Nektar++
Public Member Functions | Protected Member Functions | Protected Attributes | Private Types | List of all members
Nektar::LibUtilities::NodalUtilPrism Class Reference

Specialisation of the NodalUtil class to support nodal prismatic elements. More...

#include <NodalUtil.h>

Inheritance diagram for Nektar::LibUtilities::NodalUtilPrism:
[legend]

Public Member Functions

 NodalUtilPrism (int degree, Array< OneD, NekDouble > r, Array< OneD, NekDouble > s, Array< OneD, NekDouble > t)
 Construct the nodal utility class for a prism. More...
 
virtual ~NodalUtilPrism ()
 
- Public Member Functions inherited from Nektar::LibUtilities::NodalUtil
NekVector< NekDoubleGetWeights ()
 Obtain the integration weights for the given nodal distribution. More...
 
SharedMatrix GetVandermonde ()
 Return the Vandermonde matrix for the nodal distribution. More...
 
SharedMatrix GetVandermondeForDeriv (int dir)
 Return the Vandermonde matrix of the derivative of the basis functions for the nodal distribution. More...
 
SharedMatrix GetDerivMatrix (int dir)
 Return the derivative matrix for the nodal distribution. More...
 
SharedMatrix GetInterpolationMatrix (Array< OneD, Array< OneD, NekDouble > > &xi)
 Construct the interpolation matrix used to evaluate the basis at the points xi inside the element. More...
 

Protected Member Functions

virtual NekVector< NekDoublev_OrthoBasis (const int mode)
 Return the value of the modal functions for the prismatic element at the nodal points m_xi for a given mode. More...
 
virtual NekVector< NekDoublev_OrthoBasisDeriv (const int dir, const int mode)
 Return the value of the derivative of the modal functions for the prismatic element at the nodal points m_xi for a given mode. More...
 
virtual std::shared_ptr< NodalUtilv_CreateUtil (Array< OneD, Array< OneD, NekDouble > > &xi)
 Construct a NodalUtil object of the appropriate element type for a given set of points. More...
 
virtual NekDouble v_ModeZeroIntegral ()
 Return the value of the integral of the zero-th mode for this element. More...
 
virtual int v_NumModes ()
 Calculate the number of degrees of freedom for this element. More...
 
- Protected Member Functions inherited from Nektar::LibUtilities::NodalUtil
 NodalUtil (int degree, int dim)
 Set up the NodalUtil object. More...
 

Protected Attributes

std::vector< Modem_ordering
 Mapping from the \( (i,j) \) indexing of the basis to a continuous ordering. More...
 
Array< OneD, Array< OneD, NekDouble > > m_eta
 Collapsed coordinates \( (\eta_1, \eta_2, \eta_3) \) of the nodal points. More...
 
- Protected Attributes inherited from Nektar::LibUtilities::NodalUtil
int m_dim
 Dimension of the nodal element. More...
 
int m_degree
 Degree of the nodal element. More...
 
int m_numPoints
 Total number of nodal points. More...
 
Array< OneD, Array< OneD, NekDouble > > m_xi
 Coordinates of the nodal points defining the basis. More...
 

Private Types

typedef std::tuple< int, int, int > Mode
 

Detailed Description

Specialisation of the NodalUtil class to support nodal prismatic elements.

Definition at line 263 of file NodalUtil.h.

Member Typedef Documentation

◆ Mode

typedef std::tuple<int, int, int> Nektar::LibUtilities::NodalUtilPrism::Mode
private

Definition at line 265 of file NodalUtil.h.

Constructor & Destructor Documentation

◆ NodalUtilPrism()

Nektar::LibUtilities::NodalUtilPrism::NodalUtilPrism ( int  degree,
Array< OneD, NekDouble r,
Array< OneD, NekDouble s,
Array< OneD, NekDouble t 
)

Construct the nodal utility class for a prism.

The constructor of this class sets up two member variables used in the evaluation of the orthogonal basis:

  • NodalUtilPrism::m_eta is used to construct the collapsed coordinate locations of the nodal points \( (\eta_1, \eta_2, \eta_3) \) inside the cube \([-1,1]^3\) on which the orthogonal basis functions are defined.
  • NodalUtilPrism::m_ordering constructs a mapping from the index set \( I = \{ (i,j,k)\ |\ 0\leq i,j,k \leq P, i+k \leq P \}\) to an ordering \( 0 \leq m(ijk) \leq (P+1)(P+1)(P+2)/2 \) that defines the monomials \( \xi_1^i \xi_2^j \xi_3^k \) that span the prismatic space. This is then used to calculate which \( (i,j,k) \) triple (represented as a tuple) corresponding to a column of the Vandermonde matrix when calculating the orthogonal polynomials.
Parameters
degreePolynomial order of this nodal tetrahedron
r\( \xi_1 \)-coordinates of nodal points in the standard element.
s\( \xi_2 \)-coordinates of nodal points in the standard element.
t\( \xi_3 \)-coordinates of nodal points in the standard element.

