Nektar++
Public Member Functions | Protected Member Functions | Protected Attributes | Private Member Functions | List of all members
Nektar::StdRegions::StdExpansion3D Class Referenceabstract

#include <StdExpansion3D.h>

Inheritance diagram for Nektar::StdRegions::StdExpansion3D:
[legend]

Public Member Functions

 StdExpansion3D ()
 
 StdExpansion3D (int numcoeffs, const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc)
 
 StdExpansion3D (const StdExpansion3D &T)
 
virtual ~StdExpansion3D ()
 
void PhysTensorDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray_d1, Array< OneD, NekDouble > &outarray_d2, Array< OneD, NekDouble > &outarray_d3)
 Calculate the 3D derivative in the local tensor/collapsed coordinate at the physical points. More...
 
void BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
void IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion
 StdExpansion ()
 Default Constructor. More...
 
 StdExpansion (const int numcoeffs, const int numbases, const LibUtilities::BasisKey &Ba=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bb=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bc=LibUtilities::NullBasisKey)
 Constructor. More...
 
 StdExpansion (const StdExpansion &T)
 Copy Constructor. More...
 
virtual ~StdExpansion ()
 Destructor. More...
 
int GetNumBases () const
 This function returns the number of 1D bases used in the expansion. More...
 
const Array< OneD, const LibUtilities::BasisSharedPtr > & GetBase () const
 This function gets the shared point to basis. More...
 
const LibUtilities::BasisSharedPtrGetBasis (int dir) const
 This function gets the shared point to basis in the dir direction. More...
 
int GetNcoeffs (void) const
 This function returns the total number of coefficients used in the expansion. More...
 
int GetTotPoints () const
 This function returns the total number of quadrature points used in the element. More...
 
LibUtilities::BasisType GetBasisType (const int dir) const
 This function returns the type of basis used in the dir direction. More...
 
int GetBasisNumModes (const int dir) const
 This function returns the number of expansion modes in the dir direction. More...
 
int EvalBasisNumModesMax (void) const
 This function returns the maximum number of expansion modes over all local directions. More...
 
LibUtilities::PointsType GetPointsType (const int dir) const
 This function returns the type of quadrature points used in the dir direction. More...
 
int GetNumPoints (const int dir) const
 This function returns the number of quadrature points in the dir direction. More...
 
const Array< OneD, const NekDouble > & GetPoints (const int dir) const
 This function returns a pointer to the array containing the quadrature points in dir direction. More...
 
int GetNverts () const
 This function returns the number of vertices of the expansion domain. More...
 
int GetNedges () const
 This function returns the number of edges of the expansion domain. More...
 
int GetEdgeNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th edge. More...
 
int GetTotalEdgeIntNcoeffs () const
 
int GetEdgeNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th edge. More...
 
int DetCartesianDirOfEdge (const int edge)
 
const LibUtilities::BasisKey DetEdgeBasisKey (const int i) const
 
const LibUtilities::BasisKey DetFaceBasisKey (const int i, const int k) const
 
int GetFaceNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th face. More...
 
int GetFaceNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th face. More...
 
int GetFaceIntNcoeffs (const int i) const
 
int GetTotalFaceIntNcoeffs () const
 
int GetTraceNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th edge/face. More...
 
LibUtilities::PointsKey GetFacePointsKey (const int i, const int j) const
 
int NumBndryCoeffs (void) const
 
int NumDGBndryCoeffs (void) const
 
LibUtilities::BasisType GetEdgeBasisType (const int i) const
 This function returns the type of expansion basis on the i-th edge. More...
 
const LibUtilities::PointsKey GetNodalPointsKey () const
 This function returns the type of expansion Nodal point type if defined. More...
 
int GetNfaces () const
 This function returns the number of faces of the expansion domain. More...
 
int GetNtrace () const
 Returns the number of trace elements connected to this element. More...
 
LibUtilities::ShapeType DetShapeType () const
 This function returns the shape of the expansion domain. More...
 
std::shared_ptr< StdExpansionGetStdExp (void) const
 
std::shared_ptr< StdExpansionGetLinStdExp (void) const
 
int GetShapeDimension () const
 
bool IsBoundaryInteriorExpansion ()
 
bool IsNodalNonTensorialExp ()
 
void BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Backward transformation from coefficient space to physical space. More...
 
void FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Forward transformation from physical space to coefficient space. More...
 
void FwdTrans_BndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble Integral (const Array< OneD, const NekDouble > &inarray)
 This function integrates the specified function over the domain. More...
 
void FillMode (const int mode, Array< OneD, NekDouble > &outarray)
 This function fills the array outarray with the mode-th mode of the expansion. More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 this function calculates the inner product of a given function f with the different modes of the expansion More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &base, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int coll_check)
 
void IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDirectionalDerivBase (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
int GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void SetElmtId (const int id)
 Set the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2=NullNekDouble1DArray, Array< OneD, NekDouble > &coords_3=NullNekDouble1DArray)
 this function returns the physical coordinates of the quadrature points of the expansion More...
 
void GetCoord (const Array< OneD, const NekDouble > &Lcoord, Array< OneD, NekDouble > &coord)
 given the coordinates of a point of the element in the local collapsed coordinate system, this function calculates the physical coordinates of the point More...
 
