcoeffs(), Nektar::SolverUtils::EquationSystem::GetTotPoints(), Nektar::AcousticSystem::m_bf, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::AcousticSystem::m_ip, Nektar::AcousticSystem::m_iu, Nektar::SolverUtils::EquationSystem::m_spacedim, CellMLToNektar.cellml_metadata::p, Vmath::Sadd(), Vmath::Vadd(), Vmath::Vdiv(), Vmath::Vmul(), Vmath::Vvtvm(), Vmath::Vvtvp(), and Vmath::Zero().

195 {
196  int nq = GetTotPoints();
197 
198  Array<OneD, Array<OneD, NekDouble>> linTerm(m_spacedim + 2);
199  for (int i = 0; i < m_spacedim + 2; ++i)
200  {
201  if (i == 1)
202  {
203  // skip rho
204  continue;
205  }
206 
207  linTerm[i] = Array<OneD, NekDouble>(nq);
208  }
209 
210  Array<OneD, const NekDouble> c0sq = m_bf[0];
211  Array<OneD, const NekDouble> rho0 = m_bf[1];
212  Array<OneD, const NekDouble> gamma = m_bf[m_iu + m_spacedim];
213 
214  Array<OneD, NekDouble> gammaMinOne(nq);
215  Vmath::Sadd(nq, -1.0, gamma, 1, gammaMinOne, 1);
216 
217  Array<OneD, NekDouble> p0(nq);
218  Vmath::Vmul(nq, c0sq, 1, rho0, 1, p0, 1);
219  Vmath::Vdiv(nq, p0, 1, gamma, 1, p0, 1);
220 
221  Array<OneD, Array<OneD, const NekDouble>> u0(m_spacedim);
222  for (int i = 0; i < m_spacedim; ++i)
223  {
224  u0[i] = m_bf[2 + i];
225  }
226 
227  Array<OneD, const NekDouble> p = inarray[0];
228  Array<OneD, const NekDouble> rho = inarray[1];
229 
230  Array<OneD, Array<OneD, const NekDouble>> ru(m_spacedim);
231  for (int i = 0; i < m_spacedim; ++i)
232  {
233  ru[i] = inarray[2 + i];
234  }
235 
236  Array<OneD, NekDouble> grad(nq);
237  Array<OneD, NekDouble> tmp1(nq);
238 
239  // p
240  {
241  Vmath::Zero(nq, linTerm[m_ip], 1);
242  // (1-gamma) ( ru_j / rho0 * dp0/dx_j - p * du0_j/dx_j )
243  for (int j = 0; j < m_spacedim; ++j)
244  {
245  // ru_j / rho0 * dp0/dx_j
246  m_fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[j], p0, grad);
247  Vmath::Vmul(nq, grad, 1, ru[j], 1, tmp1, 1);
248  Vmath::Vdiv(nq, tmp1, 1, rho0, 1, tmp1, 1);
249  // p * du0_j/dx_j - ru_j / rho0 * dp0/dx_j
250  m_fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[j], u0[j],
251  grad);
252  Vmath::Vvtvm(nq, grad, 1, p, 1, tmp1, 1, tmp1, 1);
253  // (gamma-1) (p * du0_j/dx_j - ru_j / rho0 * dp0/dx_j)
254  Vmath::Vvtvp(nq, gammaMinOne, 1, tmp1, 1, linTerm[m_ip], 1,
255  linTerm[m_ip], 1);
256  }
257  }
258 
259  // rho has no linTerm
260 
261  // ru_i
262  for (int i = 0; i < m_spacedim; ++i)
263  {
264  Vmath::Zero(nq, linTerm[m_iu + i], 1);
265  // du0_i/dx_j * (u0_j * rho + ru_j)
266  for (int j = 0; j < m_spacedim; ++j)
267  {
268  // d u0_i / d x_j
269  m_fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[j], u0[i],
270  grad);
271  // u0_j * rho + ru_j
272  Vmath::Vvtvp(nq, u0[j], 1, rho, 1, ru[j], 1, tmp1, 1);
273  // du0_i/dx_j * (u0_j * rho + ru_j)
274  Vmath::Vvtvp(nq, grad, 1, tmp1, 1, linTerm[m_iu + i], 1,
275  linTerm[m_iu + i], 1);
276  }
277  }
278 
279  Array<OneD, NekDouble> tmpC(GetNcoeffs());
280  for (int i = 0; i < m_spacedim + 2; ++i)
281  {
282  if (i == 1)
283  {
284  // skip rho
285  continue;
286  }
287 
288  m_fields[0]->FwdTrans(linTerm[i], tmpC);
289  m_fields[0]->BwdTrans(tmpC, linTerm[i]);
290 
291  Vmath::Vadd(nq, outarray[i], 1, linTerm[i], 1, outarray[i], 1);
292  }
293 }
Array< OneD, Array< OneD, NekDouble > > m_bf
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:445
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:244
SOLVER_UTILS_EXPORT int GetTotPoints()
int m_spacedim
Spatial dimension (>= expansion dim).
void Sadd(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Add vector y = alpha + x.
Definition: Vmath.cpp:318
MultiRegions::Direction const DirCartesianMap[]
Definition: ExpList.h:88
int m_ip
indices of the fields
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
void Vvtvm(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvm (vector times vector plus vector): z = w*x - y
Definition: Vmath.cpp:468
SOLVER_UTILS_EXPORT int GetNcoeffs()
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:376
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:302
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:186

