Nektar++
AdjointAdvection.cpp
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // File AdjointAdvection.cpp
4 //
5 // For more information, please see: http://www.nektar.info
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining a
14 // copy of this software and associated documentation files (the "Software"),
15 // to deal in the Software without restriction, including without limitation
16 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
17 // and/or sell copies of the Software, and to permit persons to whom the
18 // Software is furnished to do so, subject to the following conditions:
19 //
20 // The above copyright notice and this permission notice shall be included
21 // in all copies or substantial portions of the Software.
22 //
23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 // DEALINGS IN THE SOFTWARE.
30 //
31 // Description: Evaluation of the adjoint advective term
32 //
33 ///////////////////////////////////////////////////////////////////////////////
34 
36 
37 using namespace std;
38 
39 namespace Nektar
40 {
41 
42 string AdjointAdvection::className = SolverUtils
44  AdjointAdvection::create);
45 
46 /**
47  *
48  */
49 AdjointAdvection::AdjointAdvection():
51 {
52 }
53 
55 {
56 }
57 
59  const int nConvectiveFields,
61  const Array<OneD, Array<OneD, NekDouble> > &advVel,
62  const Array<OneD, Array<OneD, NekDouble> > &inarray,
63  Array<OneD, Array<OneD, NekDouble> > &outarray,
64  const NekDouble &time,
65  const Array<OneD, Array<OneD, NekDouble> > &pFwd,
66  const Array<OneD, Array<OneD, NekDouble> > &pBwd)
67 {
68  ASSERTL1(nConvectiveFields == inarray.size(),
69  "Number of convective fields and Inarray are not compatible");
70 
71  int nPointsTot = fields[0]->GetNpoints();
72  int ndim = advVel.size();
73  int nBaseDerivs = (m_halfMode || m_singleMode) ? 2 : m_spacedim;
74  int nDerivs = (m_halfMode) ? 2 : m_spacedim;
75 
76  Array<OneD, Array<OneD, NekDouble> > velocity(ndim);
77  int nScalar =nConvectiveFields - ndim;
78  Array<OneD, Array<OneD,NekDouble> > scalar(nScalar);
79 
80  for(int i = 0; i < ndim; ++i)
81  {
82  if(fields[i]->GetWaveSpace() && !m_singleMode && !m_halfMode)
83  {
84  velocity[i] = Array<OneD, NekDouble>(nPointsTot,0.0);
85  fields[i]->HomogeneousBwdTrans(advVel[i],velocity[i]);
86  }
87  else
88  {
89  velocity[i] = advVel[i];
90  }
91  }
92  if (nScalar > 0) //add for temperature field
93  {
94  for (int jj = ndim; jj < nConvectiveFields; ++jj)
95  {
96  scalar[jj-ndim] = inarray[jj];
97  }
98  }
99 
100  Array<OneD, Array<OneD, NekDouble> > grad (nDerivs);
101  for( int i = 0; i < nDerivs; ++i)
102  {
103  grad[i] = Array<OneD, NekDouble> (nPointsTot);
104  }
105 
106  // Evaluation of the base flow for periodic cases
107  if (m_slices > 1)
108  {
109  for (int i = 0; i < ndim; ++i)
110  {
112  m_period-time, m_period);
113  UpdateGradBase(i, fields[i]);
114  }
115  }
116 
117  //Evaluate the linearised advection term
118  for( int i = 0; i < ndim; ++i)
119  {
120  // Calculate gradient
121  switch(nDerivs)
122  {
123  case 1:
124  {
125  fields[i]->PhysDeriv(inarray[i], grad[0]);
126  }
127  break;
128  case 2:
129  {
130  fields[i]->PhysDeriv(inarray[i], grad[0], grad[1]);
131  }
132  break;
133  case 3:
134  {
135  fields[i]->PhysDeriv(inarray[i], grad[0], grad[1], grad[2]);
136  if(m_multipleModes)
137  {
138  // transform gradients into physical Fourier space
139  fields[i]->HomogeneousBwdTrans(grad[0], grad[0]);
140  fields[i]->HomogeneousBwdTrans(grad[1], grad[1]);
141  fields[i]->HomogeneousBwdTrans(grad[2], grad[2]);
142  }
143  }
144  break;
145  }
146 
147  // Calculate -U_j du'_i/dx_j
148  Vmath::Vmul(nPointsTot,grad[0], 1, m_baseflow[0], 1, outarray[i], 1);
149  for( int j = 1; j < nDerivs; ++j)
150  {
151  Vmath::Vvtvp(nPointsTot,grad[j], 1,
152  m_baseflow[j], 1,
153  outarray[i], 1,
154  outarray[i], 1);
155  }
156  Vmath::Neg(nPointsTot,outarray[i],1);
157 
158  // Add u'_j U_j/ dx_i
159  int lim = (m_halfMode) ? 2 : ndim;
160  if ( (m_halfMode || m_singleMode) && i==2)
161  {
162  lim = 0;
163  }
164  for( int j = 0; j < lim; ++j)
165  {
166  Vmath::Vvtvp(nPointsTot,m_gradBase[j*nBaseDerivs + i], 1,
167  velocity[j], 1,
168  outarray[i], 1,
169  outarray[i], 1);
170  }
171  //Add Tprime*Grad_Tbase in u, v equations
172  if (nScalar > 0 && i < ndim)
173  {
174  for (int s = 0; s < nScalar; ++s)
175  {
176  Vmath::Vvtvp(nPointsTot, m_gradBase[(ndim + s)*nBaseDerivs + i], 1,
177  scalar[s], 1,
178  outarray[i],1,
179  outarray[i],1);
180  }
181  }
182 
183  if(m_multipleModes)
184  {
185  fields[i]->HomogeneousFwdTrans(outarray[i],outarray[i]);
186  }
187  Vmath::Neg(nPointsTot,outarray[i],1);
188  }
189 }
190 
191 } //end of namespace
192 
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:250
virtual void v_Advect(const int nConvectiveFields, const Array< OneD, MultiRegions::ExpListSharedPtr > &fields, const Array< OneD, Array< OneD, NekDouble > > &advVel, const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble &time, const Array< OneD, Array< OneD, NekDouble > > &pFwd=NullNekDoubleArrayOfArray, const Array< OneD, Array< OneD, NekDouble > > &pBwd=NullNekDoubleArrayOfArray)
Advects a vector field.
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:200
NekDouble m_period
period length
void UpdateGradBase(const int var, const MultiRegions::ExpListSharedPtr &field)
bool m_singleMode
flag to determine if use single mode or not
Array< OneD, Array< OneD, NekDouble > > m_baseflow
Storage for base flow.
Array< OneD, Array< OneD, NekDouble > > m_gradBase
void UpdateBase(const NekDouble m_slices, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const NekDouble m_time, const NekDouble m_period)
bool m_multipleModes
flag to determine if use multiple mode or not
bool m_halfMode
flag to determine if use half mode or not
Array< OneD, Array< OneD, NekDouble > > m_interp
interpolation vector
AdvectionFactory & GetAdvectionFactory()
Gets the factory for initialising advection objects.
Definition: Advection.cpp:47
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:1
double NekDouble
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:192
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:461
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:513