Nektar++
APE.cpp
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // File APE.cpp
4 //
5 // For more information, please see: http://www.nektar.info
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2018 Kilian Lackhove
10 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
11 // Department of Aeronautics, Imperial College London (UK), and Scientific
12 // Computing and Imaging Institute, University of Utah (USA).
13 //
14 // Permission is hereby granted, free of charge, to any person obtaining a
15 // copy of this software and associated documentation files (the "Software"),
16 // to deal in the Software without restriction, including without limitation
17 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
18 // and/or sell copies of the Software, and to permit persons to whom the
19 // Software is furnished to do so, subject to the following conditions:
20 //
21 // The above copyright notice and this permission notice shall be included
22 // in all copies or substantial portions of the Software.
23 //
24 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
25 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
26 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
27 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
28 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
29 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
30 // DEALINGS IN THE SOFTWARE.
31 //
32 // Description: APE1/APE4 (Acoustic Perturbation Equations)
33 //
34 ///////////////////////////////////////////////////////////////////////////////
35 
36 #include <iostream>
37 
39 
40 using namespace std;
41 
42 namespace Nektar
43 {
44 string APE::className = GetEquationSystemFactory().RegisterCreatorFunction(
45  "APE", APE::create, "APE1/APE4 (Acoustic Perturbation Equations)");
46 
47 APE::APE(const LibUtilities::SessionReaderSharedPtr &pSession,
49  : UnsteadySystem(pSession, pGraph), AcousticSystem(pSession, pGraph)
50 {
51  m_ip = 0;
52  m_irho = -1;
53  m_iu = 1;
54 
55  m_conservative = false;
56 }
57 
58 /**
59  * @brief Initialization object for the APE class.
60  */
62 {
64 
65  // Initialize basefield again
67  for (int i = 0; i < m_bf.size(); ++i)
68  {
70  }
71  GetFunction("Baseflow", m_fields[0], true)
72  ->Evaluate(m_bfNames, m_bf, m_time);
73 
74  // Define the normal velocity fields
76  for (int i = 0; i < m_bfFwdBwd.size(); i++)
77  {
79  }
80 
81  string riemName;
82  m_session->LoadSolverInfo("UpwindType", riemName, "Upwind");
83  if (boost::to_lower_copy(riemName) == "characteristics" ||
84  boost::to_lower_copy(riemName) == "apeupwind" ||
85  boost::to_lower_copy(riemName) == "upwind")
86  {
87  riemName = "APEUpwind";
88  }
89  if (boost::to_lower_copy(riemName) == "laxfriedrichs")
90  {
91  riemName = "APELaxFriedrichs";
92  }
94  riemName, m_session);
95  m_riemannSolver->SetVector("N", &APE::GetNormals, this);
96  m_riemannSolver->SetVector("basefieldFwdBwd", &APE::GetBasefieldFwdBwd,
97  this);
98  m_riemannSolver->SetAuxVec("vecLocs", &APE::GetVecLocs, this);
99 
100  // Set up advection operator
101  string advName;
102  m_session->LoadSolverInfo("AdvectionType", advName, "WeakDG");
103  m_advection =
105  m_advection->SetFluxVector(&APE::v_GetFluxVector, this);
106  m_advection->SetRiemannSolver(m_riemannSolver);
107  m_advection->InitObject(m_session, m_fields);
108 
110  {
113  }
114  else
115  {
116  ASSERTL0(false, "Implicit APE not set up.");
117  }
118 }
119 
120 /**
121  * @brief Destructor for APE class.
122  */
124 {
125 }
126 
127 /**
128  * @brief Return the flux vector for the APE equations.
129  *
130  * @param physfield Fields.