◆ v_GetFluxVector()

void Nektar::LEE::v_GetFluxVector ( const Array< OneD, Array< OneD, NekDouble >> &  physfield,
Array< OneD, Array< OneD, Array< OneD, NekDouble >>> &  flux 
)
protectedvirtual

Return the flux vector for the LEE equations.

Parameters
physfieldFields.
fluxResulting flux. flux[eq][dir][pt]

Implements Nektar::AcousticSystem.

Definition at line 135 of file LEE.cpp.

References ASSERTL1, Nektar::AcousticSystem::m_bf, Nektar::AcousticSystem::m_ip, Nektar::AcousticSystem::m_irho, Nektar::AcousticSystem::m_iu, Nektar::SolverUtils::EquationSystem::m_spacedim, CellMLToNektar.cellml_metadata::p, Vmath::Vadd(), Vmath::Vmul(), Vmath::Vvtvp(), and Vmath::Vvtvvtp().

Referenced by v_InitObject().

138 {
139  int nq = physfield[0].num_elements();
140 
141  ASSERTL1(flux[0].num_elements() == m_spacedim,
142  "Dimension of flux array and velocity array do not match");
143 
144  Array<OneD, const NekDouble> c0sq = m_bf[0];
145  Array<OneD, Array<OneD, const NekDouble>> u0(m_spacedim);
146  for (int i = 0; i < m_spacedim; ++i)
147  {
148  u0[i] = m_bf[2 + i];
149  }
150 
151  Array<OneD, const NekDouble> p = physfield[m_ip];
152  Array<OneD, const NekDouble> rho = physfield[m_irho];
153  Array<OneD, Array<OneD, const NekDouble>> ru(m_spacedim);
154  for (int i = 0; i < m_spacedim; ++i)
155  {
156  ru[i] = physfield[m_iu + i];
157  }
158 
159  // F_{adv,p',j} = c0^2 * ru_j + u0_j * p
160  for (int j = 0; j < m_spacedim; ++j)
161  {
162  int i = 0;
163  Vmath::Vvtvvtp(nq, c0sq, 1, ru[j], 1, u0[j], 1, p, 1, flux[i][j], 1);
164  }
165 
166  // F_{adv,rho',j} = u0_j * rho' + ru_j
167  for (int j = 0; j < m_spacedim; ++j)
168  {
169  int i = 1;
170  // u0_j * rho' + ru_j
171  Vmath::Vvtvp(nq, u0[j], 1, rho, 1, ru[j], 1, flux[i][j], 1);
172  }
173 
174  for (int i = 0; i < m_spacedim; ++i)
175  {
176  // F_{adv,u'_i,j} = ru_i * u0_j + delta_ij * p
177  for (int j = 0; j < m_spacedim; ++j)
178  {
179  // ru_i * u0_j
180  Vmath::Vmul(nq, ru[i], 1, u0[j], 1, flux[m_iu + i][j], 1);
181 
182  // kronecker delta
183  if (i == j)
184  {
185  // delta_ij + p
186  Vmath::Vadd(nq, p, 1, flux[m_iu + i][j], 1, flux[m_iu + i][j],
187  1);
188  }
189  }
190  }
191 }
Array< OneD, Array< OneD, NekDouble > > m_bf
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:445
int m_spacedim
Spatial dimension (>= expansion dim).
int m_ip
indices of the fields
void Vvtvvtp(int n, const T *v, int incv, const T *w, int incw, const T *x, int incx, const T *y, int incy, T *z, int incz)
vvtvvtp (vector times vector plus vector times vector):
Definition: Vmath.cpp:540
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:250
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:302
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:186