DNekMatSharedPtr GetStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr GetStdStaticCondMatrix (const StdMatrixKey &mkey)
 
IndexMapValuesSharedPtr GetIndexMap (const IndexMapKey &ikey)
 
const Array< OneD, const NekDouble > & GetPhysNormals (void)
 
void SetPhysNormals (Array< OneD, const NekDouble > &normal)
 
virtual void SetUpPhysNormals (const int edge)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
DNekScalBlkMatSharedPtr GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
void DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
StdRegions::Orientation GetForient (int face)
 
StdRegions::Orientation GetEorient (int edge)
 
void SetCoeffsToOrientation (Array< OneD, NekDouble > &coeffs, StdRegions::Orientation dir)
 
void SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
int CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
NekDouble StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
int GetCoordim ()
 
void GetBoundaryMap (Array< OneD, unsigned int > &outarray)
 
void GetInteriorMap (Array< OneD, unsigned int > &outarray)
 
int GetVertexMap (const int localVertexId, bool useCoeffPacking=false)
 
void GetEdgeInteriorMap (const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
 
void GetFaceNumModes (const int fid, const Orientation faceOrient, int &numModes0, int &numModes1)
 
void GetFaceInteriorMap (const int fid, const Orientation faceOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
 
void GetEdgeToElementMap (const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, int P=-1)
 
void GetFaceToElementMap (const int fid, const Orientation faceOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, int nummodesA=-1, int nummodesB=-1)
 
void GetEdgePhysVals (const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Extract the physical values along edge edge from inarray into outarray following the local edge orientation and point distribution defined by defined in EdgeExp. More...
 
void GetEdgePhysVals (const int edge, const std::shared_ptr< StdExpansion > &EdgeExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GetTracePhysVals (const int edge, const std::shared_ptr< StdExpansion > &EdgeExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GetVertexPhysVals (const int vertex, const Array< OneD, const NekDouble > &inarray, NekDouble &outarray)
 
void GetEdgeInterpVals (const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GetEdgeQFactors (const int edge, Array< OneD, NekDouble > &outarray)
 Extract the metric factors to compute the contravariant fluxes along edge edge and stores them into outarray following the local edge orientation (i.e. anticlockwise convention). More...
 
void GetFacePhysVals (const int face, const std::shared_ptr< StdExpansion > &FaceExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient=eNoOrientation)
 
void GetEdgePhysMap (const int edge, Array< OneD, int > &outarray)
 
void GetFacePhysMap (const int face, Array< OneD, int > &outarray)
 
void MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
DNekMatSharedPtr CreateGeneralMatrix (const StdMatrixKey &mkey)
 this function generates the mass matrix \(\mathbf{M}[i][j] = \int \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x}\) More...
 
void GeneralMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdMatrixKey &mkey)
 
void ExponentialFilter (Array< OneD, NekDouble > &array, const NekDouble alpha, const NekDouble exponent, const NekDouble cutoff)
 
void LaplacianMatrixOp (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
DNekMatSharedPtr GenMatrix (const StdMatrixKey &mkey)
 
void PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void PhysDeriv_s (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_ds)
 
void PhysDeriv_n (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_dn)
 
void PhysDirectionalDeriv (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &direction, Array< OneD, NekDouble > &outarray)
 
void StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void AddRobinMassMatrix (const int edgeid, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat)
 
void AddRobinEdgeContribution (const int edgeid, const Array< OneD, const NekDouble > &primCoeffs, Array< OneD, NekDouble > &coeffs)
 
NekDouble PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
void LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
 Convert local cartesian coordinate xi into local collapsed coordinates eta. More...
 
virtual int v_GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
virtual const Array< OneD, const NekDouble > & v_GetPhysNormals (void)
 
virtual void v_SetPhysNormals (Array< OneD, const NekDouble > &normal)
 
virtual void v_SetUpPhysNormals (const int edge)
 
virtual int v_CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
virtual DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
virtual void v_DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
virtual StdRegions::Orientation v_GetForient (int face)
 
virtual StdRegions::Orientation v_GetEorient (int edge)
 
NekDouble Linf (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( L_\infty\) error \( |\epsilon|_\infty = \max |u - u_{exact}|\) where \( u_{exact}\) is given by the array sol. More...
 
NekDouble L2 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( L_2\) error, \( | \epsilon |_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 dx \right]^{1/2} d\xi_1 \) where \( u_{exact}\) is given by the array sol. More...
 
NekDouble H1 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( H^1\) error, \( | \epsilon |^1_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 + \nabla(u - u_{exact})\cdot\nabla(u - u_{exact})\cdot dx \right]^{1/2} d\xi_1 \) where \( u_{exact}\) is given by the array sol. More...
 
const NormalVectorGetEdgeNormal (const int edge) const
 
void ComputeEdgeNormal (const int edge)
 
void NegateEdgeNormal (const int edge)
 
bool EdgeNormalNegated (const int edge)
 
void ComputeFaceNormal (const int face)
 
void NegateFaceNormal (const int face)
 
bool FaceNormalNegated (const int face)
 
void ComputeVertexNormal (const int vertex)
 
void NegateVertexNormal (const int vertex)
 
bool VertexNormalNegated (const int vertex)
 
const NormalVectorGetFaceNormal (const int face) const
 
const NormalVectorGetVertexNormal (const int vertex) const
 
const NormalVectorGetSurfaceNormal (const int id) const
 
const LibUtilities::PointsKeyVector GetPointsKeys () const
 
Array< OneD, unsigned int > GetEdgeInverseBoundaryMap (int eid)
 