131  * @param flux Resulting flux. flux[eq][dir][pt]
132  */
134  const Array<OneD, Array<OneD, NekDouble>> &physfield,
136 {
137  int nq = physfield[0].size();
138  Array<OneD, NekDouble> tmp1(nq);
139  Array<OneD, NekDouble> tmp2(nq);
140 
141  ASSERTL1(flux[0].size() == m_spacedim,
142  "Dimension of flux array and velocity array do not match");
143 
144  // F_{adv,p',j} = \bar{rho} \bar{c^2} u'_j + p' \bar{u}_j
145  for (int j = 0; j < m_spacedim; ++j)
146  {
147  Vmath::Zero(nq, flux[0][j], 1);
148 
149  // construct \bar{rho} \bar{c^2} u'_j
150  Vmath::Vmul(nq, m_bf[0], 1, m_bf[1], 1, tmp1, 1);
151  Vmath::Vmul(nq, tmp1, 1, physfield[j + 1], 1, tmp1, 1);
152 
153  // construct p' \bar{u}_j term
154  Vmath::Vmul(nq, physfield[0], 1, m_bf[j + 2], 1, tmp2, 1);
155 
156  // add both terms
157  Vmath::Vadd(nq, tmp1, 1, tmp2, 1, flux[0][j], 1);
158  }
159 
160  for (int i = 1; i < flux.size(); ++i)
161  {
162  ASSERTL1(flux[i].size() == m_spacedim,
163  "Dimension of flux array and velocity array do not match");
164 
165  // F_{adv,u'_i,j} = (p'/ \bar{rho} + \bar{u}_k u'_k) \delta_{ij}
166  for (int j = 0; j < m_spacedim; ++j)
167  {
168  Vmath::Zero(nq, flux[i][j], 1);
169 
170  if (i - 1 == j)
171  {
172  // contruct p'/ \bar{rho} term
173  Vmath::Vdiv(nq, physfield[0], 1, m_bf[1], 1, flux[i][j], 1);
174 
175  // construct \bar{u}_k u'_k term
176  Vmath::Zero(nq, tmp1, 1);
177  for (int k = 0; k < m_spacedim; ++k)
178  {
179  Vmath::Vvtvp(nq, physfield[k + 1], 1, m_bf[k + 2], 1, tmp1,
180  1, tmp1, 1);
181  }
182 
183  // add terms
184  Vmath::Vadd(nq, flux[i][j], 1, tmp1, 1, flux[i][j], 1);
185  }
186  }
187  }
188 }
189 
190 /**
191  * @brief Outflow characteristic boundary conditions for compressible
192  * flow problems.
193  */
194 void APE::v_RiemannInvariantBC(int bcRegion, int cnt,
197  Array<OneD, Array<OneD, NekDouble>> &physarray)
198 {
199  int id1, id2, nBCEdgePts;
200  int nVariables = physarray.size();
201 
202  const Array<OneD, const int> &traceBndMap = m_fields[0]->GetTraceBndMap();
203 
204  int eMax = m_fields[0]->GetBndCondExpansions()[bcRegion]->GetExpSize();
205 
206  for (int e = 0; e < eMax; ++e)
207  {
208  nBCEdgePts = m_fields[0]
209  ->GetBndCondExpansions()[bcRegion]
210  ->GetExp(e)
211  ->GetTotPoints();
212  id1 = m_fields[0]->GetBndCondExpansions()[bcRegion]->GetPhys_Offset(e);
213  id2 = m_fields[0]->GetTrace()->GetPhys_Offset(traceBndMap[cnt + e]);
214 
215  // Calculate (v.n)
216  Array<OneD, NekDouble> Vn(nBCEdgePts, 0.0);
217  for (int i = 0; i < m_spacedim; ++i)
218  {
219  Vmath::Vvtvp(nBCEdgePts, &Fwd[m_iu + i][id2], 1,
220  &m_traceNormals[i][id2], 1, &Vn[0], 1, &Vn[0], 1);
221  }
222 
223  // Calculate (v0.n)
224  Array<OneD, NekDouble> Vn0(nBCEdgePts, 0.0);
225  for (int i = 0; i < m_spacedim; ++i)
226  {
227  Vmath::Vvtvp(nBCEdgePts, &BfFwd[2 + i][id2], 1,
228  &m_traceNormals[i][id2], 1, &Vn0[0], 1, &Vn0[0], 1);
229  }
230 
231  for (int i = 0; i < nBCEdgePts; ++i)
232  {
233  NekDouble c = sqrt(BfFwd[0][id2 + i]);
234 
235  // LODI
236  NekDouble h1, h2;
237 
238  // outgoing
239  if (Vn0[i] - c > 0)
240  {
241  // u/2 - p/(2*rho0*sqr(c0sq))
242  h1 = Vn[i] / 2 -
243  Fwd[m_ip][id2 + i] / (2 * BfFwd[1][id2 + i] * c);
244  }
245  // incoming
246  else
247  {
248  h1 = 0.0;
249  }
250 
251  // outgoing
252  if (Vn0[i] + c > 0)
253  {
254  // u/2 + p/(2*rho0*sqr(c0sq))
255  h2 = Vn[i] / 2 +
256  Fwd[m_ip][id2 + i] / (2 * BfFwd[1][id2 + i] * c);
257  }
258  // incoming
259  else
260  {
261  h2 = 0.0;
262  }
263 
264  // compute primitive variables
265  // p = rho0*sqr(c0sq) * (h2 - h1)
266  Fwd[m_ip][id2 + i] = BfFwd[1][id2 + i] * c * (h2 - h1);
267  // u = h1 + h2
268  NekDouble VnNew = h1 + h2;
269 
270  // adjust velocity pert. according to new value
271  for (int j = 0; j < m_spacedim; ++j)
272  {
273  Fwd[m_iu + j][id2 + i] =
274  Fwd[m_iu + j][id2 + i] +
275  (VnNew - Vn[i]) * m_traceNormals[j][id2 + i];
276  }
277  }
278 
279  // Copy boundary adjusted values into the boundary expansion
280  for (int i = 0; i < nVariables; ++i)
281  {
282  Vmath::Vcopy(nBCEdgePts, &Fwd[i][id2], 1,
283  &(m_fields[i]
284  ->GetBndCondExpansions()[bcRegion]
285  ->UpdatePhys())[id1],
286  1);
287  }
288  }
289 }
290 
291 } // namespace Nektar
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:216
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:250
virtual void v_GetFluxVector(const Array< OneD, Array< OneD, NekDouble >> &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble >>> &flux)
Return the flux vector for the APE equations.