◆ v_InitObject()

void Nektar::LEE::v_InitObject ( )
protectedvirtual

Initialization object for the LEE class.

Reimplemented from Nektar::AcousticSystem.

Definition at line 61 of file LEE.cpp.

References ASSERTL0, Nektar::LibUtilities::NekFactory< tKey, tBase, tParam >::CreateInstance(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineOdeRhs(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineProjection(), Nektar::AcousticSystem::DoOdeProjection(), Nektar::AcousticSystem::DoOdeRhs(), Nektar::SolverUtils::GetAdvectionFactory(), Nektar::AcousticSystem::GetBasefieldFwdBwd(), Nektar::SolverUtils::EquationSystem::GetFunction(), Nektar::AcousticSystem::GetNormals(), Nektar::SolverUtils::GetRiemannSolverFactory(), Nektar::SolverUtils::EquationSystem::GetTotPoints(), Nektar::SolverUtils::EquationSystem::GetTraceNpoints(), Nektar::AcousticSystem::GetVecLocs(), Nektar::AcousticSystem::m_advection, Nektar::AcousticSystem::m_bf, Nektar::AcousticSystem::m_bfFwdBwd, Nektar::AcousticSystem::m_bfNames, Nektar::SolverUtils::UnsteadySystem::m_explicitAdvection, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::UnsteadySystem::m_ode, Nektar::AcousticSystem::m_riemannSolver, Nektar::SolverUtils::EquationSystem::m_session, Nektar::SolverUtils::EquationSystem::m_time, v_GetFluxVector(), and Nektar::AcousticSystem::v_InitObject().

