40 namespace SpatialDomains
94 m_expDim(xmap->GetShapeDimension()),
110 m_expDim(S.m_expDim),
111 m_coordDim(S.m_coordDim),
133 if(!(
lhs.m_type ==
rhs.m_type))
138 if(!(
lhs.m_expDim ==
rhs.m_expDim))
143 if(!(
lhs.m_coordDim ==
rhs.m_coordDim))
149 lhs.ComputeJac(
lhs.m_xmap->GetPointsKeys());
151 rhs.ComputeJac(
rhs.m_xmap->GetPointsKeys());
152 if(!(jac_lhs == jac_rhs))
173 "Dimension of target point distribution does not match "
174 "expansion dimension.");
178 int nqtot_tbasis = 1;
186 map_points[i] =
m_xmap->GetBasis(i)->GetPointsKey();
187 nqtot_map *= map_points[i].GetNumPoints();
188 nqtot_tbasis *= keyTgt[i].GetNumPoints();
206 m_xmap->StdPhysDeriv(j, tmp, d_map[j][i]);
219 same = same && (map_points[j] == keyTgt[j]);
225 deriv[j][i] = d_map[j][i];
232 Interp(map_points, d_map[j][i], keyTgt, deriv[j][i]);
256 "Dimension of target point distribution does not match "
257 "expansion dimension.");
259 int i = 0, j = 0, k = 0, l = 0;
267 ptsTgt *= keyTgt[i].GetNumPoints();
279 for (i = 0, l = 0; i <
m_expDim; ++i)
300 &jac[0], 1, &jac[0], 1);
336 "Dimension of target point distribution does not match "
337 "expansion dimension.");
339 int i = 0, j = 0, k = 0, l = 0;
347 ptsTgt *= keyTgt[i].GetNumPoints();
359 for (i = 0, l = 0; i <
m_expDim; ++i)
380 &jac[0], 1, &jac[0], 1);
385 Vmath::Vdiv(ptsTgt, &gmat[i][0], 1, &jac[0], 1, &gmat[i][0], 1);
401 "Dimension of target point distribution does not match "
402 "expansion dimension.");
404 int i = 0, j = 0, k = 0, l = 0;
412 ptsTgt *= keyTgt[i].GetNumPoints();
425 for (i = 0, l = 0; i <
m_expDim; ++i)
446 &jac[0], 1, &jac[0], 1);
451 Vmath::Vdiv(ptsTgt, &gmat[i][0], 1, &jac[0], 1, &gmat[i][0], 1);
482 "Dimension of target point distribution does not match "
483 "expansion dimension.");
491 nq *= keyTgt[i].GetNumPoints();
499 ptsTgt *= keyTgt[i].GetNumPoints();
512 for (i = 0; i < MFdim; ++i)
522 for (i = 0; i < MFdim-1; ++i)
551 factors, PrincipleDir);
560 if ( !(MMFdir ==
eLOCAL) )
593 for (i = 0; i < MFdim; ++i)
622 p[i] =
m_xmap->GetBasis(i)->GetPointsKey();
623 nqtot *=
p[i].GetNumPoints();
636 &deriv[1][0][0], 1, &deriv[0][1][0], 1,
645 &deriv[2][1][0], 1, &deriv[1][2][0], 1,
648 &jac[0], 1, &jac[0], 1);
651 &deriv[0][1][0], 1, &deriv[2][2][0], 1,
654 &jac[0], 1, &jac[0], 1);
657 &deriv[1][1][0], 1, &deriv[0][2][0], 1,
660 &jac[0], 1, &jac[0], 1);
685 ASSERTL1(src_points.size() == tgt_points.size(),
686 "Dimension of target point distribution does not match "
687 "expansion dimension.");
697 tgt_points[0], tgt_points[1], tgt);
702 tgt_points[0], tgt_points[1],
720 ASSERTL1(src.num_elements() == tgt.num_elements(),
721 "Source matrix is of different size to destination"
722 "matrix for computing adjoint.");
724 int n = src[0].num_elements();
732 Vmath::Smul (n, -1.0, &src[1][0], 1, &tgt[1][0], 1);
733 Vmath::Smul (n, -1.0, &src[2][0], 1, &tgt[2][0], 1);
738 int a, b, c, d, e, i, j;
751 &src[b][0], 1, &src[c][0], 1,
770 int nq = output[0].num_elements();
821 map_points[i] =