Array< OneD, unsigned int > GetFaceInverseBoundaryMap (int fid, StdRegions::Orientation faceOrient=eNoOrientation, int P1=-1, int P2=-1)
 
void GetInverseBoundaryMaps (Array< OneD, unsigned int > &vmap, Array< OneD, Array< OneD, unsigned int > > &emap, Array< OneD, Array< OneD, unsigned int > > &fmap)
 
DNekMatSharedPtr BuildInverseTransformationMatrix (const DNekScalMatSharedPtr &m_transformationmatrix)
 
void PhysInterpToSimplexEquiSpaced (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int npset=-1)
 This function performs an interpolation from the physical space points provided at input into an array of equispaced points which are not the collapsed coordinate. So for a tetrahedron you will only get a tetrahedral number of values. More...
 
void GetSimplexEquiSpacedConnectivity (Array< OneD, int > &conn, bool standard=true)
 This function provides the connectivity of local simplices (triangles or tets) to connect the equispaced data points provided by PhysInterpToSimplexEquiSpaced. More...
 
void EquiSpacedToCoeffs (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs a projection/interpolation from the equispaced points sometimes used in post-processing onto the coefficient space. More...
 
template<class T >
std::shared_ptr< T > as ()
 
void IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
 

Protected Member Functions

virtual NekDouble v_PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
virtual NekDouble v_PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
 
virtual void v_BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)=0
 
virtual void v_IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)=0
 
virtual void v_LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual NekDouble v_Integral (const Array< OneD, const NekDouble > &inarray)
 Integrates the specified function over the domain. More...
 
virtual void v_NegateFaceNormal (const int face)
 
virtual bool v_FaceNormalNegated (const int face)
 
virtual int v_GetTraceNcoeffs (const int i) const
 
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion
DNekMatSharedPtr CreateStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr CreateStdStaticCondMatrix (const StdMatrixKey &mkey)
 Create the static condensation of a matrix when using a boundary interior decomposition. More...
 
IndexMapValuesSharedPtr CreateIndexMap (const IndexMapKey &ikey)
 Create an IndexMap which contains mapping information linking any specific element shape with either its boundaries, edges, faces, verteces, etc. More...
 
void BwdTrans_MatOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDirectionalDerivBase_SumFac (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GeneralMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree_Kernel (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
 
void LaplacianMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp_MatFree (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void HelmholtzMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
virtual void v_SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_SetCoeffsToOrientation (Array< OneD, NekDouble > &coeffs, StdRegions::Orientation dir)
 
virtual NekDouble v_StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 

Protected Attributes

std::map< int, NormalVectorm_faceNormals
 
std::map< int, bool > m_negatedNormals
 
- Protected Attributes inherited from Nektar::StdRegions::StdExpansion
Array< OneD, LibUtilities::BasisSharedPtrm_base
 
int m_elmt_id
 
int m_ncoeffs
 
LibUtilities::NekManager< StdMatrixKey, DNekMat, StdMatrixKey::opLessm_stdMatrixManager
 
LibUtilities::NekManager< StdMatrixKey, DNekBlkMat, StdMatrixKey::opLessm_stdStaticCondMatrixManager
 
LibUtilities::NekManager< IndexMapKey, IndexMapValues, IndexMapKey::opLessm_IndexMapManager
 

Private Member Functions

virtual int v_GetShapeDimension () const
 
virtual int v_GetCoordim (void)
 
const NormalVectorv_GetSurfaceNormal (const int id) const
 
const NormalVectorv_GetFaceNormal (const int face) const
 

Detailed Description

Definition at line 51 of file StdExpansion3D.h.

Constructor & Destructor Documentation

◆ StdExpansion3D() [1/3]

Nektar::StdRegions::StdExpansion3D::StdExpansion3D ( )

Definition at line 49 of file StdExpansion3D.cpp.

50  {
51  }

◆ StdExpansion3D() [2/3]

Nektar::StdRegions::StdExpansion3D::StdExpansion3D ( int  numcoeffs,
const LibUtilities::BasisKey Ba,
const LibUtilities::BasisKey Bb,
const LibUtilities::BasisKey Bc 
)

Definition at line 53 of file StdExpansion3D.cpp.

56  :
57  StdExpansion(numcoeffs,3,Ba,Bb,Bc)
58  {
59  }
StdExpansion()
Default Constructor.

◆ StdExpansion3D() [3/3]

Nektar::StdRegions::StdExpansion3D::StdExpansion3D ( const StdExpansion3D T)

Definition at line 61 of file StdExpansion3D.cpp.

61  :
62  StdExpansion(T)
63  {
64  }
StdExpansion()
Default Constructor.

◆ ~StdExpansion3D()

Nektar::StdRegions::StdExpansion3D::~StdExpansion3D ( )
virtual

Definition at line 66 of file StdExpansion3D.cpp.

67  {
68  }

Member Function Documentation

◆ BwdTrans_SumFacKernel()

void Nektar::StdRegions::StdExpansion3D::BwdTrans_SumFacKernel ( const Array< OneD, const NekDouble > &  base0,
const Array< OneD, const NekDouble > &  base1,
const Array< OneD, const NekDouble > &  base2,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp,
bool  doCheckCollDir0,
bool  doCheckCollDir1,
bool  doCheckCollDir2 
)

Definition at line 114 of file StdExpansion3D.cpp.