Definition: APE.cpp:133
virtual void v_RiemannInvariantBC(int bcRegion, int cnt, Array< OneD, Array< OneD, NekDouble >> &Fwd, Array< OneD, Array< OneD, NekDouble >> &BfFwd, Array< OneD, Array< OneD, NekDouble >> &physarray)
Outflow characteristic boundary conditions for compressible flow problems.
Definition: APE.cpp:194
virtual ~APE()
Destructor.
Definition: APE.cpp:123
virtual void v_InitObject()
Initialization object for the APE class.
Definition: APE.cpp:61
const Array< OneD, const Array< OneD, NekDouble > > & GetVecLocs()
Get the locations of the components of the directed fields within the fields array.
const Array< OneD, const Array< OneD, NekDouble > > & GetNormals()
Get the normal vectors.
std::vector< std::string > m_bfNames
bool m_conservative
we are dealing with a conservative formualtion
void DoOdeProjection(const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble time)
Compute the projection and call the method for imposing the boundary conditions in case of discontinu...
SolverUtils::AdvectionSharedPtr m_advection
void DoOdeRhs(const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble time)
Compute the right-hand side.
virtual void v_InitObject()
Initialization object for the AcousticSystem class.
int m_ip
indices of the fields
Array< OneD, Array< OneD, NekDouble > > m_bfFwdBwd
Array< OneD, Array< OneD, NekDouble > > m_bf
const Array< OneD, const Array< OneD, NekDouble > > & GetBasefieldFwdBwd()
Get the baseflow field.
SolverUtils::RiemannSolverSharedPtr m_riemannSolver
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:200
tBaseSharedPtr CreateInstance(tKey idKey, tParam... args)
Create an instance of the class referred to by idKey.
Definition: NekFactory.hpp:145
void DefineProjection(FuncPointerT func, ObjectPointerT obj)
void DefineOdeRhs(FuncPointerT func, ObjectPointerT obj)
int m_spacedim
Spatial dimension (>= expansion dim).
SOLVER_UTILS_EXPORT int GetTraceNpoints()
NekDouble m_time
Current time of simulation.
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
Array holding trace normals for DG simulations in the forwards direction.
SOLVER_UTILS_EXPORT SessionFunctionSharedPtr GetFunction(std::string name, const MultiRegions::ExpListSharedPtr &field=MultiRegions::NullExpListSharedPtr, bool cache=false)
Get a SessionFunction by name.
SOLVER_UTILS_EXPORT int GetTotPoints()
Base class for unsteady solvers.
LibUtilities::TimeIntegrationSchemeOperators m_ode
The time integration scheme operators to use.
bool m_explicitAdvection
Indicates if explicit or implicit treatment of advection is used.
std::shared_ptr< SessionReader > SessionReaderSharedPtr
AdvectionFactory & GetAdvectionFactory()
Gets the factory for initialising advection objects.
Definition: Advection.cpp:47
EquationSystemFactory & GetEquationSystemFactory()
RiemannSolverFactory & GetRiemannSolverFactory()
std::shared_ptr< MeshGraph > MeshGraphSharedPtr
Definition: MeshGraph.h:174
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:1
double NekDouble
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:192
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:513
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:322
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:257
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:436
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1199
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:267