m_xmap->GetBasis(i)->GetPointsKey();
822 nqtot_map *= map_points[i].GetNumPoints();
828 Interp(map_points, tmp, keyTgt, x[k]);
832 NekDouble radius, xc=0.0, yc=0.0, xdis, ydis;
835 ASSERTL1(factors.num_elements() >= 4,
836 "factors is too short.");
843 for (
int i = 0; i < nq; i++)
847 radius = sqrt(xdis*xdis/la/la+ydis*ydis/lb/lb);
848 output[0][i] = ydis/radius;
849 output[1][i] = -1.0*xdis/radius;
866 map_points[i] =
m_xmap->GetBasis(i)->GetPointsKey();
867 nqtot_map *= map_points[i].GetNumPoints();
873 Interp(map_points, tmp, keyTgt, x[k]);
878 for (
int i = 0; i < nq; i++)
880 xtan = -1.0*(x[1][i]*x[1][i]*x[1][i] + x[1][i]);
882 mag = sqrt(xtan*xtan + ytan*ytan);
883 output[0][i] = xtan/mag;
884 output[1][i] = ytan/mag;
901 map_points[i] =
m_xmap->GetBasis(i)->GetPointsKey();
902 nqtot_map *= map_points[i].GetNumPoints();
908 Interp(map_points, tmp, keyTgt, x[k]);
913 for (
int i = 0; i < nq; i++)
915 xtan = -2.0*x[1][i]*x[1][i]*x[1][i] + x[1][i];
916 ytan = sqrt(3.0)*x[0][i];
917 mag = sqrt(xtan*xtan + ytan*ytan);
918 output[0][i] = xtan/mag;
919 output[1][i] = ytan/mag;
937 int ndim = array.num_elements();
938 ASSERTL0(ndim > 0,
"Number of components must be > 0.");
939 for (
int i = 1; i < ndim; ++i)
941 ASSERTL0(array[i].num_elements() == array[0].num_elements(),
942 "Array size mismatch in coordinates.");
945 int nq = array[0].num_elements();
949 for (
int i = 0; i < ndim; ++i)
960 for (
int i = 0; i < ndim; ++i)
962 Vmath::Vdiv(nq, array[i], 1, norm, 1, array[i], 1);
982 "Input 1 has dimension not equal to 3.");
984 "Input 2 has dimension not equal to 3.");
986 "Output vector has dimension not equal to 3.");
988 int nq = v1[0].num_elements();
992 Vmath::Vvtvm(nq, v1[1], 1, v2[2], 1, temp, 1, v3[0], 1);
995 Vmath::Vvtvm(nq, v1[2], 1, v2[0], 1, temp, 1, v3[1], 1);
998 Vmath::Vvtvm(nq, v1[0], 1, v2[1], 1, temp, 1, v3[2], 1);
#define ASSERTL0(condition, msg)
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Calculation and storage of geometric factors associated with the mapping from StdRegions reference el...
DerivStorage ComputeDeriv(const LibUtilities::PointsKeyVector &keyTgt) const
Array< TwoD, NekDouble > ComputeDerivFactors(const LibUtilities::PointsKeyVector &keyTgt) const
Return the derivative of the reference coordinates with respect to the mapping, .
void Adjoint(const Array< TwoD, const NekDouble > &src, Array< TwoD, NekDouble > &tgt) const
Compute the transpose of the cofactors matrix.
int m_coordDim
Dimension of coordinate system.
void CheckIfValid()
Tests if the element is valid and not self-intersecting.
void Interp(const LibUtilities::PointsKeyVector &src_points, const Array< OneD, const NekDouble > &src, const LibUtilities::PointsKeyVector &tgt_points, Array< OneD, NekDouble > &tgt) const
Perform interpolation of data between two point distributions.
Array< OneD, NekDouble > ComputeJac(const LibUtilities::PointsKeyVector &keyTgt) const
Return the Jacobian of the mapping and cache the result.
int m_expDim
Dimension of expansion.