References v_BwdTrans_SumFacKernel().

Referenced by Nektar::StdRegions::StdHexExp::v_BwdTrans_SumFac(), Nektar::StdRegions::StdPrismExp::v_BwdTrans_SumFac(), Nektar::StdRegions::StdTetExp::v_BwdTrans_SumFac(), v_HelmholtzMatrixOp_MatFree(), and v_LaplacianMatrixOp_MatFree().

124  {
125  v_BwdTrans_SumFacKernel(base0, base1, base2, inarray, outarray, wsp, doCheckCollDir0, doCheckCollDir1, doCheckCollDir2);
126  }
virtual void v_BwdTrans_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)=0

◆ IProductWRTBase_SumFacKernel()

void Nektar::StdRegions::StdExpansion3D::IProductWRTBase_SumFacKernel ( const Array< OneD, const NekDouble > &  base0,
const Array< OneD, const NekDouble > &  base1,
const Array< OneD, const NekDouble > &  base2,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp,
bool  doCheckCollDir0,
bool  doCheckCollDir1,
bool  doCheckCollDir2 
)

Definition at line 128 of file StdExpansion3D.cpp.

References v_IProductWRTBase_SumFacKernel().

Referenced by Nektar::LocalRegions::HexExp::IProductWRTDerivBase_SumFac(), Nektar::LocalRegions::HexExp::IProductWRTDirectionalDerivBase_SumFac(), v_HelmholtzMatrixOp_MatFree(), Nektar::LocalRegions::TetExp::v_IProductWRTBase_SumFac(), Nektar::LocalRegions::PrismExp::v_IProductWRTBase_SumFac(), Nektar::LocalRegions::PyrExp::v_IProductWRTBase_SumFac(), Nektar::LocalRegions::HexExp::v_IProductWRTBase_SumFac(), Nektar::StdRegions::StdHexExp::v_IProductWRTBase_SumFac(), Nektar::StdRegions::StdPrismExp::v_IProductWRTBase_SumFac(), Nektar::StdRegions::StdTetExp::v_IProductWRTBase_SumFac(), Nektar::LocalRegions::TetExp::v_IProductWRTDerivBase(), Nektar::LocalRegions::PrismExp::v_IProductWRTDerivBase_SumFac(), Nektar::LocalRegions::PyrExp::v_IProductWRTDerivBase_SumFac(), Nektar::StdRegions::StdHexExp::v_IProductWRTDerivBase_SumFac(), Nektar::StdRegions::StdPrismExp::v_IProductWRTDerivBase_SumFac(), Nektar::StdRegions::StdTetExp::v_IProductWRTDerivBase_SumFac(), Nektar::StdRegions::StdPyrExp::v_IProductWRTDerivBase_SumFac(), Nektar::LocalRegions::PyrExp::v_LaplacianMatrixOp_MatFree_Kernel(), Nektar::LocalRegions::PrismExp::v_LaplacianMatrixOp_MatFree_Kernel(), Nektar::LocalRegions::TetExp::v_LaplacianMatrixOp_MatFree_Kernel(), and Nektar::LocalRegions::HexExp::v_LaplacianMatrixOp_MatFree_Kernel().

138  {
139  v_IProductWRTBase_SumFacKernel(base0, base1, base2, inarray, outarray, wsp, doCheckCollDir0, doCheckCollDir1, doCheckCollDir2);
140  }
virtual void v_IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)=0

◆ PhysTensorDeriv()

void Nektar::StdRegions::StdExpansion3D::PhysTensorDeriv ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray_d1,
Array< OneD, NekDouble > &  outarray_d2,
Array< OneD, NekDouble > &  outarray_d3 
)

Calculate the 3D derivative in the local tensor/collapsed coordinate at the physical points.

This function is independent of the expansion basis and can therefore be defined for all tensor product distribution of quadrature points in a generic manner. The key operations are:

  • \( \frac{d}{d\eta_1} \rightarrow {\bf D^T_0 u } \)
  • \( \frac{d}{d\eta_2} \rightarrow {\bf D_1 u } \)
  • \( \frac{d}{d\eta_3} \rightarrow {\bf D_2 u } \)
Parameters
inarrayarray of physical points to be differentiated
outarray_d1the resulting array of derivative in the \(\eta_1\) direction will be stored in outarray_d1 as output of the function
outarray_d2the resulting array of derivative in the \(\eta_2\) direction will be stored in outarray_d2 as output of the function
outarray_d3the resulting array of derivative in the \(\eta_3\) direction will be stored in outarray_d3 as output of the function

Recall that: \( \hspace{1cm} \begin{array}{llll} \mbox{Shape} & \mbox{Cartesian coordinate range} & \mbox{Collapsed coord.} & \mbox{Collapsed coordinate definition}\\ \mbox{Hexahedral} & -1 \leq \xi_1,\xi_2, \xi_3 \leq 1 & -1 \leq \eta_1,\eta_2, \eta_3 \leq 1 & \eta_1 = \xi_1, \eta_2 = \xi_2, \eta_3 = \xi_3 \\ \mbox{Tetrahedral} & -1 \leq \xi_1,\xi_2,\xi_3; \xi_1+\xi_2 +\xi_3 \leq -1 & -1 \leq \eta_1,\eta_2, \eta_3 \leq 1 & \eta_1 = \frac{2(1+\xi_1)}{-\xi_2 -\xi_3}-1, \eta_2 = \frac{2(1+\xi_2)}{1 - \xi_3}-1, \eta_3 = \xi_3 \\ \end{array} \)

Definition at line 69 of file StdExpansion3D.cpp.