62 {
64 
65  m_bfNames.push_back("gamma");
66 
67  // Initialize basefield again
68  m_bf = Array<OneD, Array<OneD, NekDouble>>(m_bfNames.size());
69  for (int i = 0; i < m_bf.num_elements(); ++i)
70  {
71  m_bf[i] = Array<OneD, NekDouble>(GetTotPoints());
72  }
73  GetFunction("Baseflow", m_fields[0], true)
74  ->Evaluate(m_bfNames, m_bf, m_time);
75 
76  // Define the normal velocity fields
77  m_bfFwdBwd = Array<OneD, Array<OneD, NekDouble>>(2 * m_bfNames.size());
78  for (int i = 0; i < m_bfFwdBwd.num_elements(); i++)
79  {
80  m_bfFwdBwd[i] = Array<OneD, NekDouble>(GetTraceNpoints(), 0.0);
81  }
82 
83  string riemName;
84  m_session->LoadSolverInfo("UpwindType", riemName, "Upwind");
85  if (boost::to_lower_copy(riemName) == "characteristics" ||
86  boost::to_lower_copy(riemName) == "leeupwind" ||
87  boost::to_lower_copy(riemName) == "upwind")
88  {
89  riemName = "LEEUpwind";
90  }
91  if (boost::to_lower_copy(riemName) == "laxfriedrichs")
92  {
93  riemName = "LEELaxFriedrichs";
94  }
96  riemName, m_session);
97  m_riemannSolver->SetVector("N", &LEE::GetNormals, this);
98  m_riemannSolver->SetVector("basefieldFwdBwd", &LEE::GetBasefieldFwdBwd,
99  this);
100  m_riemannSolver->SetAuxVec("vecLocs", &LEE::GetVecLocs, this);
101 
102  // Set up advection operator
103  string advName;
104  m_session->LoadSolverInfo("AdvectionType", advName, "WeakDG");
105  m_advection =
107  m_advection->SetFluxVector(&LEE::v_GetFluxVector, this);
108  m_advection->SetRiemannSolver(m_riemannSolver);
109  m_advection->InitObject(m_session, m_fields);
110 
112  {
115  }
116  else
117  {
118  ASSERTL0(false, "Implicit LEE not set up.");
119  }
120 }
virtual void v_GetFluxVector(const Array< OneD, Array< OneD, NekDouble >> &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble >>> &flux)
Return the flux vector for the LEE equations.
Definition: LEE.cpp:135
Array< OneD, Array< OneD, NekDouble > > m_bf
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:216
SolverUtils::RiemannSolverSharedPtr m_riemannSolver
std::vector< std::string > m_bfNames
NekDouble m_time
Current time of simulation.
LibUtilities::TimeIntegrationSchemeOperators m_ode
The time integration scheme operators to use.
const Array< OneD, const Array< OneD, NekDouble > > & GetVecLocs()
Get the locations of the components of the directed fields within the fields array.
SOLVER_UTILS_EXPORT int GetTotPoints()
void DoOdeProjection(const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble time)
Compute the projection and call the method for imposing the boundary conditions in case of discontinu...
void DefineProjection(FuncPointerT func, ObjectPointerT obj)
tBaseSharedPtr CreateInstance(tKey idKey, tParam... args)
Create an instance of the class referred to by idKey.
Definition: NekFactory.hpp:144
const Array< OneD, const Array< OneD, NekDouble > > & GetBasefieldFwdBwd()
Get the baseflow field.
bool m_explicitAdvection
Indicates if explicit or implicit treatment of advection is used.
void DefineOdeRhs(FuncPointerT func, ObjectPointerT obj)
RiemannSolverFactory & GetRiemannSolverFactory()
AdvectionFactory & GetAdvectionFactory()
Gets the factory for initialising advection objects.
Definition: Advection.cpp:47
virtual void v_InitObject()
Initialization object for the AcousticSystem class.
SOLVER_UTILS_EXPORT SessionFunctionSharedPtr GetFunction(std::string name, const MultiRegions::ExpListSharedPtr &field=MultiRegions::NullExpListSharedPtr, bool cache=false)
Get a SessionFunction by name.
Array< OneD, Array< OneD, NekDouble > > m_bfFwdBwd
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
const Array< OneD, const Array< OneD, NekDouble > > & GetNormals()
Get the normal vectors.
SOLVER_UTILS_EXPORT int GetTraceNpoints()
void DoOdeRhs(const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble time)
Compute the right-hand side.
SolverUtils::AdvectionSharedPtr m_advection

◆ v_RiemannInvariantBC()

void Nektar::LEE::v_RiemannInvariantBC ( int  bcRegion,
int  cnt,
Array< OneD, Array< OneD, NekDouble >> &  Fwd,
Array< OneD, Array< OneD, NekDouble >> &  BfFwd,
Array< OneD, Array< OneD, NekDouble >> &  physarray 
)
privatevirtual

Outflow characteristic boundary conditions for compressible flow problems.

Implements Nektar::AcousticSystem.

Definition at line 299 of file LEE.cpp.

References Nektar::SolverUtils::EquationSystem::m_fields, Nektar::AcousticSystem::m_ip, Nektar::AcousticSystem::m_irho, Nektar::AcousticSystem::m_iu, Nektar::SolverUtils::EquationSystem::m_spacedim, Nektar::SolverUtils::EquationSystem::m_traceNormals, Vmath::Vcopy(), and Vmath::Vvtvp().