Array< TwoD, NekDouble > ComputeGmat(const LibUtilities::PointsKeyVector &keyTgt) const
Computes the Laplacian coefficients .
void ComputePrincipleDirection(const LibUtilities::PointsKeyVector &keyTgt, const SpatialDomains::GeomMMF MMFdir, const Array< OneD, const NekDouble > &CircCentre, Array< OneD, Array< OneD, NekDouble > > &output)
bool m_valid
Validity of element (Jacobian positive)
StdRegions::StdExpansionSharedPtr m_xmap
Stores information about the expansion.
GeomFactors(const GeomType gtype, const int coordim, const StdRegions::StdExpansionSharedPtr &xmap, const Array< OneD, Array< OneD, NekDouble > > &coords)
Constructor for GeomFactors class.
~GeomFactors()
Destructor.
DerivStorage GetDeriv(const LibUtilities::PointsKeyVector &keyTgt)
Return the derivative of the mapping with respect to the reference coordinates, .
GeomType m_type
Type of geometry (e.g. eRegular, eDeformed, eMovingRegular).
Array< OneD, Array< OneD, NekDouble > > m_coords
Stores coordinates of the geometry.
void ComputeMovingFrames(const LibUtilities::PointsKeyVector &keyTgt, const SpatialDomains::GeomMMF MMFdir, const Array< OneD, const NekDouble > &CircCentre, Array< OneD, Array< OneD, NekDouble > > &movingframes)
void VectorNormalise(Array< OneD, Array< OneD, NekDouble > > &array)
void VectorCrossProd(const Array< OneD, const Array< OneD, NekDouble > > &v1, const Array< OneD, const Array< OneD, NekDouble > > &v2, Array< OneD, Array< OneD, NekDouble > > &v3)
Computes the vector cross-product in 3D of v1 and v2, storing the result in v3.
void Interp1D(const BasisKey &fbasis0, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, Array< OneD, NekDouble > &to)
this function interpolates a 1D function evaluated at the quadrature points of the basis fbasis0 to ...
void Interp3D(const BasisKey &fbasis0, const BasisKey &fbasis1, const BasisKey &fbasis2, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, const BasisKey &tbasis1, const BasisKey &tbasis2, Array< OneD, NekDouble > &to)
this function interpolates a 3D function evaluated at the quadrature points of the 3D basis,...
void Interp2D(const BasisKey &fbasis0, const BasisKey &fbasis1, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, const BasisKey &tbasis1, Array< OneD, NekDouble > &to)
this function interpolates a 2D function evaluated at the quadrature points of the 2D basis,...
std::vector< PointsKey > PointsKeyVector
GeomMMF
Principle direction for MMF.
@ eLOCAL
No Principal direction.
@ eTangentIrregular
Circular around the centre of domain.
@ eTangentX
X coordinate direction.
@ eTangentCircular
Circular around the centre of domain.
@ eTangentNonconvex
Circular around the centre of domain.
@ eTangentXY
XY direction.
@ eTangentZ
Z coordinate direction.
@ eTangentY
Y coordinate direction.
bool operator==(const GeomFactors &lhs, const GeomFactors &rhs)
Equivalence test for GeomFactors objects.
Array< OneD, Array< OneD, Array< OneD, NekDouble > > > DerivStorage
Storage type for derivative of mapping.
GeomType
Indicates the type of element geometry.
@ eRegular
Geometry is straight-sided with constant geometric factors.
@ eMovingRegular
Currently unused.
@ eDeformed
Geometry is curved or has non-constant factors.
std::shared_ptr< StdExpansion > StdExpansionSharedPtr
StandardMatrixTag boost::call_traits< LhsDataType >::const_reference rhs
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
void Neg(int n, T *x, const int incx)
Negate x = -x.
T Vmin(int n, const T *x, const int incx)
Return the minimum element in x - called vmin to avoid conflict with min.
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
void Vvtvm(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvm (vector times vector plus vector): z = w*x - y
void Vvtvvtm(int n, const T *v, int incv, const T *w, int incw, const T *x, int incx, const T *y, int incy, T *z, int incz)
vvtvvtm (vector times vector minus vector times vector):
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)