Nektar++
Public Member Functions | Protected Member Functions | Protected Attributes | Private Types | List of all members
Nektar::LibUtilities::NodalUtilHex Class Reference

Specialisation of the NodalUtil class to support nodal hex elements. More...

#include <NodalUtil.h>

Inheritance diagram for Nektar::LibUtilities::NodalUtilHex:
[legend]

Public Member Functions

 NodalUtilHex (int degree, Array< OneD, NekDouble > r, Array< OneD, NekDouble > s, Array< OneD, NekDouble > t)
 Construct the nodal utility class for a hexahedron. More...
 
virtual ~NodalUtilHex ()
 
- Public Member Functions inherited from Nektar::LibUtilities::NodalUtil
NekVector< NekDoubleGetWeights ()
 Obtain the integration weights for the given nodal distribution. More...
 
SharedMatrix GetVandermonde ()
 Return the Vandermonde matrix for the nodal distribution. More...
 
SharedMatrix GetVandermondeForDeriv (int dir)
 Return the Vandermonde matrix of the derivative of the basis functions for the nodal distribution. More...
 
SharedMatrix GetDerivMatrix (int dir)
 Return the derivative matrix for the nodal distribution. More...
 
SharedMatrix GetInterpolationMatrix (Array< OneD, Array< OneD, NekDouble > > &xi)
 Construct the interpolation matrix used to evaluate the basis at the points xi inside the element. More...
 

Protected Member Functions

virtual NekVector< NekDoublev_OrthoBasis (const int mode)
 Return the value of the modal functions for the hex element at the nodal points m_xi for a given mode. More...
 
virtual NekVector< NekDoublev_OrthoBasisDeriv (const int dir, const int mode)
 Return the values of the derivative of the orthogonal basis at the nodal points for a given mode. More...
 
virtual std::shared_ptr< NodalUtilv_CreateUtil (Array< OneD, Array< OneD, NekDouble > > &xi)
 Construct a NodalUtil object of the appropriate element type for a given set of points. More...
 
virtual NekDouble v_ModeZeroIntegral ()
 Return the value of the integral of the zero-th mode for this element. More...
 
virtual int v_NumModes ()
 Calculate the number of degrees of freedom for this element. More...
 
- Protected Member Functions inherited from Nektar::LibUtilities::NodalUtil
 NodalUtil (int degree, int dim)
 Set up the NodalUtil object. More...
 

Protected Attributes

std::vector< Modem_ordering
 Mapping from the \( (i,j,k) \) indexing of the basis to a continuous ordering. More...
 
- Protected Attributes inherited from Nektar::LibUtilities::NodalUtil
int m_dim
 Dimension of the nodal element. More...
 
int m_degree
 Degree of the nodal element. More...
 
int m_numPoints
 Total number of nodal points. More...
 
Array< OneD, Array< OneD, NekDouble > > m_xi
 Coordinates of the nodal points defining the basis. More...
 

Private Types

typedef std::tuple< int, int, int > Mode
 

Detailed Description

Specialisation of the NodalUtil class to support nodal hex elements.

Definition at line 352 of file NodalUtil.h.

Member Typedef Documentation

◆ Mode

typedef std::tuple<int, int, int> Nektar::LibUtilities::NodalUtilHex::Mode
private

Definition at line 354 of file NodalUtil.h.

Constructor & Destructor Documentation

◆ NodalUtilHex()

Nektar::LibUtilities::NodalUtilHex::NodalUtilHex ( int  degree,
Array< OneD, NekDouble r,
Array< OneD, NekDouble s,
Array< OneD, NekDouble t 
)

Construct the nodal utility class for a hexahedron.

The constructor of this class sets up the m_ordering member variable used in the evaluation of the orthogonal basis.

Parameters
degreePolynomial order of this nodal hexahedron.
r\( \xi_1 \)-coordinates of nodal points in the standard element.
s\( \xi_2 \)-coordinates of nodal points in the standard element.

Definition at line 955 of file NodalUtil.cpp.

References Nektar::LibUtilities::NodalUtil::m_degree, Nektar::LibUtilities::NodalUtil::m_numPoints, m_ordering, and Nektar::LibUtilities::NodalUtil::m_xi.