Definition at line 654 of file NodalUtil.cpp.

References Nektar::NekConstants::kNekZeroTol, Nektar::LibUtilities::NodalUtil::m_degree, m_eta, Nektar::LibUtilities::NodalUtil::m_numPoints, m_ordering, and Nektar::LibUtilities::NodalUtil::m_xi.

658  : NodalUtil(degree, 3), m_eta(3)
659 {
660  m_numPoints = r.num_elements();
661  m_xi[0] = r;
662  m_xi[1] = s;
663  m_xi[2] = t;
664 
665  for (int i = 0; i <= m_degree; ++i)
666  {
667  for (int j = 0; j <= m_degree; ++j)
668  {
669  for (int k = 0; k <= m_degree - i; ++k)
670  {
671  m_ordering.push_back(Mode(i, j, k));
672  }
673  }
674  }
675 
676  // Calculate collapsed coordinates from r/s values
677  m_eta[0] = Array<OneD, NekDouble>(m_numPoints);
678  m_eta[1] = Array<OneD, NekDouble>(m_numPoints);
679  m_eta[2] = Array<OneD, NekDouble>(m_numPoints);
680 
681  for (int i = 0; i < m_numPoints; ++i)
682  {
683  if (fabs(m_xi[2][i] - 1.0) < NekConstants::kNekZeroTol)
684  {
685  // Very top point of the prism
686  m_eta[0][i] = -1.0;
687  m_eta[1][i] = m_xi[1][i];
688  m_eta[2][i] = 1.0;
689  }
690  else
691  {
692  // Third basis function collapsed to "pr" direction instead of "qr"
693  // direction
694  m_eta[0][i] = 2.0*(1.0 + m_xi[0][i])/(1.0 - m_xi[2][i]) - 1.0;
695  m_eta[1][i] = m_xi[1][i];
696  m_eta[2][i] = m_xi[2][i];
697  }
698  }
699 }
Array< OneD, Array< OneD, NekDouble > > m_eta
Collapsed coordinates of the nodal points.
Definition: NodalUtil.h:284
int m_degree
Degree of the nodal element.
Definition: NodalUtil.h:107
static const NekDouble kNekZeroTol
NodalUtil(int degree, int dim)
Set up the NodalUtil object.
Definition: NodalUtil.h:100
std::tuple< int, int, int > Mode
Definition: NodalUtil.h:265
Array< OneD, Array< OneD, NekDouble > > m_xi
Coordinates of the nodal points defining the basis.
Definition: NodalUtil.h:111
std::vector< Mode > m_ordering
Mapping from the indexing of the basis to a continuous ordering.
Definition: NodalUtil.h:280
int m_numPoints
Total number of nodal points.
Definition: NodalUtil.h:109

◆ ~NodalUtilPrism()

virtual Nektar::LibUtilities::NodalUtilPrism::~NodalUtilPrism ( )
inlinevirtual

Definition at line 273 of file NodalUtil.h.

274  {
275  }

Member Function Documentation

◆ v_CreateUtil()

virtual std::shared_ptr<NodalUtil> Nektar::LibUtilities::NodalUtilPrism::v_CreateUtil ( Array< OneD, Array< OneD, NekDouble > > &  xi)
inlineprotectedvirtual

Construct a NodalUtil object of the appropriate element type for a given set of points.

This function is used inside NodalUtil::GetInterpolationMatrix so that the (potentially non-square) Vandermonde matrix can be constructed to create the interpolation matrix at an arbitrary set of points in the domain.

Parameters
xiDistribution of nodal points to create utility with.

Implements Nektar::LibUtilities::NodalUtil.

Definition at line 290 of file NodalUtil.h.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and Nektar::LibUtilities::NodalUtil::m_degree.

292  {
294  m_degree, xi[0], xi[1], xi[2]);
295  }
int m_degree
Degree of the nodal element.
Definition: NodalUtil.h:107
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.