References Blas::Dgemm(), Nektar::StdRegions::StdExpansion::m_base, and Vmath::Vcopy().

Referenced by Nektar::StdRegions::StdHexExp::v_PhysDeriv(), Nektar::StdRegions::StdPrismExp::v_PhysDeriv(), Nektar::StdRegions::StdTetExp::v_PhysDeriv(), and Nektar::StdRegions::StdPyrExp::v_PhysDeriv().

74  {
75  const int nquad0 = m_base[0]->GetNumPoints();
76  const int nquad1 = m_base[1]->GetNumPoints();
77  const int nquad2 = m_base[2]->GetNumPoints();
78 
79  Array<OneD, NekDouble> wsp(nquad0*nquad1*nquad2);
80 
81  // copy inarray to wsp in case inarray is used as outarray
82  Vmath::Vcopy(nquad0*nquad1*nquad2, &inarray[0], 1, &wsp[0], 1);
83 
84  if (out_dx.num_elements() > 0)
85  {
86  NekDouble *D0 = &((m_base[0]->GetD())->GetPtr())[0];
87 
88  Blas::Dgemm('N','N', nquad0,nquad1*nquad2,nquad0,1.0,
89  D0,nquad0,&wsp[0],nquad0,0.0,&out_dx[0],nquad0);
90  }
91 
92  if (out_dy.num_elements() > 0)
93  {
94  NekDouble *D1 = &((m_base[1]->GetD())->GetPtr())[0];
95  for (int j = 0; j < nquad2; ++j)
96  {
97  Blas::Dgemm('N', 'T', nquad0, nquad1, nquad1,
98  1.0, &wsp[j*nquad0*nquad1], nquad0,
99  D1, nquad1,
100  0.0, &out_dy[j*nquad0*nquad1], nquad0);
101  }
102  }
103 
104  if (out_dz.num_elements() > 0)
105  {
106  NekDouble *D2 = &((m_base[2]->GetD())->GetPtr())[0];
107 
108  Blas::Dgemm('N','T',nquad0*nquad1,nquad2,nquad2,1.0,
109  &wsp[0],nquad0*nquad1,D2,nquad2,0.0,&out_dz[0],
110  nquad0*nquad1);
111  }
112  }
static void Dgemm(const char &transa, const char &transb, const int &m, const int &n, const int &k, const double &alpha, const double *a, const int &lda, const double *b, const int &ldb, const double &beta, double *c, const int &ldc)
BLAS level 3: Matrix-matrix multiply C = A x B where A[m x n], B[n x k], C[m x k].
Definition: Blas.hpp:213
double NekDouble
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1064

◆ v_BwdTrans_SumFacKernel()

virtual void Nektar::StdRegions::StdExpansion3D::v_BwdTrans_SumFacKernel ( const Array< OneD, const NekDouble > &  base0,
const Array< OneD, const NekDouble > &  base1,
const Array< OneD, const NekDouble > &  base2,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp,
bool  doCheckCollDir0,
bool  doCheckCollDir1,
bool  doCheckCollDir2 
)
protectedpure virtual

◆ v_FaceNormalNegated()

bool Nektar::StdRegions::StdExpansion3D::v_FaceNormalNegated ( const int  face)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 346 of file StdExpansion3D.cpp.

References m_negatedNormals.

347  {
348  return m_negatedNormals[face];
349  }
std::map< int, bool > m_negatedNormals

◆ v_GetCoordim()

virtual int Nektar::StdRegions::StdExpansion3D::v_GetCoordim ( void  )
inlineprivatevirtual

◆ v_GetFaceNormal()

const NormalVector & Nektar::StdRegions::StdExpansion3D::v_GetFaceNormal ( const int  face) const
privatevirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 318 of file StdExpansion3D.cpp.

References ASSERTL0, and m_faceNormals.

Referenced by v_GetCoordim(), and v_GetSurfaceNormal().

319  {
320  auto x = m_faceNormals.find(face);
321  ASSERTL0 (x != m_faceNormals.end(),
322  "face normal not computed.");
323  return x->second;
324  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:216
std::map< int, NormalVector > m_faceNormals

◆ v_GetShapeDimension()

virtual int Nektar::StdRegions::StdExpansion3D::v_GetShapeDimension ( ) const
inlineprivatevirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 208 of file StdExpansion3D.h.

209  {
210  return 3;
211  }

◆ v_GetSurfaceNormal()

const NormalVector & Nektar::StdRegions::StdExpansion3D::v_GetSurfaceNormal ( const int  id) const
privatevirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 312 of file StdExpansion3D.cpp.

References v_GetFaceNormal().

Referenced by v_GetCoordim().

314  {
315  return v_GetFaceNormal(id);
316  }
const NormalVector & v_GetFaceNormal(const int face) const

◆ v_GetTraceNcoeffs()

virtual int Nektar::StdRegions::StdExpansion3D::v_GetTraceNcoeffs ( const int  i) const
inlineprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 198 of file StdExpansion3D.h.