303 {
304  int id1, id2, nBCEdgePts;
305  int nVariables = physarray.num_elements();
306 
307  const Array<OneD, const int> &traceBndMap = m_fields[0]->GetTraceBndMap();
308 
309  int eMax = m_fields[0]->GetBndCondExpansions()[bcRegion]->GetExpSize();
310 
311  for (int e = 0; e < eMax; ++e)
312  {
313  nBCEdgePts = m_fields[0]
314  ->GetBndCondExpansions()[bcRegion]
315  ->GetExp(e)
316  ->GetTotPoints();
317  id1 = m_fields[0]->GetBndCondExpansions()[bcRegion]->GetPhys_Offset(e);
318  id2 = m_fields[0]->GetTrace()->GetPhys_Offset(traceBndMap[cnt + e]);
319 
320  // Calculate (v.n)
321  Array<OneD, NekDouble> RVn(nBCEdgePts, 0.0);
322  for (int i = 0; i < m_spacedim; ++i)
323  {
324  Vmath::Vvtvp(nBCEdgePts, &Fwd[m_iu + i][id2], 1,
325  &m_traceNormals[i][id2], 1, &RVn[0], 1, &RVn[0], 1);
326  }
327 
328  // Calculate (v0.n)
329  Array<OneD, NekDouble> RVn0(nBCEdgePts, 0.0);
330  for (int i = 0; i < m_spacedim; ++i)
331  {
332  Vmath::Vvtvp(nBCEdgePts, &BfFwd[2 + i][id2], 1,
333  &m_traceNormals[i][id2], 1, &RVn0[0], 1, &RVn0[0], 1);
334  }
335 
336  for (int i = 0; i < nBCEdgePts; ++i)
337  {
338  NekDouble c = sqrt(BfFwd[0][id2 + i]);
339 
340  NekDouble h1, h4, h5;
341 
342  if (RVn0[i] > 0)
343  {
344  // rho - p / c^2
345  h1 = Fwd[m_irho][id2 + i] - Fwd[m_ip][id2 + i] / (c * c);
346  }
347  else
348  {
349  h1 = 0.0;
350  }
351 
352  if (RVn0[i] - c > 0)
353  {
354  // ru / 2 - p / (2*c)
355  h4 = RVn[i] / 2 - Fwd[m_ip][id2 + i] / (2 * c);
356  }
357  else
358  {
359  h4 = 0.0;
360  }
361 
362  if (RVn0[i] + c > 0)
363  {
364  // ru / 2 + p / (2*c)
365  h5 = RVn[i] / 2 + Fwd[m_ip][id2 + i] / (2 * c);
366  }
367  else
368  {
369  h5 = 0.0;
370  }
371 
372  // compute conservative variables
373  // p = c0*(h5-h4)
374  // rho = h1 + (h5-h4)/c0
375  // ru = h4+h5
376  Fwd[m_ip][id2 + i] = c * (h5 - h4);
377  Fwd[m_irho][id2 + i] = h1 + (h5 - h4) / c;
378  NekDouble RVnNew = h4 + h5;
379 
380  // adjust velocity pert. according to new value
381  // here we just omit the wall parallel velocity components, i.e
382  // setting them to zero. This is equivalent to setting the two
383  // vorticity characteristics h2 and h3 to zero. Mathematically,
384  // this is only legitimate for incoming characteristics. However,
385  // as h2 and h3 are convected by the flow, the value we precribe at
386  // an the boundary for putgoing characteristics does not matter.
387  // This implementation saves a few operations and is more robust
388  // for mixed in/outflow boundaries and at the boundaries edges.
389  for (int j = 0; j < m_spacedim; ++j)
390  {
391  Fwd[m_iu + j][id2 + i] = RVnNew * m_traceNormals[j][id2 + i];
392  }
393  }
394 
395  // Copy boundary adjusted values into the boundary expansion
396  for (int i = 0; i < nVariables; ++i)
397  {
398  Vmath::Vcopy(nBCEdgePts, &Fwd[i][id2], 1,
399  &(m_fields[i]
400  ->GetBndCondExpansions()[bcRegion]
401  ->UpdatePhys())[id1],
402  1);
403  }
404  }
405 }
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:445
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
Array holding trace normals for DG simulations in the forwards direction.
int m_spacedim
Spatial dimension (>= expansion dim).
double NekDouble
int m_ip
indices of the fields
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1064

Friends And Related Function Documentation

◆ MemoryManager< LEE >

friend class MemoryManager< LEE >
friend

Definition at line 49 of file LEE.h.

Member Data Documentation

◆ className

string Nektar::LEE::className
static
Initial value:
"LEE", LEE::create, "Linearized Euler Equations")

Name of class.

Definition at line 62 of file LEE.h.