◆ v_ModeZeroIntegral()

virtual NekDouble Nektar::LibUtilities::NodalUtilPrism::v_ModeZeroIntegral ( )
inlineprotectedvirtual

Return the value of the integral of the zero-th mode for this element.

Note that for the orthogonal basis under consideration, all modes integrate to zero asides from the zero-th mode. This function is used in NodalUtil::GetWeights to determine integration weights.

Implements Nektar::LibUtilities::NodalUtil.

Definition at line 297 of file NodalUtil.h.

298  {
299  return 4.0 * sqrt(2.0);
300  }

◆ v_NumModes()

virtual int Nektar::LibUtilities::NodalUtilPrism::v_NumModes ( )
inlineprotectedvirtual

Calculate the number of degrees of freedom for this element.

Implements Nektar::LibUtilities::NodalUtil.

Definition at line 302 of file NodalUtil.h.

References Nektar::LibUtilities::NodalUtil::m_degree.

303  {
304  return (m_degree + 1) * (m_degree + 1) * (m_degree + 2) / 2;
305  }
int m_degree
Degree of the nodal element.
Definition: NodalUtil.h:107

◆ v_OrthoBasis()

NekVector< NekDouble > Nektar::LibUtilities::NodalUtilPrism::v_OrthoBasis ( const int  mode)
protectedvirtual

Return the value of the modal functions for the prismatic element at the nodal points m_xi for a given mode.

In a prism, we use the orthogonal basis

\[ \psi_{m(ijk)} = \sqrt{2} P^{(0,0)}_i(\xi_1) P_j^{(0,0)}(\xi_2) P_k^{(2i+1,0)}(\xi_3) (1-\xi_3)^i \]

where \( m(ijk) \) is the mapping defined in m_ordering and \( J_n^{(\alpha,\beta)}(z) \) denotes the standard Jacobi polynomial.

Parameters
modeThe mode of the orthogonal basis to evaluate.
Returns
Vector containing orthogonal basis evaluated at the points m_xi.

Implements Nektar::LibUtilities::NodalUtil.

Definition at line 717 of file NodalUtil.cpp.

References Polylib::jacobfd(), m_eta, Nektar::LibUtilities::NodalUtil::m_numPoints, and m_ordering.

718 {
719  std::vector<NekDouble> jacA(m_numPoints), jacB(m_numPoints);
720  std::vector<NekDouble> jacC(m_numPoints);
721 
722  int I, J, K;
723  std::tie(I, J, K) = m_ordering[mode];
724 
725  // Calculate Jacobi polynomials
727  m_numPoints, &m_eta[0][0], &jacA[0], NULL, I, 0.0, 0.0);
729  m_numPoints, &m_eta[1][0], &jacB[0], NULL, J, 0.0, 0.0);
731  m_numPoints, &m_eta[2][0], &jacC[0], NULL, K, 2.0 * I + 1.0, 0.0);
732 
733  NekVector<NekDouble> ret(m_numPoints);
734  NekDouble sqrt2 = sqrt(2.0);
735 
736  for (int i = 0; i < m_numPoints; ++i)
737  {
738  ret[i] = sqrt2 * jacA[i] * jacB[i] * jacC[i] *
739  pow(1.0 - m_eta[2][i], I);
740  }
741 
742  return ret;
743 }
Array< OneD, Array< OneD, NekDouble > > m_eta
Collapsed coordinates of the nodal points.
Definition: NodalUtil.h:284
double NekDouble
std::vector< Mode > m_ordering
Mapping from the indexing of the basis to a continuous ordering.
Definition: NodalUtil.h:280
int m_numPoints
Total number of nodal points.
Definition: NodalUtil.h:109
void jacobfd(const int np, const double *z, double *poly_in, double *polyd, const int n, const double alpha, const double beta)
Routine to calculate Jacobi polynomials, , and their first derivative, .
Definition: Polylib.cpp:1031

◆ v_OrthoBasisDeriv()

NekVector< NekDouble > Nektar::LibUtilities::NodalUtilPrism::v_OrthoBasisDeriv ( const int  dir,
const int  mode 
)
protectedvirtual

Return the value of the derivative of the modal functions for the prismatic element at the nodal points m_xi for a given mode.

Note that this routine must use the chain rule combined with the collapsed coordinate derivatives as described in Sherwin & Karniadakis (2nd edition), pg 152.

Parameters
modeThe mode of the orthogonal basis to evaluate.
dirCoordinate direction in which to evaluate the derivative.
Returns
Vector containing the derivative of the orthogonal basis evaluated at the points m_xi.