References Nektar::StdRegions::StdExpansion::GetFaceNcoeffs().

199  {
200  return GetFaceNcoeffs(i);
201  }
int GetFaceNcoeffs(const int i) const
This function returns the number of expansion coefficients belonging to the i-th face.
Definition: StdExpansion.h:353

◆ v_HelmholtzMatrixOp_MatFree()

void Nektar::StdRegions::StdExpansion3D::v_HelmholtzMatrixOp_MatFree ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 249 of file StdExpansion3D.cpp.

References BwdTrans_SumFacKernel(), Nektar::StdRegions::eFactorLambda, Nektar::StdRegions::StdMatrixKey::GetConstFactor(), Nektar::StdRegions::StdMatrixKey::GetNVarCoeff(), Nektar::StdRegions::StdExpansion::HelmholtzMatrixOp_MatFree_GenericImpl(), IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::LaplacianMatrixOp_MatFree_Kernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric(), and Vmath::Svtvp().

Referenced by Nektar::LocalRegions::TetExp::v_HelmholtzMatrixOp(), Nektar::LocalRegions::PrismExp::v_HelmholtzMatrixOp(), Nektar::LocalRegions::HexExp::v_HelmholtzMatrixOp(), and Nektar::StdRegions::StdHexExp::v_HelmholtzMatrixOp().

253  {
254  if(mkey.GetNVarCoeff() == 0)
255  {
256  using std::max;
257 
258  int nquad0 = m_base[0]->GetNumPoints();
259  int nquad1 = m_base[1]->GetNumPoints();
260  int nquad2 = m_base[2]->GetNumPoints();
261  int nmodes0 = m_base[0]->GetNumModes();
262  int nmodes1 = m_base[1]->GetNumModes();
263  int nmodes2 = m_base[2]->GetNumModes();
264  int wspsize = max(nquad0*nmodes2*(nmodes1+nquad1),
265  nquad0*nquad1*(nquad2+nmodes0)+
266  nmodes0*nmodes1*nquad2);
267 
268  NekDouble lambda = mkey.GetConstFactor(StdRegions::eFactorLambda);
269 
270  const Array<OneD, const NekDouble>& base0 = m_base[0]->GetBdata ();
271  const Array<OneD, const NekDouble>& base1 = m_base[1]->GetBdata ();
272  const Array<OneD, const NekDouble>& base2 = m_base[2]->GetBdata ();
273  Array<OneD,NekDouble> wsp0(8*wspsize);
274  Array<OneD,NekDouble> wsp1(wsp0+1*wspsize);
275  Array<OneD,NekDouble> wsp2(wsp0+2*wspsize);
276 
277  if(!(m_base[0]->Collocation() && m_base[1]->Collocation() &&
278  m_base[2]->Collocation()))
279  {
280  // MASS MATRIX OPERATION
281  // The following is being calculated:
282  // wsp0 = B * u_hat = u
283  // wsp1 = W * wsp0
284  // outarray = B^T * wsp1 = B^T * W * B * u_hat = M * u_hat
285  BwdTrans_SumFacKernel (base0,base1,base2,inarray,
286  wsp0,wsp2,true,true,true);
287  MultiplyByQuadratureMetric (wsp0,wsp1);
288  IProductWRTBase_SumFacKernel (base0,base1,base2,wsp1,
289  outarray,wsp2,true,true,true);
290  LaplacianMatrixOp_MatFree_Kernel(wsp0,wsp1,wsp2);
291  }
292  else
293  {
294  // specialised implementation for the classical spectral
295  // element method
296  MultiplyByQuadratureMetric (inarray,outarray);
297  LaplacianMatrixOp_MatFree_Kernel(inarray,wsp1,wsp2);
298  }
299 
300  // outarray = lambda * outarray + wsp1
301  // = (lambda * M + L ) * u_hat
302  Vmath::Svtvp(m_ncoeffs,lambda,&outarray[0],1,&wsp1[0],1,
303  &outarray[0],1);
304  }
305  else
306  {
308  }
309 
310  }
void HelmholtzMatrixOp_MatFree_GenericImpl(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void BwdTrans_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:945
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
Definition: Vmath.cpp:488
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
double NekDouble
void LaplacianMatrixOp_MatFree_Kernel(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
Array< OneD, LibUtilities::BasisSharedPtr > m_base

◆ v_Integral()

NekDouble Nektar::StdRegions::StdExpansion3D::v_Integral ( const Array< OneD, const NekDouble > &  inarray)
protectedvirtual

Integrates the specified function over the domain.

See also
StdRegions::StdExpansion::Integral.

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::HexExp, Nektar::LocalRegions::PyrExp, Nektar::LocalRegions::TetExp, and Nektar::LocalRegions::PrismExp.

Definition at line 326 of file StdExpansion3D.cpp.

References Nektar::StdRegions::StdExpansion::GetTotPoints(), Nektar::StdRegions::StdExpansion::MultiplyByStdQuadratureMetric(), and Vmath::Vsum().