959  : NodalUtil(degree, 3)
960 {
961  // Set up parent variables.
962  m_numPoints = r.num_elements();
963  m_xi[0] = r;
964  m_xi[1] = s;
965  m_xi[2] = t;
966 
967  // Construct a mapping (i,j,k) -> m from the tensor product space (i,j,k) to
968  // a single ordering m.
969  for (int k = 0; k <= m_degree; ++k)
970  {
971  for (int j = 0; j <= m_degree; ++j)
972  {
973  for (int i = 0; i <= m_degree; ++i)
974  {
975  m_ordering.push_back(Mode(i, j, k));
976  }
977  }
978  }
979 }
std::tuple< int, int, int > Mode
Definition: NodalUtil.h:354
int m_degree
Degree of the nodal element.
Definition: NodalUtil.h:107
std::vector< Mode > m_ordering
Mapping from the indexing of the basis to a continuous ordering.
Definition: NodalUtil.h:369
NodalUtil(int degree, int dim)
Set up the NodalUtil object.
Definition: NodalUtil.h:100
Array< OneD, Array< OneD, NekDouble > > m_xi
Coordinates of the nodal points defining the basis.
Definition: NodalUtil.h:111
int m_numPoints
Total number of nodal points.
Definition: NodalUtil.h:109

◆ ~NodalUtilHex()

virtual Nektar::LibUtilities::NodalUtilHex::~NodalUtilHex ( )
inlinevirtual

Definition at line 362 of file NodalUtil.h.

363  {
364  }

Member Function Documentation

◆ v_CreateUtil()

virtual std::shared_ptr<NodalUtil> Nektar::LibUtilities::NodalUtilHex::v_CreateUtil ( Array< OneD, Array< OneD, NekDouble > > &  xi)
inlineprotectedvirtual

Construct a NodalUtil object of the appropriate element type for a given set of points.

This function is used inside NodalUtil::GetInterpolationMatrix so that the (potentially non-square) Vandermonde matrix can be constructed to create the interpolation matrix at an arbitrary set of points in the domain.

Parameters
xiDistribution of nodal points to create utility with.

Implements Nektar::LibUtilities::NodalUtil.

Definition at line 375 of file NodalUtil.h.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and Nektar::LibUtilities::NodalUtil::m_degree.

377  {
379  m_degree, xi[0], xi[1], xi[2]);
380  }
int m_degree
Degree of the nodal element.
Definition: NodalUtil.h:107
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.

◆ v_ModeZeroIntegral()

virtual NekDouble Nektar::LibUtilities::NodalUtilHex::v_ModeZeroIntegral ( )
inlineprotectedvirtual

Return the value of the integral of the zero-th mode for this element.

Note that for the orthogonal basis under consideration, all modes integrate to zero asides from the zero-th mode. This function is used in NodalUtil::GetWeights to determine integration weights.

Implements Nektar::LibUtilities::NodalUtil.

Definition at line 382 of file NodalUtil.h.

383  {
384  return 8.0;
385  }

◆ v_NumModes()

virtual int Nektar::LibUtilities::NodalUtilHex::v_NumModes ( )
inlineprotectedvirtual

Calculate the number of degrees of freedom for this element.

Implements Nektar::LibUtilities::NodalUtil.

Definition at line 387 of file NodalUtil.h.

References Nektar::LibUtilities::NodalUtil::m_degree.

388  {
389  return (m_degree + 1) * (m_degree + 1) * (m_degree + 1);
390  }
int m_degree
Degree of the nodal element.
Definition: NodalUtil.h:107

◆ v_OrthoBasis()

NekVector< NekDouble > Nektar::LibUtilities::NodalUtilHex::v_OrthoBasis ( const int  mode)
protectedvirtual

Return the value of the modal functions for the hex element at the nodal points m_xi for a given mode.

In a quad, we use the orthogonal basis

\[ \psi_{m(ijk)} = P^{(0,0)}_i(\xi_1) P_j^{(0,0)}(\xi_2) P_k^{(0,0)}(\xi_3) \]

Parameters
modeThe mode of the orthogonal basis to evaluate.

Implements Nektar::LibUtilities::NodalUtil.

Definition at line 993 of file NodalUtil.cpp.

References Polylib::jacobfd(), Nektar::LibUtilities::NodalUtil::m_numPoints, m_ordering, and Nektar::LibUtilities::NodalUtil::m_xi.

994 {
995  std::vector<NekDouble> jacobi_i(m_numPoints), jacobi_j(m_numPoints);
996  std::vector<NekDouble> jacobi_k(m_numPoints);
997 
998  int I, J, K;
999  std::tie(I, J, K) = m_ordering[mode];
1000 
1001  // Calculate Jacobi polynomials
1003  m_numPoints, &m_xi[0][0], &jacobi_i[0], NULL, I, 0.0, 0.0);
1005  m_numPoints, &m_xi[1][0], &jacobi_j[0], NULL, J, 0.0, 0.0);
1007  m_numPoints, &m_xi[2][0], &jacobi_k[0], NULL, K, 0.0, 0.0);
1008 
1009  NekVector<NekDouble> ret(m_numPoints);
1010 
1011  for (int i = 0; i < m_numPoints; ++i)
1012  {
1013  ret[i] = jacobi_i[i] * jacobi_j[i] * jacobi_k[i];
1014  }
1015 
1016  return ret;
1017 }
std::vector< Mode > m_ordering
Mapping from the indexing of the basis to a continuous ordering.
Definition: NodalUtil.h:369
Array< OneD, Array< OneD, NekDouble > > m_xi
Coordinates of the nodal points defining the basis.
Definition: NodalUtil.h:111
int m_numPoints
Total number of nodal points.
Definition: NodalUtil.h:109
void jacobfd(const int np, const double *z, double *poly_in, double *polyd, const int n, const double alpha, const double beta)
Routine to calculate Jacobi polynomials, , and their first derivative, .
Definition: Polylib.cpp:1031