Implements Nektar::LibUtilities::NodalUtil.

Definition at line 759 of file NodalUtil.cpp.

References Polylib::jacobd(), Polylib::jacobfd(), m_eta, Nektar::LibUtilities::NodalUtil::m_numPoints, and m_ordering.

761 {
762  std::vector<NekDouble> jacA(m_numPoints), jacB(m_numPoints);
763  std::vector<NekDouble> jacC(m_numPoints);
764  std::vector<NekDouble> jacDerivA(m_numPoints), jacDerivB(m_numPoints);
765  std::vector<NekDouble> jacDerivC(m_numPoints);
766 
767  int I, J, K;
768  std::tie(I, J, K) = m_ordering[mode];
769 
770  // Calculate Jacobi polynomials
772  m_numPoints, &m_eta[0][0], &jacA[0], NULL, I, 0.0, 0.0);
774  m_numPoints, &m_eta[1][0], &jacB[0], NULL, J, 0.0, 0.0);
776  m_numPoints, &m_eta[2][0], &jacC[0], NULL, K, 2.0 * I + 1.0, 0.0);
778  m_numPoints, &m_eta[0][0], &jacDerivA[0], I, 0.0, 0.0);
780  m_numPoints, &m_eta[1][0], &jacDerivB[0], J, 0.0, 0.0);
782  m_numPoints, &m_eta[2][0], &jacDerivC[0], K, 2.0 * I + 1.0, 0.0);
783 
784  NekVector<NekDouble> ret(m_numPoints);
785  NekDouble sqrt2 = sqrt(2.0);
786 
787  if (dir == 1)
788  {
789  for (int i = 0; i < m_numPoints; ++i)
790  {
791  ret[i] = sqrt2 * jacA[i] * jacDerivB[i] * jacC[i] *
792  pow(1.0 - m_eta[2][i], I);
793  }
794  }
795  else
796  {
797  for (int i = 0; i < m_numPoints; ++i)
798  {
799  ret[i] = 2.0 * sqrt2 * jacDerivA[i] * jacB[i] * jacC[i];
800 
801  if (I > 0)
802  {
803  ret[i] *= pow(1.0 - m_eta[2][i], I - 1);
804  }
805  }
806 
807  if (dir == 0)
808  {
809  return ret;
810  }
811 
812  for (int i = 0; i < m_numPoints; ++i)
813  {
814  ret[i] *= 0.5 * (1.0 + m_eta[0][i]);
815 
816  NekDouble tmp = jacDerivC[i] * pow(1.0 - m_eta[2][i], I);
817 
818  if (I > 0)
819  {
820  tmp -= jacC[i] * I * pow(1.0 - m_eta[2][i], I - 1);
821  }
822 
823  ret[i] += sqrt2 * jacA[i] * jacB[i] * tmp;
824  }
825  }
826 
827  return ret;
828 }
Array< OneD, Array< OneD, NekDouble > > m_eta
Collapsed coordinates of the nodal points.
Definition: NodalUtil.h:284
void jacobd(const int np, const double *z, double *polyd, const int n, const double alpha, const double beta)
Calculate the derivative of Jacobi polynomials.
Definition: Polylib.cpp:1131
double NekDouble
std::vector< Mode > m_ordering
Mapping from the indexing of the basis to a continuous ordering.
Definition: NodalUtil.h:280
int m_numPoints
Total number of nodal points.
Definition: NodalUtil.h:109
void jacobfd(const int np, const double *z, double *poly_in, double *polyd, const int n, const double alpha, const double beta)
Routine to calculate Jacobi polynomials, , and their first derivative, .
Definition: Polylib.cpp:1031

Member Data Documentation

◆ m_eta

Array<OneD, Array<OneD, NekDouble> > Nektar::LibUtilities::NodalUtilPrism::m_eta
protected

Collapsed coordinates \( (\eta_1, \eta_2, \eta_3) \) of the nodal points.

Definition at line 284 of file NodalUtil.h.

Referenced by NodalUtilPrism(), v_OrthoBasis(), and v_OrthoBasisDeriv().

◆ m_ordering

std::vector<Mode> Nektar::LibUtilities::NodalUtilPrism::m_ordering
protected

Mapping from the \( (i,j) \) indexing of the basis to a continuous ordering.

Definition at line 280 of file NodalUtil.h.

Referenced by NodalUtilPrism(), v_OrthoBasis(), and v_OrthoBasisDeriv().