328  {
329  const int nqtot = GetTotPoints();
330  Array<OneD, NekDouble> tmp(GetTotPoints());
331  MultiplyByStdQuadratureMetric(inarray, tmp);
332  return Vmath::Vsum(nqtot, tmp, 1);
333  }
void MultiplyByStdQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:952
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:140
T Vsum(int n, const T *x, const int incx)
Subtract return sum(x)
Definition: Vmath.cpp:740

◆ v_IProductWRTBase_SumFacKernel()

virtual void Nektar::StdRegions::StdExpansion3D::v_IProductWRTBase_SumFacKernel ( const Array< OneD, const NekDouble > &  base0,
const Array< OneD, const NekDouble > &  base1,
const Array< OneD, const NekDouble > &  base2,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp,
bool  doCheckCollDir0,
bool  doCheckCollDir1,
bool  doCheckCollDir2 
)
protectedpure virtual

◆ v_LaplacianMatrixOp_MatFree()

void Nektar::StdRegions::StdExpansion3D::v_LaplacianMatrixOp_MatFree ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual
Parameters
inarrayInput coefficients.
outputOutput coefficients.
mkeyMatrix key

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 207 of file StdExpansion3D.cpp.

References BwdTrans_SumFacKernel(), Nektar::StdRegions::StdMatrixKey::ConstFactorExists(), Nektar::StdRegions::eFactorSVVCutoffRatio, Nektar::StdRegions::StdMatrixKey::GetNVarCoeff(), Nektar::StdRegions::StdExpansion::GetTotPoints(), Nektar::StdRegions::StdExpansion::LaplacianMatrixOp_MatFree_GenericImpl(), Nektar::StdRegions::StdExpansion::LaplacianMatrixOp_MatFree_Kernel(), and Nektar::StdRegions::StdExpansion::m_base.

Referenced by Nektar::LocalRegions::TetExp::v_LaplacianMatrixOp(), Nektar::LocalRegions::HexExp::v_LaplacianMatrixOp(), and Nektar::StdRegions::StdHexExp::v_LaplacianMatrixOp().

211  {
212  if ( mkey.GetNVarCoeff() == 0 &&
213  !mkey.ConstFactorExists(eFactorSVVCutoffRatio))
214  {
215  // This implementation is only valid when there are no
216  // coefficients associated to the Laplacian operator
217  int nqtot = GetTotPoints();
218 
219  const Array<OneD, const NekDouble>& base0 = m_base[0]->GetBdata();
220  const Array<OneD, const NekDouble>& base1 = m_base[1]->GetBdata();
221  const Array<OneD, const NekDouble>& base2 = m_base[2]->GetBdata();
222 
223  // Allocate temporary storage
224  Array<OneD,NekDouble> wsp0(7*nqtot);
225  Array<OneD,NekDouble> wsp1(wsp0+nqtot);
226 
227  if(!(m_base[0]->Collocation() && m_base[1]->Collocation() &&
228  m_base[2]->Collocation()))
229  {
230  // LAPLACIAN MATRIX OPERATION
231  // wsp0 = u = B * u_hat
232  // wsp1 = du_dxi1 = D_xi1 * wsp0 = D_xi1 * u
233  // wsp2 = du_dxi2 = D_xi2 * wsp0 = D_xi2 * u
234  BwdTrans_SumFacKernel(base0,base1,base2,inarray,wsp0,wsp1,true,true,true);
235  LaplacianMatrixOp_MatFree_Kernel(wsp0,outarray,wsp1);
236  }
237  else
238  {
239  LaplacianMatrixOp_MatFree_Kernel(inarray,outarray,wsp1);
240  }
241  }
242  else
243  {
245  }
246  }
void LaplacianMatrixOp_MatFree_GenericImpl(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void BwdTrans_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
void LaplacianMatrixOp_MatFree_Kernel(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:140
Array< OneD, LibUtilities::BasisSharedPtr > m_base

◆ v_NegateFaceNormal()

void Nektar::StdRegions::StdExpansion3D::v_NegateFaceNormal ( const int  face)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 336 of file StdExpansion3D.cpp.

References Nektar::StdRegions::StdExpansion::GetCoordim(), m_faceNormals, m_negatedNormals, and Vmath::Neg().

337  {
338  m_negatedNormals[face] = true;
339  for (int i = 0; i < GetCoordim(); ++i)
340  {
341  Vmath::Neg(m_faceNormals[face][i].num_elements(),
342  m_faceNormals[face][i], 1);
343  }
344  }
std::map< int, bool > m_negatedNormals
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:399
std::map< int, NormalVector > m_faceNormals

◆ v_PhysEvaluate() [1/2]

NekDouble Nektar::StdRegions::StdExpansion3D::v_PhysEvaluate ( const Array< OneD, const NekDouble > &  coords,
const Array< OneD, const NekDouble > &  physvals 
)
protectedvirtual

This function evaluates the expansion at a single (arbitrary) point of the domain.

Based on the value of the expansion at the quadrature points, this function calculates the value of the expansion at an arbitrary single points (with coordinates \( \mathbf{x_c}\) given by the pointer coords). This operation, equivalent to

\[ u(\mathbf{x_c}) = \sum_p \phi_p(\mathbf{x_c}) \hat{u}_p \]

is evaluated using Lagrangian interpolants through the quadrature points:

\[ u(\mathbf{x_c}) = \sum_p h_p(\mathbf{x_c}) u_p\]

This function requires that the physical value array \(\mathbf{u}\) (implemented as the attribute #phys) is set.