◆ v_OrthoBasisDeriv()

NekVector< NekDouble > Nektar::LibUtilities::NodalUtilHex::v_OrthoBasisDeriv ( const int  dir,
const int  mode 
)
protectedvirtual

Return the values of the derivative of the orthogonal basis at the nodal points for a given mode.

Parameters
dirCoordinate direction of derivative.
modeMode number, which is between 0 and NodalUtil::v_NumModes()
  • 1.

Implements Nektar::LibUtilities::NodalUtil.

Definition at line 1019 of file NodalUtil.cpp.

References Polylib::jacobd(), Polylib::jacobfd(), Nektar::LibUtilities::NodalUtil::m_numPoints, m_ordering, and Nektar::LibUtilities::NodalUtil::m_xi.

1021 {
1022  std::vector<NekDouble> jacobi_i(m_numPoints), jacobi_j(m_numPoints);
1023  std::vector<NekDouble> jacobi_k(m_numPoints);
1024  std::vector<NekDouble> jacobi_di(m_numPoints), jacobi_dj(m_numPoints);
1025  std::vector<NekDouble> jacobi_dk(m_numPoints);
1026 
1027  int I, J, K;
1028  std::tie(I, J, K) = m_ordering[mode];
1029 
1030  // Calculate Jacobi polynomials and their derivatives. Note that we use both
1031  // jacobfd and jacobd since jacobfd is only valid for derivatives in the
1032  // open interval (-1,1).
1034  m_numPoints, &m_xi[0][0], &jacobi_i[0], NULL, I, 0.0, 0.0);
1036  m_numPoints, &m_xi[1][0], &jacobi_j[0], NULL, J, 0.0, 0.0);
1038  m_numPoints, &m_xi[2][0], &jacobi_k[0], NULL, K, 0.0, 0.0);
1040  m_numPoints, &m_xi[0][0], &jacobi_di[0], I, 0.0, 0.0);
1042  m_numPoints, &m_xi[1][0], &jacobi_dj[0], J, 0.0, 0.0);
1044  m_numPoints, &m_xi[2][0], &jacobi_dk[0], K, 0.0, 0.0);
1045 
1046  NekVector<NekDouble> ret(m_numPoints);
1047 
1048  if (dir == 0)
1049  {
1050  for (int i = 0; i < m_numPoints; ++i)
1051  {
1052  ret[i] = jacobi_di[i] * jacobi_j[i] * jacobi_k[i];
1053  }
1054  }
1055  else if (dir == 1)
1056  {
1057  for (int i = 0; i < m_numPoints; ++i)
1058  {
1059  ret[i] = jacobi_dj[i] * jacobi_i[i] * jacobi_k[i];
1060  }
1061  }
1062  else
1063  {
1064  for (int i = 0; i < m_numPoints; ++i)
1065  {
1066  ret[i] = jacobi_i[i] * jacobi_j[i] * jacobi_dk[i];
1067  }
1068  }
1069 
1070  return ret;
1071 }
void jacobd(const int np, const double *z, double *polyd, const int n, const double alpha, const double beta)
Calculate the derivative of Jacobi polynomials.
Definition: Polylib.cpp:1131
std::vector< Mode > m_ordering
Mapping from the indexing of the basis to a continuous ordering.
Definition: NodalUtil.h:369
Array< OneD, Array< OneD, NekDouble > > m_xi
Coordinates of the nodal points defining the basis.
Definition: NodalUtil.h:111
int m_numPoints
Total number of nodal points.
Definition: NodalUtil.h:109
void jacobfd(const int np, const double *z, double *poly_in, double *polyd, const int n, const double alpha, const double beta)
Routine to calculate Jacobi polynomials, , and their first derivative, .
Definition: Polylib.cpp:1031

Member Data Documentation

◆ m_ordering

std::vector<Mode> Nektar::LibUtilities::NodalUtilHex::m_ordering
protected

Mapping from the \( (i,j,k) \) indexing of the basis to a continuous ordering.

Definition at line 369 of file NodalUtil.h.

Referenced by NodalUtilHex(), v_OrthoBasis(), and v_OrthoBasisDeriv().