Parameters
coordsthe coordinates of the single point
Returns
returns the value of the expansion at the single point

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::HexExp, Nektar::LocalRegions::PyrExp, Nektar::LocalRegions::PrismExp, and Nektar::LocalRegions::TetExp.

Definition at line 142 of file StdExpansion3D.cpp.

References Nektar::NekConstants::kNekZeroTol, Nektar::StdRegions::StdExpansion::LocCoordToLocCollapsed(), Nektar::StdRegions::StdExpansion::m_base, and WARNINGL2.

Referenced by Nektar::StdRegions::StdNodalPrismExp::GenNBasisTransMatrix(), and Nektar::StdRegions::StdNodalTetExp::GenNBasisTransMatrix().

145  {
146  Array<OneD, NekDouble> eta = Array<OneD, NekDouble>(3);
147  Array<OneD, DNekMatSharedPtr> I(3);
148 
149  WARNINGL2(coords[0] >= -1 - NekConstants::kNekZeroTol,"coord[0] < -1");
150  WARNINGL2(coords[0] <= 1 + NekConstants::kNekZeroTol,"coord[0] > 1");
151  WARNINGL2(coords[1] >= -1 - NekConstants::kNekZeroTol,"coord[1] < -1");
152  WARNINGL2(coords[1] <= 1 + NekConstants::kNekZeroTol,"coord[1] > 1");
153  WARNINGL2(coords[2] >= -1 - NekConstants::kNekZeroTol,"coord[2] < -1");
154  WARNINGL2(coords[2] <= 1 + NekConstants::kNekZeroTol,"coord[2] > 1");
155 
156  // Obtain local collapsed corodinate from
157  // cartesian coordinate.
158  LocCoordToLocCollapsed(coords,eta);
159 
160  // Get Lagrange interpolants.
161  I[0] = m_base[0]->GetI(eta);
162  I[1] = m_base[1]->GetI(eta+1);
163  I[2] = m_base[2]->GetI(eta+2);
164 
165  return v_PhysEvaluate(I,physvals);
166  }
void LocCoordToLocCollapsed(const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
Convert local cartesian coordinate xi into local collapsed coordinates eta.
static const NekDouble kNekZeroTol
#define WARNINGL2(condition, msg)
Definition: ErrorUtil.hpp:275
virtual NekDouble v_PhysEvaluate(const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
This function evaluates the expansion at a single (arbitrary) point of the domain.
Array< OneD, LibUtilities::BasisSharedPtr > m_base

◆ v_PhysEvaluate() [2/2]

NekDouble Nektar::StdRegions::StdExpansion3D::v_PhysEvaluate ( const Array< OneD, DNekMatSharedPtr > &  I,
const Array< OneD, const NekDouble > &  physvals 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 168 of file StdExpansion3D.cpp.

References Blas::Ddot(), Blas::Dgemv(), and Nektar::StdRegions::StdExpansion::m_base.

171  {
172  NekDouble value;
173 
174  int Qx = m_base[0]->GetNumPoints();
175  int Qy = m_base[1]->GetNumPoints();
176  int Qz = m_base[2]->GetNumPoints();
177 
178  Array<OneD, NekDouble> sumFactorization_qr = Array<OneD, NekDouble>(Qy*Qz);
179  Array<OneD, NekDouble> sumFactorization_r = Array<OneD, NekDouble>(Qz);
180 
181  // Lagrangian interpolation matrix
182  NekDouble *interpolatingNodes = 0;
183 
184  // Interpolate first coordinate direction
185  interpolatingNodes = &I[0]->GetPtr()[0];
186 
187  Blas::Dgemv('T',Qx,Qy*Qz,1.0,&physvals[0],Qx,&interpolatingNodes[0], 1, 0.0, &sumFactorization_qr[0], 1);
188 
189  // Interpolate in second coordinate direction
190  interpolatingNodes = &I[1]->GetPtr()[0];
191 
192  Blas::Dgemv('T',Qy,Qz,1.0,&sumFactorization_qr[0],Qy,&interpolatingNodes[0],1,0.0,&sumFactorization_r[0], 1);
193 
194  // Interpolate in third coordinate direction
195  interpolatingNodes = &I[2]->GetPtr()[0];
196  value = Blas::Ddot(Qz, interpolatingNodes, 1, &sumFactorization_r[0], 1);
197 
198  return value;
199  }
double NekDouble
static void Dgemv(const char &trans, const int &m, const int &n, const double &alpha, const double *a, const int &lda, const double *x, const int &incx, const double &beta, double *y, const int &incy)
BLAS level 2: Matrix vector multiply y = A x where A[m x n].
Definition: Blas.hpp:168
static double Ddot(const int &n, const double *x, const int &incx, const double *y, const int &incy)
BLAS level 1: output = .
Definition: Blas.hpp:140
Array< OneD, LibUtilities::BasisSharedPtr > m_base

Member Data Documentation

◆ m_faceNormals

std::map<int, NormalVector> Nektar::StdRegions::StdExpansion3D::m_faceNormals
protected

◆ m_negatedNormals

std::map<int, bool> Nektar::StdRegions::StdExpansion3D::m_negatedNormals
protected

Definition at line 204 of file StdExpansion3D.h.

Referenced by v_FaceNormalNegated(), and v_NegateFaceNormal().